Paper Reference Number: EC-060

AUTOMATED LINEAR FEATURE EXTRACTION
IN SUPPORT OF RAPID DATABASE GENERATION

Richard Ley, Steve Wallace and Nick Davies
Space Department, Defence Evaluation and Research Agency,
Farnborough, UK.

ABSTRACT

Part of the UK Ministry of Defence element of the STOW programme investigated the time and cost drivers
pertaining to the entire process of the rapid generation of Synthetic Natural Environments (SNE) databases. Data
requirements, products, information and systems were analysed to identify bottlenecks and gaps. Traditionally,
construction of SNE databases is a time consuming and very labour intensive exercise. It involves a very high
degree of effort to generate the required source terrain and feature data, and significant further effort to convert
source data into a compiled SNE database.

Standard military datasets are typically used to provide the bulk of the data for a SNE database (e.g. DTED and
DFAD). However, such datasets may not be available for the specific area of interest, they may be at an
inappropriate scale, they require augmentation and they are likely to be based on out-of-date mapping sources. An
alternative worldwide and up-to-date source is required. The new series of Earth Observing satellites are creating a
large archive of up-to-date geospatial data. The major blockage has moved down the value-added chain and it is the
conversion of data into information that has become the major time and cost driver.

An approach to automated feature extraction from EO imagery is presented which uses an object-orientated geodata
model as the framework to store contextual knowledge and to use this in the control of feature extraction routines.
The problem of geographic extraction has proved complex and ideally requires the incorporation of contextual clues
similar to those used by human interpreters of imagery. Often the feature recognition algorithms work at local levels
and in a bottom-up fashion and lack the higher level control that would allow a more global understanding of parts
of the image. The paper proposes a control strategy that incorporates both the global and local views.

The geodata model comprises a class hierarchy representing the features under study and their likely relationships.
Each class of object within this model contains criteria that need to be satisfied in order to strengthen the belief that
an instance of that object type has been recognised. The criteria cannot be rigid and the system must be able to
control partial recognition of objects and identify conflicts. The system described will apply these ideas to the
problem of geographic object recognition, focusing on the specific requirements of linear feature extraction.

Authors’ Biographies:

Richard Ley is a GI/GIS and remote sensing expert who specialises in the generation and manipulation of geospatial
information. His research interest focuses upon techniques that support the rapid generation of geospatial databases.
Richard’s current role is head of the Geospatial Information & Services Group and he is the technical leader of the
ALFIE project.

Steve Wallace is a GIS and remote sensing specialist with experience gained in the capture, manipulation, and
integration of all forms of spatial data. Particular expertise has been developed in the derivation of both feature and
terrain data from spaceborne and aerial imagery, using semi-automatic and automatic approaches. Steve’s current
role as a Senior Scientist, involves the technical management of research projects.

Nick Davies trained in geospatial sciences, gaining an honours degree in Computer Science and GIS with particular
experience gained in cartographic data design and production, and database programming. Nick is involved with all
aspects of GIS system integration and development, including requirements analysis and system design.



Paper Reference Number: EC-060

AUTOMATED LINEAR FEATURE EXTRACTION
IN SUPPORT OF RAPID DATABASE GENERATION

Richard Ley, Steve Wallace and Nick Davies
Space Department, Defence Evaluation and Research Agency,
Farnborough, UK.

BACKGROUND

Part of the UK Ministry of Defence element of the
STOW programme investigated the time and cost
drivers pertaining to the entire process of the rapid
generation of Synthetic Natural Environments (SNE)
databases. Data requirements, products, information
and systems were analysed to identify bottlenecks and
gaps (Wallace et al, 2000, Davies et al, 2000).
Traditionally, construction of SNE databases is a time
consuming and very labour intensive exercise. It
involves a very high degree of effort to generate the
source terrain and feature data required, and significant
further effort to convert source data into a compiled
SNE database. Standard military datasets are typically
used to provide the bulk of the data for a SNE database
(e.g. DTED and DFAD). However, such datasets may
not be available for the specific area of interest, they
may be at an inappropriate scale, they typically require
thinning, generalising, and augmenting with additional
data, and they are likely to be based on out-of-date
mapping sources. An alternative world-wide and up-to-
date source is required.

This lack of source materials for SNE generation has
often been cited as one of the major stumbling blocks.
However, the new series of Earth Observing satellites
are creating a large archive of up-to-date geospatial
data. The major blockage has moved down the value-
added chain and it is the conversion of data into
information that has become the major time and cost
driver. The abundance and detailed content of this
imagery will remain inaccessible unless the information
content can be readily extracted through automation.
Thus, a 3-year research project, entitled Automatic
Extraction of Information from Geospatial Data
(alternatively titled ‘Automated Linear Feature
Identification and Extraction’ (ALFIE)) was initiated
by the UK MoD in 1999 to investigate ways of
addressing this blockage. The focus of the research is
the automatic extraction and attribution of roads,
railways and rivers.

This is an area that has attracted considerable funding
in the past with the emphasis being on the development
of extraction algorithms based upon identifying features
through their radiometric properties in the imagery. The
view taken here is that the use of radiometric properties

alone will not provide sufficient information to extract
and attribute linear features. The key is to utilise as
much information pertaining to that feature as possible.
For example, in the manual extraction of a linear
feature, the operator does not simply look at the
spectral response to determine that a feature is a road.
The human brain assimilates the context in which that
feature lies. In an urban area, a road is likely to have
buildings along one or either side. The style of
junctions, line curvature and width can also all give
clues as to the nature of the feature. It is this
information which ALFIE will utilise. It will
incorporate rules based upon contextual information,
implementing them through a combination of spatial
analysis and intelligent agents within an object-oriented
environment. It should also be stated that this project
does not intend to generate any new linear feature
extraction algorithms. Many of these algorithms have
been developed over the last 20 years. Each algorithm
has benefits and limitations. In general, each algorithm
works well within the domain for which it was devised
and tested. Thus, some algorithms work well on very
high resolution imagery, but not on imagery with
coarser resolutions, while others work well on SAR
images but not on multi-spectral images. Therefore, the
ALFIE project will bring together a suite of state-of-
the-art algorithms to maximise the use of a variety of
image types. Any resulting time and cost reductions in
the extraction of linear features will be a significant
benefit not just to synthetic environments but to all
areas requiring access to geospatial data. The ALFIE
research team includes staff at the UK’s Defence
Evaluation and Research Agency (DERA), Laser-Scan,
a GIS company and the Department of Geography,
Nottingham University, UK. This paper investigates the
methodology employed and describes the current status
of the process flow model.

METHODOLOGY

The methodology followed must support the prime
requirement of rapid database generation for any region
in the world; timeliness and universality are
fundamental considerations. There are four major
elements to the approach being followed, namely the
datasets employed, the exploitation of contextual
information, the use of an object-oriented database,
packaged and manipulated through a control strategy.
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Datasets
Datasets Imagery Cartographic
Multispectral | Panchromatic Radar Features Elevation

Minimal 7 bands 10m Vmap DTED

30m Level 1 Level 1
3 bands Sm 20m

20m

Optimal 3 bands Im 8m Vmap DTED
4m Level 2 Level 2

Table 1. Datasets employed

A review of initiatives in automated feature extraction
show that significant progress has been made,
particularly in respect to roads and to a lesser extent 3D
compact structures (Baumgartner et al., 1997; Heller,
1998). Generally, the procedures adopted focus upon
exploiting very high resolution imagery, either airborne
or spaceborne. However, the timeframes required for
collecting, handling and processing very high resolution
imagery usually exceed those available for rapid
database generation. Therefore, a reliance on very high
resolution imagery is contrary to our aims.

Instead, developed techniques will be utilised that
exploit those datasets that are universally available;
these will tend to be medium resolution imagery. If
timelines are longer, additional high resolution datasets
will be exploited and techniques will be devised to
accommodate the geo-processing of these (see Table 1).
These datasets will probably need to be collected
specifically rather than taken from archive. They will
incur greater processing times but will provide far more
detailed and dynamic information.

In addition, the approach includes the potential to
exploit existing cartographic data. If available, feature
and attribute data extracted from standard military
products will be included. Again, depending upon
timeframes, different levels of products will be utilised.
It is assumed that there will be world-wide coverage of
DTED and VMap at level 1 (approximately equivalent
to 1:250 000 scale mapping) and that level 2 products
(approximately equivalent to 1:50 000 scale mapping)
may become available at a later date. The cartographic
data will provide context and may be used to seed or
train algorithms that can provide more complete
datasets than are available within the products
themselves. No over-reliance will be made of the
cartographic sources and the system will be designed to
work on the imagery alone. However, experience
teaches that all available collateral information should
be exploited to improve the probability of a successful
extraction and attribution (Tonjes & Growe, 1998). The

extraction process must be able to work at minimal and
optimal levels of dataset availability.

The minimal dataset comprises Landsat multispectral
and SPOT panchromatic imagery plus two level 1
standard military datasets whilst the optimal dataset is
based upon the new generation of high resolution
spaceborne imagery. Currently, this is limited to
Ikonos imagery (both multispectral and panchromatic)
but additional sources are expected in the near-future.
Radarsat provides the high resolution Synthetic
Aperture Radar (SAR) imagery. Level 2 cartographic
products are included in the optimal dataset. An
intermediate grouping comprises the Indian IRS
multispectral and panchromatic plus the European
Space Agency ERS SAR datasets.

Context

Automatic object recognition techniques are used very
successfully in the fields of engineering drawing
recognition and industrial object inspection (Priestnall
et al., 1996). Here the number of different object types
under study is limited and their size, shape and
dimensions are predictable, or the drawings conform to
some standard accepted code of practice. Geographical
objects do not conform to such standards and the same
assumptions regarding size and shape cannot be made
especially when different types of imagery at varying
spatial resolutions are the sources. However, some
ideas and techniques are transferable to the geospatial
domain. One crucial concept that is transportable is the
use of contextual clues such as the relationship between
one object and its neighbours, or the containment of an
object within a region.

The importance of context in an extraction regime can
be demonstrated by an image sequence (see Figure 1.)
At the pixel level in the first image, it is difficult to
identify the object, but as the view is widened then
more 'supporting evidence' from the immediate context
of the object is incorporated and so the object can be
identified more confidently.
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Figure 1: The use of context (© NRSC, 1996)

Spatial context can be considered at several levels
(Baumgartner et al., 1997). At the regional level,
derivation of contextual clues of a spatial nature (such
as containment) can be achieved using medium
resolution imagery (20-30m pixels). Thus, context
regions such as urban, rural and forest could be defined.
This is important since the behaviour and relationship
of objects may vary depending on the context region.
On the more local level, the interrelationships between
features can be defined in closer terms. These can be
termed “sketches”. For example, one sketch may be
“occlusion shadow” that might consist of two road
segments broken by the shadow of some high object.
Context at this local level is only really applicable when
high resolution imagery is used. Within a linear feature
extraction strategy, context regions can be used to limit
the choice of acceptable feature recognition solutions or
to refine the parameters used. Attempts at feature
recognition often focus on the geometric character of
one type of feature in isolation in order to manage the
complexity of the problem as a whole (Wang &
Howarth, 1991). However, there is much to be gained
from attempting to incorporate more contextual
information from the image in terms of
interrelationships between different feature types.
Junction features, for example, hold vital network
topological details and can form good starting points
for searches to complete linear segments and begin
growing the network. In addition, features represented
in high resolution imagery often appear as complex
composite features where no single feature extraction
algorithm will suffice. A framework will be developed
in order to represent these complex geographic features
and relationships in a hierarchical fashion so knowledge
of a feature’s locus can be used to suggest likely feature
recognition procedures.

Object-oriented database technology

The object-oriented database will contain a geo-model
composed of a class hierarchy representing the features
under study and their likely relationships (see Table 2
for an example of this model related to railways). Each

class of object within this model will contain criteria (in
the form of class members) which need to be satisfied
in order to strengthen the belief that an instance of that
object type has been recognised. The criteria cannot be
rigid and the system must be able to control the
recognition of features and identify conflicts. The
ability to allow several partially recognised features to
mutually confirm each other is a vital step towards the
introduction of geospatial context. Another benefit of
the object database will be the ability of object classes
to contain knowledge of the types of feature recognition
that are appropriate for a particular object type at a
particular scale. This will allow a partially recognised
feature to effectively attempt to classify itself.

The modelling of ‘real world’ objects encapsulates not
only the geometry and attribution but also the structure
and behaviour of these objects. Structure and context
have been difficult to incorporate in classic ‘image
processing’ systems but become a natural component of
an object-oriented database. It does this by the use of
intelligent agents. These agents are pre-defined to
determine the most appropriate class (e.g. road, railway
etc.) dependent on the description, behaviour and
association of each line. The implementation of these
agents is carried out transparently from the user’s
perspective.  In considering linear features, active
agents will automatically determine, for example, the
width and gradient of them and compare these with the
parameters for each type of feature. Table 3 gives an
example of the ranges of widths and gradients expected
for roads and railways in a developed, non-
mountainous country. Furthermore, the ability to
rapidly experiment and prototype through use of
classification methods attached to the object classes
offers up a novel research environment.

The hierarchical data model and the intelligent agents
are being implemented within an object-oriented
database that utilises a Geographic Information System
(GIS) as a front-end. Laser-Scan’s Integrated GIS
(IGIS) and its GOTHIC spatial database were selected
for the prototype system.
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Class Sub-class Class members
Known Railway Maximum gradient permissible
Maximum curvature permissible
Width
Junction type
Connectivity
Associated features
Table 2: Subset of the geodata model
Contextual rules
Intelli
ntelligent agent Railway Motorway Main road Minor road
Max Min Max Min Max Min Max Min
Gradient 1in 50 | None | 1in 10 | None lin7 None lin 4 None
Width 20 m 3m 30 m 20 m 15m 6 m 6 m 3m

Table 3: Illustrative intelligent agents and their associated contextual rules

Control Strategy

The final element to the research is the definition and
implementation of a control strategy. This exploits the
use of g priori knowledge (e.g. class, context,
containment, connectivity, duration) to undertake per
object classification techniques. It then builds upon this
by employing a variety of image recognition
algorithms. There are a number of these algorithms
already developed but their effective exploitation is
hindered by the lack of a framework that automatically
assesses which set of algorithms should be used in
which set of circumstances. These include the type and
resolution of imagery, the type of feature, the type of
contextual region and the timeframe. The control needs
to be self-assessing so that levels of confidence can be
assigned to any outputs. Thus, a means of defining
assessment metrics and confidence levels are being
developed. The strategy allows output at various
stages, ranging from a quick snapshot of readily
classifiable features progressively through time to a
more detailed classification of all the major linear man-
made features.

SELECTED ALGORITHMS

A review of Defence and public domain algorithms was
undertaken and a down selection was made (Ducksbury
(1999). Five packages of algorithms will be
incorporated in the future work. Two are in the public
domain (G-Snakes and Multi-resolution edge linker),
one is proprietary (Laser-Scan's V-trak) and the final
two are internal to DERA (SUSAN and Linefinder).

The algorithms have been selected to ensure that
extractions can be made from a variety of image types
and resolutions. For example, SUSAN is an effective
edge detector and hence works well on medium
resolution imagery where linear features are typically
only two or three pixels wide. Linefinder, on the other
hand, uses the Marr-Hildreth filter that detects
centrelines and thus is only effective on high resolution
imagery where both sides of a linear feature are
identifiable. Linefinder also incorporates some clever
processing to reduce the amount of clutter generated by
the centreline filter. To ensure maximum benefit is
gained from these algorithms, a flexible approach has
been taken in porting them to the Commercial Off The
Shelf (COTS) GIS. Hence, the use of an edge detector
can be used instead of the centreline filter within the
Linefinder algorithm if the circumstances demand it.
This means that existing algorithms can be tailored to
specific image types, thereby extending their use
outside of the domain for which they were originally
designed.

PROCESS FLOW

The process flow may comprise two complete passes;
the first is at the GLOBAL level during which the
major features will be extracted. Medium resolution
datasets will be exploited. The results of this pass may
be fed into the second pass at the LOCAL level. This
only occurs if there is both more detailed source
material available (i.e. high resolution imagery) and
time to process it (see Figure 2).
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NOTE:
The process flow will be carried out
. in two phases. The first phase will be
Inputs: Imagery available at the GLOBAL level, during which
Features to extract the major features will aim to be extracted.
Output: Best image The results of the global level
Best extraction algorithm extraction and classification will then
Best segmentation algorithm be used to seed the extraction at the
+ LOCAL level using finer resolution
imagery if available.

Selection Stage
(Control Strategy)

Yes Is segmentation

. No
* required?
Segment Image
Input: Best image (“Full” image
Output: Rural/Urban
— context region
Rural/urban
context regio
S pre-processing
* Yes (smoothing) No
required?

Pre-processing

Input: Selected region CFull”unsmootheC
Output: Smoothed image

context region

Smoothed ;

context regio ¢
Extract Collateral Substages:
Features 1. Classify collateral features
algorithm Input: Relevant image area 2. Polygonise
Qutput: Vector linears 3. Populate OODB schema
R Extract Linears Substages:
elevant . . .
Input: Relevant image area 1. Run extraction algorithm
= Output: Vector linears 2. Raster to Vector (if required)
DTED
Level 1 +
Classify Linears Mgg .
Level 1 Input: Link-node linears L. Classification
Output: Classified linears 2. Network building
Features

Contextual
Rules

Other segmented
context regions?

Yes

No |

Integrate Results from
Context Regions
Input: Classified linears

Validate Classification Qutput: Integrated linears

Input: Integrated linears |« !
Level 1

Output: Validated linears

Figure 2. ALFIE Process Flow



Control Stage

The aim of the control strategy is to provide a
framework from which the most appropriate algorithms
(including the actual feature extraction algorithms as
well as image segmentation and pre-processing
algorithms) are selected automatically, given the type
of imagery available and the features to be extracted.
The algorithms will also be parameterised
automatically. The control stage is sub-divided between
segmentation, domain of interest and selection sub-
stages.

Segmentation Sub-Stage. Contextual regions are
defined within the imagery. The actual segmentation
process to be employed is determined by the datasets
available and the types and scale of features to be
extracted. = These are mainly based upon spatial
differences although there may be some aspatial
variation involving the quality of the imagery.
Adjacent scenes from the same sensor often exhibit
different tonal balances and so may require different
pre-processing to optimise contrast etc. Rarely can this
occur within a single scene. The spatial differences are
dependent upon variations in land surface
characteristics. These include variations in major land
cover (i.e. water/land; urban/rural; open/woodland),
terrain (gentle/steep sloping) and a priori knowledge of
major communication corridors (e.g. the
presence/orientation but not the exact location of roads,
railways etc). Each of these may well have
implications on not only the fine-tuning of the
algorithms but also on the algorithm to be used.
Contextual regions are over-lapping rather than
mutually exclusive. They are segmented using the
medium resolution datasets using different algorithms
depending upon the type of region and the dataset used.
During the LOCAL pass, contextual sketches rather
than regions are extracted.

Domain Of Interest Sub-Stage. Transportation
networks vary considerably throughout the world. For
example, civil engineering constraints of maximum
gradients and curvature for railway construction may be
relaxed in areas of rugged terrain. The maturity of road
networks will vary considerably depending upon
population density, national wealth and alternative
means of transport. The selection of the domain of
interest is generally based upon a priori knowledge.

Selection Sub-Stage. Once the datasets have been
divided into domains and homogeneous contextual
regions, the selection process will determine both the
optimal datasets to be exploited and the algorithms to
be employed through a series of pre-determined look-
up tables. Furthermore, the individual parameters of
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the algorithms will be specified in a similar manner.
This may involve a multi-resolution approach given the
selected combination of image type and linear feature
width (and number of different widths). Finally, the
control strategy will determine the required level of
pre-processing of the imagery. This is very much
linked to the set of algorithms that are to be employed.

Pre-processing Stage

The primary aim of this stage is to prepare the input
imagery to aid the extraction algorithms. For example,
an efficient smoothing algorithm that retains edges
could be run over the input image to enhance the effect
of an edge-extracting algorithm. In the same way, a
Normalised Difference Vegetation Index (NDVI) image
could be derived prior to the extraction of woodland
and trees (which may be required for collateral
information). The pre-processing stage is sub-divided
between image processing and training sub-stages.

Image Processing Sub-Stage. The type of processing is
determined by the type of datasets exploited, the
features to be extracted, and the algorithms selected.
The Control strategy pre-determines the level of pre-
processing. This sub-stage may include improving the
overall characteristics of the imagery (e.g. contrast or
brightness) and/or focussing on improving specific
features through edge enhancement or smoothing filters
before running the selected algorithm. Furthermore,
standard image processing techniques such as band
ratioing may be used, first to enhance a particular
feature of interest, and secondly it enables three or
more multispectral bands to be integrated into a single
band that emphasises the information contained within
each of the input bands.

Interactive Training Sub-Stage. This is kept to a
minimum but could provide illustrative geometry and
attributes of the linear features present from the
cartographic datasets. These, when compared to the
imagery, could provide training information concerning
the width, spectral consistency and contrast of the linear
objects. However, the positional inaccuracies of the
cartographic Level 1 products may reduce this sub-
stage to one of identifying communication corridors
only.

Extract Collateral Features Stage

The use of context within the extraction methodology
requires some collateral information to be extracted.
For example, trees often line suburban roads, while
hedgelines often bound minor rural roads. Before this
information can be utilised within the classification
stage, it has to be extracted from the imagery. This then



is the aim of the collateral features extraction stage.
Rivers and canals will also be extracted at this stage.
This is because water is relatively easy to extract from
multispectral imagery (in comparison to roads, railways
etc.) due to the near unique total absorption of near
infrared light in water. This stage will be sub-divided
between the extraction of the collateral features and a
raster to vector conversion.

Extraction Sub-Stage. Features such as waterways and
hedgelines are extracted. These will be used to ‘mask’
the lines representing these features from the set of
lines provided by the linear feature extraction
algorithm.

Polygonisation Sub-Stage. The extracted collateral
features are vectorised to enable overlay on the
extracted linear features.

Extract Linears Stage

It is at this stage that the actual linear feature extraction
algorithms are run. The output is a group of discrete
‘unknown’ linears. Since a number of the algorithms
output raster formatted data, this is sub-divided
between the specific linear feature extraction followed
by a vectorising sub-stage.

Extraction Sub-Stage. The selected datasets of an
individual context region are passed through the chosen
algorithms in order to extract the linears. The results of
this stage are a number of disconnected raster polygons
including both signal and noise. If either multi-
resolution or multi-spectral imagery is employed, a
series of overlapping polygons is created.

Raster-To-Vector Sub-Stage. The raster polygons are
converted to vectors with some tagging of geometric
(e.g. length, width, consistency of width and pattern of
feature) and radiometric intelligence (e.g. homogeneity,
specific spectral response).

Classify Linears Stage

From a situation where the system contains ‘unknown’
linears, the aim is to categorise and classify these
unknown lines into specific classes (road, railways,
rivers etc.). This stage is sub-divided between
classification and network building sub-stages although
the process is iterative rather than sequential.

Classification Sub-Stage. The vectors are analysed
against the contextual rules that are held within the
object-oriented database as intelligent agents. If the
vector is long enough, it is given a radius of curvature
and gradient to accompany any other attribution already
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assigned. Initially, the vector is given the object class
‘unknown’. It is then tested against each of the rules
pertaining to rivers, roads and railways and a running
score or confidence level is recorded. Once this
probability reaches a prescribed level in one of the three
categories, its status changes to line ‘known’ (e.g. river,
road or railway). Sub-categories exist within roads
(e.g. motorways, number of lanes, hard or soft surfaced
etc).

Network building sub-stage. As a result of the initial
classification, confidence levels prioritise a cycle of
further labelling and network building. Starting with
high confidence features such as strong T-junctions,
linear segments are followed, initiating spatial searches
to gain further local contextual clues and to bridge gaps
in the vectors. Extended but status ‘unknown’
networks are passed back to the classification sub-stage
for further attribution and confidence level building.
This loop is repeated either until all features are
classified or until no further enhancement of confidence
levels is created.

If there are contextual regions still to be analysed the
process returns to the pre-processing stage. If all
contextual regions at the current scale are processed,
the validation stage is initiated.

Validation Stage

Details of this stage are currently being compiled. It is
planned to incorporate statistical reporting of the
process (e.g. the average confidence levels for each
feature, the proportion of status ‘knowns’ to
‘unknowns’ and the connectivity of the derived
networks). It may be possible to compare these with
statistical summaries of existing geospatial information
in similar geographical areas (e.g. density of various
road categories per square kilometre). This type of
information is being recorded elsewhere in order to
generate geo-typical relief (Chapman 1999).

The state of recognition of the linear features is
displayed by highlighting the status ‘unknown’ features
along with their current confidence levels. These
unknowns are classified with the ‘safest’ option as
vehicle navigation could be based upon the resulting
geospatial information.

After the GLOBAL pass is completed, the major lines
of transportation are both extracted and classified.
Time and dataset availability permitting, the cycle is
repeated at the LOCAL level. GLOBAL features
become available as additional contextual information
to support processes performed at the LOCAL level.



Future work

Within the ALFIE research project, the second year
work is concentrating upon defining the details of the
Control Strategy, building the object-oriented database
including the ‘intelligent’ agents and porting the
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algorithms into the target GIS. A prototype system will
be built during year three. Upon the successful
completion of the prototype, it is planned to move the
extraction of linear features into the production domain
and extend the research to include other features, such
as buildings and industrial land cover.

© British Crown copyright 2000. Published with the
permission of the Defence Evaluation and Research
Agency on behalf of the Controller of HMSO.
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