MODELING AND SIMULATION COMPOSABILITY

Susan Harkrider
U.S. Army STRICOM
Orlando, FL

W.H. (Dell) Lunceford, Jr.
Army Modeling & Simulation Office
Crystal City, VA

ABSTRACT

The term composability is most often used in conjunction with object-oriented software
development. In this respect, composability is defined as “the ability to rapidly create or adapt
powerful systems to respond quickly to new hardware and software capabilities, dynamically
respond to mission requirements, system health/integrity, operating environment, and possibly
reconfigure during execution, for example, to trade fault tolerance or security for performance”.

(1]

In contrast, the modeling and simulation (M&S) community views composability as an element in
the process to achieve automated scenario and exercise generation. In the eyes of the M&S
community, composability allows a simulation system user complete flexibility to cross M&S
domains or to configure a system “on the fly” from models or pieces of a model.

This paper is written with the express purpose of bounding the concept of composability in
modeling and simulation, both what it is and why it is desired. Design requirements are defined,
as well as challenges to the process. The paper concludes with a discussion regarding
composability limitations within modeling and simulation.

AUTHOR BIOGRAPHIES

Susan Harkrider is a Systems Engineer at the U.S. Army Simulation, Training and
Instrumentation Command. Ms. Harkrider is currently the lead systems engineer for the Close
Combat Tactical Trainer (CCTT), the Army’s largest distributed simulation system. Her systems
engineering experience includes High Level Architecture research and implementation, as well as
the Anti-Armor Advanced Technology Demonstration. Ms. Harkrider holds a BSE and a MSIE,
both from the University of Central Florida.

W.H. (Dell) Lunceford has been with the Government for 25 years, during which he has been
assigned to program management, engineering and R&D projects for some of the Department of
Defense's largest simulation based programs. He is currently the Technical Director for the Army
Model and Simulation Office (AMSO), which is responsible for shaping and guiding the Army's
use of simulation technology. Mr. Lunceford came to this position after serving as the Defense
Advanced Research Projects Agency's (DARPA) Program Manager for Advanced Simulation
Technology. Prior to that he was both the Technical Director for DARPA's Synthetic Theater of
War program which focused on the use of distributed simulation for very large scale theater level
training exercises and was the Chief Engineer for the Army's next generation combined arms
distributed training system. Mr. Lunceford is a graduate of Florida Technological University and
although currently residing in the Northern Virginia area is actually employed by the Army's
Simulation, Instrumentation and Training Command (STRICOM) located in Orlando Fl.

MODELING AND SIMULATION COMPOSABILITY

Susan Harkrider
U.S. Army STRICOM
Orlando, FL

W.H. (Dell) Lunceford, Jr.
Army Modeling & Simulation Office
Crystal City, VA

l. INTRODUCTION

The term composability is most often used in
conjunction with object-oriented software
development. In this respect, composability is
defined as “the ability to rapidly create or adapt
powerful systems to respond quickly to new
hardware and software capabilities,
dynamically respond to mission requirements,
system health/integrity, operating environment,
and possibly reconfigure during execution, for
example, to trade fault tolerance or security for
performance”. [1] Composability, in this
context, aims to foster software reuse, typically
at the object level or higher. Cited methods for
achieving composability include inheritance,
delegation, and part-of relationships.

In contrast, the modeling and simulation (M&S)
community views composability as an element
in the process to achieve automated scenario
and exercise generation. In the eyes of the
M&S community, composability allows a
simulation system user complete flexibility to
cross M&S domains or to configure a system
“on the fly” from models or pieces of a model.
M&S domains include requirements definition,
training, and materiel development. Building a
generic simulation system from the ground up
is extremely expensive and time consuming,
and no one can ever anticipate all of the
requirements. Because of this, software reuse
is necessary, but it does not always fulfill its
intended purpose.

When considering the breadth of capabilities
expected of simulation systems, it is readily
apparent that a single system expected to
meet this diverse set of needs should have the
ability to be composed. This will support the
particular objectives of each training exercise
in which it is to be used, while eliminating
extraneous processing requirements for
unused functionality. The process of

composition should address the content of the
simulation as well as the resources required,

i.e., hardware and personnel needed to
conduct the exercise.
To clarify, composability differs from

configurability, e.g., generating an exercise
that includes eight rather than four M1A2
tanks. In this case the M1A2 tanks are
identical, yet have different missions and
tactics during an exercise.

Il DEFINITION OF COMPOSABILITY

Managers desire vast functionality within the
most inexpensive system possible, and this
economy forces the system builder to host a
huge model library within the simulation.
Composability allows the most efficient use of
simulation capability, while maintaining
management and user objectives.

Therefore, a derived definition of modeling and
simulation composability is: The ability to
create, configure, initialize, test, and validate
an exercise by logically assembling a unique
simulation execution from a pool of reusable
system components in order to meet a specific
set of objectives.

1. DESIGN REQUIREMENTS
Methods of composability

Given the above, composability can be defined
further, based on its usage to satisfy a time
requirement versus a system requirement.
The requirement effects the method for
achieving composability: assembling raw data,
extending system components, or exploiting an
existing architecture.

Within a given timeframe, building a simulation
is achieved by composing a unique system

from a library of existing objects or from raw
data. Examples of existing objects are things
that are coded and reside in libraries, such as
a tank model of a body, tread, engine, and
turret, or some similar set of models.
Extending system components is the ability to
create new federates from a library of models,
and is one of many elements in the automated
scenario generation process. While the
scenario generation process typically requires
a full year for a large exercise, the Joint
Simulation System (JSIMS) requirement is
system composition in 96 hours. Assembling
raw data such as mathematical models,
algorithms, or knowledge-engineered sources
is a second means of composability. At this
level, issues concerning validation of the
doctrine, tactics, and Simulation Object Model
(SOM) arise. Issues associated with these
methods of composability include the amount
of data required within each model, the terrain
implications, and the impact on behavior when
a model or model data is reused.

Alternatively, a composable architecture is one
in which the simulation system is constructed
of an infrastructure of independent layers of
software with well-defined application
programmer interfaces (APIs). A composable
architecture is a near-term requirement, but
may not be feasible outside of a particular
system specification. In effect, modules from
one composable architecture may not be
physically nor logically interoperable with
another architecture unless the calling
interfaces are standardized. An example of
this is the architecture in a personal computer.
Both the hardware and software interfaces in
an IBM PC are standardized to the point that
almost any component, whether it is a central
processing unit or a word processing program,
is easily plugged in and used. This is a very
useful feature in a simulation, however the
community will be very reluctant to standardize
on any one hardware or software option.

Levels of Composability
At what level of implementation is

composability appropriate? An example of this
is a chemistry laboratory. If a chemist were

required to produce any possible compound,
what elements would be necessary? Would it
be faster to stock the compounds instead?
And, if all the compounds could be stored, how
expensive would the lab be? Analysis would
determine the point at which it would be more
effective to stock basic elements versus
cheaper and faster to stock the compounds.
Similarly, in a planned federation, it would be
prudent to determine at which level
composability should be implemented in order
to achieve the greatest benefit at the lowest
cost. In this respect, composability should be
separated into four levels: configuration,
component, model, or system level.

Configuration - Configuration is the ability to
alter the number of identical entities per
exercise.

Component Level - Objects internal to a
system from which new objects can be built,
e.g. ModSAF, is component level
composability. The delimiting factor is the
requirement for objects, algorithms, and data
to be housed internal to a system. (See Figure
1.2

PP OO @
N B B B

|

1

I

Infrastructure to connect components

Figure 1. Component Level Composability

Model Level - At the model level,
composability is achieved by selecting
preassembled packages containing numerous
models that represent a consistent subset of
the battlespace. Model level composability
can also be achieved by assembling suites of
hardware connected by a LAN/WAN
combination. The interfaces of packages are
selected to achieve the greatest possible
interoperability with other packages by
minimizing the degree of external interaction.
(See Figure 2). [2]

Always-present services

Figure 2. Model Level Composability

System Level - System level composability is
achieved by pre-assembling a complete
simulation. At this level, the simulation can be
modified by parameterization, or by
substitution of alternative packages drawn
from a limited pool. (See Figure 3). [2]

Parameters

N
[N T

Figure 3. System Level Composability

V. CHALLENGES
Verification & Validation

Composability requires advances in
procedures for verification and validation
(V&V). In general, an arbitrary assembly of
validated components will not produce a
validated simulation. V&V in a composable
environment should be as sensitive to
simulation context as it is to simulation
components. It is expected that there will be
stand-alone V&V requirements unique to a
particular composition, therefore, the owner of
that composition is responsible to accomplish
any additional V&V needed to complete the
testing program. The presence of metadata
concerning models and system components
will assist the V&V process significantly. The
V&V process requires some form of
configuration control that will narrow the scope
of the composition and allow for
comprehensive testing prior to the exercise.

Validation can be reasonably executed at the
model level, allowing validated simulations to
be composed with the required flexibility.

User interface

Compositions will only work if planned and
designed from the beginning to meet specific
objectives. Most agree that composability
requires some form of a repository to catalog
functionality and limitations, and to house the
model meta-data. The repository should
contain tools to manage combinations of
different objects. The sophistication of the
tools will depend on the level of composability
desired, e.g., a simulation composed at the
model level will require a more intelligent tool
to assist in assembling an exercise than a tool
used to compose at the system level.

Ripple effect

Further, composability can only occur in a well-
tested, controlled environment. The system
designer should not be able to randomly
compose systems that have not been
constructed previously nor tested. In effect,
the system should not be developed without
tools to support testing. The composable
environment should offer an intelligent
consistency check tool to warn designers of
the implications of their creation. For example,
if a sensor system is taken from an airframe
and moved to a ground vehicle, the tactics and
doctrine of that vehicle will probably be
affected, as well as the capabilities of the
sensor. If the transfer of the sensor is illogical,
then the tool should recognize the problem and
alert the designer.

Legacy systems

Another concept to be studied is that of
including virtual simulations in a composable
environment. The concept of composability is
currently limited to computer generated forces
simulation. Adding a virtual simulation to an
exercise assembled from composable
elements is not an issue until one considers
the potential of dynamic composition.
Although none of the program representatives
interviewed relayed the need for dynamic
composition, their program documentation
hints at the requirement.

High Level Architecture

A special case of composable architectures is
the High Level Architecture (HLA). Within this
architecture, federations exploit a detailed
interface specification for passing data. The
internal system characteristics and design
decisions are not limited by the HLA. Systems
that meet the compliance requirements of the
HLA have documented their characteristics in
a simulation object model (SOM). The SOM
class table identifies the base entities available
to a system designer, yet does not necessarily
represent the object model internal to a
federate. Therefore, the HLA is a composable
architecture, however it does not offer a ready
means to validate models or to validate
interactions.

Configuration management

Implications to configuration management are
acerbated by composability. As changes are
made to achieve a composition, the system
baseline requires global updates. This is
especially evident in factory level
composability. The achievement of
composability is not a one-time effort, but will
require continuous attention and coordination
in the M&S community. As development
experience is gained, and new requirements
and capabilities of technology to support
composability are identified, the definition of
composability will evolve. Descriptions should
be developed by the community to provide
identification of composable products. The
descriptions will provide an operational use for
the composable product, its functionality,
software product properties, relationship to
architecture, interfaces, required computational
resources, and allocated requirements.

Model Metadata

Various repositories of model metadata have
already been developed and will continue to be
developed by the M&S community. Metadata
describes the aspects of each simulation
component such as its associated simulation
control architecture, e.g., event or time-based,
user requirements, constraints, and algorithms.
The metadata is used by the composition
environment to assist the user in browsing
components and developing a valid simulation
or simulation entity.

For example, the discrete event simulation
community uses any of several software
packages to accomplish model level
composition. Arena, for one, offers modules
containing specific data and functionality that
can be placed within an active screen to
perform a discrete event simulation. The
modules can be chosen from one of many
menus, and can quickly function as a
simulation with minimal programming
expertise. The modules within Arena are
limited in their application, however the
capability to compose a simulation rapidly from
existing packages of functionality is achieved.

Ideal FOM

The concept of a Federation Object Model
(FOM), an “Ideal FOM”, that covers the full
spectrum of possible scenarios, could be
developed and demonstrated. The Ideal FOM
would be limited to a small system, since
changes to a FOM require exponential updates
to the system. If an Ideal FOM appears
somewhat impractical, then an abstraction of
sub-FOMs is an alternative. In this case, a
casual set of interrelationships between
objects could be defined, however the
interaction issues would need to be resolved
by an intelligent tool. The subset would
contain packages of model element
information that can be reused in exercises.

V. SUMMARY

As of today, the scope of composability is
limited to computer generated forces (CGF).
Several programs have defined and delineated
composability for their intended use, but have
not built a robust composable simulation
system. These programs include JSIMS,
WARSIM, OneSAF, JWARS, and JointSim.
Further, amongst these programs a standard
characterization of design components and
terminology for M&S composability has yet to
be determined. This paper is the first step in
the standardization of composability
terminology and component identification.

VI. REFERENCES
[1] Composable Systems and Configurable

Computing Conference Proceedings, available
at http://www.ito.darpa.mil/PIM/wed34.html.

http://www.ito.darpa.mil/PIM/wed34.html.

[2] Butler, Brett. Simulation Composability for
JSIMS. 7th CGF & BR Conference, 12-14 May
1998.

[8] The JSIMS Architecture, Version 1.0, 30
June 1997.

[4] Composability in the JSIMS Domain:
WARSIM 2000, unpublished document.

[5] OneSAF Analysis Phase Il Contract
Proposal, Science Applications International
Corporation (SAIC), 1 December 1997.

[6] JointSim Research — Composition of
Simulation Objects, Los Alamos National
Laboratory, 23 January 1997.

[7] Carnegie Mellon University EDCS
Technical Status Report, available at
http://www.cs.cmu.edu/~Compose/html/EDCS/
FY98.

[8] Workshop on Composability Issues in
Object-Orientation. Part of the Tenth
European Conference on Object-Oriented
Programming Proceedings, 8-12 July 1996,
available at http://wwwtrese.cs.utwente.nl.

http://www.cs.cmu.edu/~Compose/html/EDCS/FY98
http://wwwtrese.cs.utwente.nl

