
INTEGRATION OF FIELDED ARMY AVIATION SIMULATORS WITH
MODSAF: THE EIGHTH ARMY TRAINING SOLUTION

Joseph M. Sardella and Darryl L. High

L-3 Communications Corporation, Link Simulation and Training Division
Binghamton, New York

Abstract

The Eighth United States Army (EUSA) in the Republic of Korea employs UH-60 and CH-47 flight
simulators to support individual and crew training for Blackhawk and Chinook pilots, respectively. These
simulators are high fidelity, man-in-the-loop, training devices that support initial entry, qualification, and
sustainment training in system operations, crew coordination, emergency procedures, and combat skills.
As part of the EUSA Korean Simulator Upgrade program, the two flight simulators are receiving an
upgrade to the visual image generation system (including a geo-specific database of the Korean
Peninsula) while maintaining, as a minimum, existing performance capabilities. One of the key training
areas to maintain was the tactical environment. In the existing visual database, target sites and pathways
were modeled into the database manually, based on training requirements and customer inputs, using
custom database generation tools. The sites and paths, along with the behaviors of these targets, were
under instructor controls; thus, providing numerous, realistic, dynamic, yet deterministic and repeatable
tactical scenarios. In addition to these real-time scenarios, both training devices provide a reset and
playback capability that allows the student and instructor to review the mission and allows fly-out to real-
time at any time during the playback. Under the scope of the contract, these capabilities were to be
maintained.

The solution needed to be a constructive simulation that not only maintained previous tactical
environment fidelity (critical to each helicopter’s training environment) but one that added enough
robustness to provide a set of routes that can be altered as training requirements change without
requiring a large database modeling effort. With an off-line scenario generation capability and realistic
target movement models, Modular Semi-Automated Forces (ModSAF) was selected as the constructive
simulation. By adding a Distributed Interactive Simulation (DIS) network interface between the legacy
device and ModSAF, the Instructor Operator Station (IOS) at the training device can control each
ModSAF target as directed by the existing tactics within the legacy training device. The use of DIS as the
interface also provides future growth potential for the devices to perform collective training in a DIS or
High Level Architecture (HLA) networked environment.

Biographical Sketches:

Joseph M. Sardella is a Principal Software Engineer with L-3 Communications Corporation, Link
Simulation and Training Division, in Binghamton, NY with over 16 years of visual system, computer
systems, and simulator experience. He has previously worked on several distributed simulation systems
including the B-2 HLA program and the CELLNET program which integrated AH-64 and UH-60 flight
simulators with Suppressor using DIS technology. Joe is currently the Integrated Product Team (IPT)
Lead for the Tactics/Visual IPT on the EUSA program.

Darryl L. High is a Software Engineer with L-3 Communications Corporation, Link Simulation and Training
Division, in Binghamton, NY with experience predominantly in the area of Computer Generated Forces
(CGFs). Having contributed to programs such as B-2 and the AH-1W, Darryl is now working on
integrating ModSAF, using DIS technology, with flight simulation trainers on the EUSA program.

INTEGRATION OF FIELDED ARMY AVIATION SIMULATORS WITH
MODSAF: THE EIGHTH ARMY TRAINING SOLUTION

Joseph M. Sardella and Darryl L. High

L-3 Communications Corporation, Link Simulation and Training Division
Binghamton, New York

INTRODUCTION

During times when military budgets require an
ever-increasing return on investment, engineering
solutions need to achieve the same aggressive
return on investment as they balance reusability,
innovation, and new technology. This return on
investment equilibrium was sought on the EUSA
program with an effort to upgrade to the
capabilities of new image generation technology.
The EUSA upgrade focussed on the installation of
a new image generation system for legacy UH-60
Blackhawk and CH-47 Chinook aircrew training
devices. This upgrade also promoted the
safeguard of existing critical training capabilities
such as trainer specific tactical behaviors, the
ability to place threats anywhere within the tactical
environment, record/playback functionality, and
the ability to “fly-out” of a playback and return to
real-time flight. The engineering solution, in turn,
strived to achieve a similar equilibrium with an
effort to balance reusability by keeping existing
tactical environment functionality, innovation by
designing a DIS interface to command and control
constructive simulation entities, and new
technology by instituting a new image generation
system with a geo-specific database. In order to
meet contract requirements and position for
potential future growth in a distributive network,
ModSAF was chosen as the constructive
simulation to provide the off-line scenario
generation and real-time target movement. The
system design allows the existing IOS to control
ModSAF entities using DIS protocol. This paper
will summarize the current tactical capabilities that
were retained, the modifications made to the off-
line and real-time ModSAF functionality, and the
DIS interface that was established for
communication between the flight simulator’s host
computer (i.e. the host) and ModSAF.

EXISTING TACTICAL ENVIRONMENT

In general, the differences between the UH-60 and
CH-47 simulators' tactical environment varied only
in terms of the number of targets allowed in the

threat environment, their interactions with the
ownship, and the level of control that a training
instructor had during a training mission. The
environments were analogous and each flight
simulator had the capability to create tactical
scenarios at its IOS. Tactical missions were
created by the training instructor via selecting
targets from a predefined list and placing them in
the environment at predefined sites and paths.
These were only available for selection since they
were included as part of the off-line database
generation process. The creation of these sites
and paths was a labor-intensive task and did not
allow real-time modifications once created. Sites
were defined in two categories: fixed and moving.
A fixed site allowed a target to be placed at a
predefined location within the database; however,
the site could not be relocated during a real-time
training mission. As the name suggests, targets
placed on these sites did not move through the
database, yet they still interacted with the ownship
based on tactical behavior selected at the flight
simulator’s IOS. Moving sites consisted of
multiple pathways providing a means for targets to
traverse through the database with a predefined
knowledge of the terrain and its features, A large
number of sites and paths were created during the
database creation process. to provide the
instructor with the ability to create a variety of
training scenarios.

During a training mission, the instructor could
insert targets at the predefined database sites or
paths, modify the locations of targets (limited to
the predefined sites or paths), remove targets, and
save the scenario for use at a later time. When
moving targets were inserted into a scenario, they
were placed at the beginning of a path. During
real-time simulation, movement along that path
was handled internally by the host and moved
according to instructor controls and tactical
behaviors. Examples of instructor controls are:
commanding an air target to fly either Nap-Of-the-
Earth (NOE) or at a fixed altitude above Mean Sea
Level (MSL), instructing a moving target to change
its commanded route speed, and having a target

reverse direction and proceed back to the
beginning of its path. An example of the tactical
behaviors would be once a moving target reaches
either the start or the end of its path, it would
automatically come to a stop. While crude by
today’s standards, this was exceptional for the
computing resources of the late 1980s when it was
developed.

Another common feature that is an integral part of
training is the record/playback operation. During a
training mission, critical data is recorded in order
to replay the mission for pilot and instructor
review. This data not only includes flight
performance of the pilot trainee but the entire
tactical environment and its interactions with the
ownship. While in playback mode, the training
instructor can elect to have the pilot “fly-out” of the
playback and return to live flight. When this option
is selected, the tactical environment returns to live
interactions with the ownship. Preserving this
capacity during the EUSA upgrade would preclude
the simple approach of logging and replaying an
external constructive simulation’s activities. Any
external tactical environment would need to
remain live, even during the playback of a mission,
in order to allow for “fly-out.”

OPERATIONAL OBJECTIVES

With the addition of the Korean geo-specific
database to complement the new image
generation system for the UH-60 and CH-47
simulators, it was desirable to provide a set of
routes that can be altered as training requirements
change without requiring a large database
modeling effort. The EUSA solution uses a
constructive simulation to control individual targets
along selected routes, based on instructor inputs,
and provide realistic movement models throughout
the database. A high correlation between the
visual database and the constructive simulation’s
database has to be ensured to provide realistic
interaction between the training device and the
tactical targets. However, with such a correlation,
the deterministic and repeatable aspects of legacy
scenarios could be maintained by adding a DIS
interface between the constructive simulation and
the host. This allows the training device’s IOS and
existing tactical behaviors to maintain control over
the targets in the threat environment and
concurrently allow delegation of target placement
and movement to be placed in the hands of the
constructive simulation.

ARCHITECTURE AND DESIGN

With an off-line scenario generation capability,
realistic target movement models, DIS protocol
compliance (i.e. a foundation for any future effort
to become HLA compliant), and a key position in
the Army’s migration towards synthetic battle-
spaces (i.e. ModSAF and OneSAF), ModSAF was
selected as EUSA’s constructive simulation. After
reviewing the existing capabilities that needed to
be retained and determining the composition of a
platform needed for future growth, the following
arrangement resulted: ModSAF 5.0 operating
under a Linux Operating System (OS) version 6.1
on an Intel Pentium Personal Computer (PC).
This system would then be integrated with the
current training devices for real-time control over
target movement. The host and ModSAF would
communicate via an Ethernet connection using
Institute of Electrical and Electronics Engineers
(IEEE) 1278 standard DIS version 2.0.4 Protocol
Data Units (PDUs). Existing ModSAF DIS
capability would need to be customized in order to
provide the needed DIS standard interface. This
meant that CreateEntity, RemoveEntity,
StopFreeze, StartResume, and SetData PDUs
would be used by the host to communicate
instructions to ModSAF while Data and
Acknowledge PDUs would be used by ModSAF to
properly confirm receipt of PDUs from the host.

Off-line Architecture and Design

Off-line, ModSAF’s scenario generation tools
would be used to create sites and paths within the
new geo-specific Korean database. In order to
maintain a similar capability with the existing
system, only the creation of fixed sites and moving
target pathways would be saved in a ModSAF
scenario. This means that ModSAF will
essentially provide the same off-line capabilities
and limitations as the former system: a scenario
file will be generated, for the IOS and host, to
provide a menu of selectable routes for mission
creation during real-time operation. The main
difference is that unlike the previous system, a
scenario file can be updated at an off-line ModSAF
station any time training requirements change.
Under the present contract, real-time modification
of moving-target routes is not allowed. However,
targets placed at a fixed site can be relocated
anywhere within the database.

Real-time Architecture and Design

During real-time, tactical behaviors and target
weapon fires will remain within the host.
Therefore, this functionality will be disabled within
ModSAF. Since ModSAF will take over
responsibility for target movement, the target
movement feature will be removed from the host.
To consummate the integration of ModSAF, the
host, and its IOS, a Network Interface Unit (NIU)
will be added to the host to control the interface
with ModSAF. The NIU will convert instructor
commands for target control into DIS PDUs and
transmit them to ModSAF as well as receive and
process any ModSAF acknowledgment PDUs. As
ModSAF controls the movement of targets, it will
send each target’s location to the host via
EntityState PDUs. Upon receiving a target’s
location and orientation, the NIU will convert to the
host-specific coordinate system and perform any
necessary extrapolation so as to provide smooth
and continuous movement at a 60 Hz update rate
to the visual system and other host applications.
Conversely, in order to maintain the highly
correlated interaction with the ownship, the host
will retain control over entities such as ships and
slingloads. In these cases, the NIU will perform
any essential dead reckoning, convert the internal
entity data into EntityState DIS PDUs, and
broadcast the PDUs to ModSAF so that ModSAF
and its moving threats will be aware of and avoid
collisions with these entities.

The NIU will isolate the host applications from the
ModSAF interface by maintaining a ground truth
database, where all entity data will be kept, and
providing Application Programmer Interface (API)
routines. The majority of the NIU will be software
developed on former DIS programs, namely
CELLNET and F-16 Taiwan, for host PDU
management. The remainder of the NIU will be
developed to handle the EUSA host-ModSAF DIS
interface. An overview of the system’s integration
solution is shown below (see Figure 1).

NETWORK INTERFACE UNIT (NIU)

The Network Interface Unit (NIU) provides an
interface between the host application software
and the Local Area Network (LAN). The main
functions of the NIU are:
• Create and maintain a database that contains

information, that is generated by the host and
external applications, received via the LAN.

• Provide API service routines that host
applications can invoke to update internal
data.

• Provide API service routines that host
applications can invoke to acquire information
from externally generated sources.

• Provide services to send and receive PDUs
across the LAN in accordance with the
standards contained in DIS IEEE 1278.1.

• Perform all coordinate conversions and data
extrapolations required to correctly transmit
data between the host and external
applications.

These functions are accomplished using two
separate executable tasks. One is a background
task that communicates directly with the LAN,
reading PDU data from the Ethernet connection,
and performs filtering of the PDUs. If a valid PDU
is received, the PDU is stored into the next
available location in the input circular queue and
the Write pointers updated. Then the output
queue is read, checking for PDUs stored by the
real-time portion of the NIU. If one is found, it will
be validated and sent to the LAN connection and
the read pointers of the circular queue are
updated.

Upon receipt of a network PDU, the NIU performs
a first stage filtering and only processes valid
PDUs. This filtering includes the following:
• Host is the designated receiver of the PDU
• Received PDU is for the exercise in which the

host is participating
• DIS version contained in the header of the

received PDU matches the version used by
the host

• PDU type is one that is handled by the host

If the PDU received is not valid, the type is logged
and a message is displayed to request further
investigation.

The other portion of the NIU is contained within
the real-time application (i.e., the synchronous
task) that communicates with the other host
applications through the use of API routines and to
the background portion also via API routines.
During the real-time task, the NIU processes all
internal and external entities. For internally
generated entities, the NIU checks each entity’s
data to see if a PDU needs to be sent based on
the selected dead reckoning algorithm and the
minimum time interval established. If a PDU is
required, the NIU performs any necessary data

Visual
Interface

ModSAF

 Host
Tactics

Shared Memory

Network Interface Unit (NIU)

Local Area Network (LAN)

Target
Controls

Target
Data

Target
Controls,
Special
Effects

Ownship Data,
Special Targets

Ownship Data

Special Effects

Target
Controls

Special
Targets

Ownship
Data

Entity Data

Model
Data

Target Controls,
Host Entities

Target
Locations

Target Controls, Host Entities

Target Locations

Image Generator

Ground Truth
Database

Entity Data

IOS

Figure 1. Architecture and Design Overview

conversions, constructs the PDU, and transmits
the PDU to the LAN via the Write API routine. For
externally generated entities, the NIU performs all
required data conversions from the PDU to the
host format and any extrapolations to bring the
current entity data to the host required iteration
rate.

The interface between the real-time and
background NIU tasks consists of the service
routines to receive and send PDUs. If a PDU
needs to be sent, the Write PDU routine is called,
the PDU is placed in the next available location in
the output queue, and the Write pointers are
updated. The background task monitors the
output queue and, if one is found, writes the PDU
to the LAN. The background task also handles

any PDUs received from the LAN and, if one is
received, places it in the input queue and the read
pointers of the input queue are updated. During
the real-time task, the NIU calls the read PDU
routine and if a PDU is found in the input queue,
the appropriate PDU processing routine is called
and pointers are updated. Both portions of the
NIU, background and real-time, perform error
checking while reading and writing from the
circular queues, preventing potential data loss due
to overwriting by one process or the other. In
other words, wrapping completely around the
queue will be detected and logged for further
investigation. The data flow for the NIU is shown
below (see Figure 2).

OUTPUT

R
E

A
L

-T
IM

E
B

A
C

K
G

R
O

U
N

D
LOCAL AREA NETWORK

Write
PDU

Verify
PDU

Read
Network Write to

Network

Read
PDU

Ground
Truth

INPUT

Write
PDU

Read
PDU

Other NIU
Routines

QUEUE QUEUE

Database

Figure 2. Network Interface Unit Data Flow Diagram

The NIU is responsible for maintaining internal
data structures, called the Ground Truth Database
(GTDB), which contains all the interface data
between the host applications and the network.
The GTDB also contains data for each of the
entities that are active and a list of active requests
made by the host that are waiting for replies. The
GTDB can be expanded to contain other data
such as fire and detonation events, emission
systems, active laser designators, and radios.

The NIU interfaces with the other real-time host
applications through the use of API routines for
updating and retrieving data from the GTDB.
These routines provide a layer of insulation
between the host applications and the network
interface. Therefore, if a different protocol for
network communication is required, it will be
transparent to the host applications. For any
entities generated internally within the host, an
entity update routine is called that passes the data
and the local host identifier. The NIU update
routine determines if the entity is new and, if so,
allocates a slot within the entity data portion of the
GTDB. A DIS Entity Identifier (ID) is assigned and
the data within the slot is initialized. In any case,
the host entity data is stored in the slot for
subsequent processing. The host also requests
current data for all active entities through an API
routine. This routine stores the current data into
the input arguments that are passed from the host
application for each of the requested entities.

As part of the EUSA upgrade, ModSAF is used to
control the movement of the external entities.
However, the entity type, route, altitude (for air
players), and speed are controlled within the host.
The NIU handles all requests from the host
applications for insertion, modification, or deletion
of entities as well as any host initiated mode
changes (i.e., freeze or restart). The NIU receives
the host requests via API routines and generates
the appropriate Simulation Management PDU in
accordance with DIS IEEE 1278.1 standard and
transmits the PDU to the LAN. The NIU also
handles any Simulation Management PDUs
received from the LAN that are acknowledging
receipt, and performs the desired action on the
ones that are sent. The PDUs utilized include:
• CreateEntity and RemoveEntity
• StopFreeze or StartResume to control the

state of an entity or group of entities
• SetData to send the initial or modified control

data for an entity
• Acknowledge received for CreateEntity,

ResumeEntity, StopFreeze, or StartResume

• Data received to confirm receipt of the
SetData

When required, the NIU will send the appropriate
Simulation Management PDU to the network via
the Write API routine. The NIU waits for the
appropriate response PDU from the LAN and
verifies the correct action has been acknowledged.
When the request is not acknowledged within a
fixed time period, another request is made. If a
maximum number of retries occurs without
response, the error is reported to the system for
message display and logging. When the correct
response is received, the NIU performs the
necessary updates and removes the request from
the wait list within the GTDB.

MODSAF UPGRADES

At a high level, the ModSAF upgrades can be
categorized into two realms: off-line and real-time.
The off-line modifications included tailoring
ModSAF and its Graphical User Interface (GUI) to
provide only the functions necessary to be able to
generate a threat environment’s route scenario off-
line. The real-time modifications focussed on
implementing a DIS interface to compliment the
host’s NIU. The DIS interface would allow the
host computer to command ModSAF entities,
during real-time simulation, based on the host’s
tactical behaviors and instructor inputs from the
host’s IOS.

Off-line ModSAF upgrades

ModSAF already comes with an innate ability to
create and save scenarios. A ModSAF user can
draw lines that traverse the Compact Terrain
Database (CTDB), draw lines that adhere to roads
in the CTDB, create and task entities to follow the
lines/routes, etc. The first ModSAF change was
made as a precautionary measure: to customize
the GUI, catering to the EUSA program’s needs.
With this purpose in mind, the GUI was mitigated
to offer only selections and features applicable for
EUSA scenario creation and testing. Historical
ModSAF features, such as Chemical Editor, which
do not offer any added EUSA application value or
subscribe to the theme of generating/testing a
EUSA route scenario, were removed. Even vehicle
and task selection menus were altered to offer
only EUSA suitable options. Once the GUI was
tailored for EUSA scenario generation, a ModSAF
user can generate a scenario of routes (fixed sites
and paths) for real-time usage. For EUSA

purposes, a fixed site is merely a route with one
waypoint, using ModSAF’s Point Editor, and a
path is a route with more than one waypoint, using
ModSAF’s Line Editor. Additional off-line changes
were required within scenario saving and scenario
loading to make the routes available for real-time
usage.

ModSAF saves a scenario in its own format. In
order for the host’s IOS to instruct a ModSAF
entity during real-time training to follow an IOS
selected route, both ModSAF and the IOS need to
be able to reference the same list of routes.
Consequently, when a scenario is saved using
ModSAF’s GUI, an additional scenario file needs
to be saved. This file matches what is in
ModSAF’s scenario file but is in an IOS readable
format. A second scenario saving aspect that
required change related to what ModSAF saved in
a scenario. Lines and points (i.e. routes), their
waypoints, and any related comments/labels are
the only items of particular interest to the IOS.
Anything else is superfluous to what is needed by
the EUSA program. Therefore, ModSAF’s
scenario saving feature was revised to match what
was saved in the IOS-specific scenario file (i.e.
only those items that related to lines and points).

To ensure compatibility between ModSAF and IOS
route specification, both ModSAF and the IOS
needed to coordinate the loading of particular
scenario files, each referencing the same routes.
Normally, a ModSAF user will load a saved
scenario via the GUI. On the EUSA program, only
the back end of ModSAF (i.e., the simulation
engine, not the GUI) will be operational during
real-time training. To facilitate a coordinated
loading of compatible scenario files, ModSAF was
modified so that it automatically loaded a scenario
with an arbitrary name. Likewise, the IOS was
constructed so that it would load its particular
arbitrarily named scenario file that correlated with
ModSAF’s scenario file. Consequently, upon
start-up of a training session, both ModSAF and
the IOS would each, automatically load their
respective content-correlated scenario file. Once
the real-time simulation was operational, the
instructor at the IOS could create ModSAF entities
and assign them to any one of the automatically
loaded and pre-defined routes. To allow the IOS
the ability to create, control, and remove ModSAF
entities and allow the host’s tactical behaviors to
maintain control over ModSAF entities, a real-time
DIS interface needed to be developed.

Real-time ModSAF Upgrades

On the host computer, the real-time DIS interface
developed is the previously discussed NIU. In
ModSAF, its counterpart needed to be conceived.
The interface would allow for coordination
between a real-time, man-in-the-loop, flight
simulation and an event-driven synthetic tactical
environment. Specifically, the interface would
allow the host and its IOS to elicit control over
ModSAF in the following manners:
• Freeze, unfreeze, and quit ModSAF
• Create, position, orient, pause, resume, and

remove ModSAF entities
• Task ModSAF entities to follow pre-defined

routes
• Command moving entities to reverse direction

along a route, change an entity’s commanded
route speed, and change an aircraft entity’s
commanded route altitude

To utilize this interface during real-time training,
the host’s NIU would need to take advantage of
the following DIS PDUs: CreateEntity,
RemoveEntity, StopFreeze, StartResume,
SetData, Data, and Acknowledge.

Although version 5.0 ModSAF is DIS compliant, its
DIS communication abilities needed to be
embellished in order for this DIS interface to
succeed. ModSAF possesses the capacity to
display entities from external simulations, provided
the external simulations are part of the same DIS
exercise. However, these external simulation
entities are not controlled by ModSAF, but are
controlled by an external simulation. ModSAF
knows only of their presence via EntityState DIS
PDUs. As previously mentioned, the EUSA
program desired differently. The EUSA program
needed ModSAF to take control of an entity in the
sense that it would assume responsibility for
placing stationary entities within its environment
and for moving threats throughout its terrain
database (i.e. its CTDB that is correlated with the
host’s visual database). This meant that entities
needed to be created locally within ModSAF in
order for ModSAF to assume responsibility for
them. This resulted in the following ModSAF
changes.

Additional SetData DIS PDU attributes needed to
be added to ModSAF’s existing repertoire. As part
of the EUSA program’s DIS network interface,
many of the entity controlling commands were
implemented as an attribute within the SetData
PDU. Therefore, when an instructor relocates a

threat at the IOS, ModSAF is subsequently
instructed to relocate its corresponding entity to
the location contained within the SetData DIS PDU
that it received from the host’s NIU. Other
instructional information that required unique
SetData DIS PDU attributes includes: tasking an
entity to follow a route, changing an entity’s
commanded route altitude or speed, and setting
an entity’s initial velocity or orientation.

In order for ModSAF to appropriately respond to
instructions from the host’s NIU, ModSAF’s
existing DIS interface was modified filtering out the
appropriate NIU generated PDUs from the rest of
the simulation’s network traffic. Without such
changes, ModSAF would not respond to an NIU’s
CreateEntity DIS PDU as a request to create an
entity locally within ModSAF. Rather, ModSAF
would default to treating the PDU as a request,
from an external simulation, to simply place the
entity within ModSAF as an “external entity.” That
is, one whose movement and behavior would be
controlled by an external simulation through
EntityState DIS PDUs.

To provide the functional foundation behind the
DIS network interface, a new library of EUSA
specific code needed to be added to ModSAF.
With this addition, ModSAF would appropriately
respond to the host’s NIU DIS PDUs. When the
host’s NIU generates instructions through DIS
PDUs, there exists EUSA specific code to interpret
the instructions. This means that when the NIU
requests an entity to be created within ModSAF,
via a CreateEntity DIS PDU, EUSA specific
ModSAF code will create an entity locally within
ModSAF, retrieve a DIS identifier for that entity,
and send an Acknowledge DIS PDU back to the
host’s NIU with that entity’s new DIS identifier.
Upon receiving the Acknowledge DIS PDU, the
host’s NIU will then be able to use the entity’s DIS
identifier to further address PDUs it sends to
ModSAF. In this fashion, control over the behavior
of EUSA’s ModSAF entities was established.

As control was established, it became necessary
to tame ModSAF. Many of ModSAF’s entities, by
default, have a fundamental ability to respond and
react to more than obstacles in the path they are
tasked to follow. While an entity may have been
tasked to follow a certain route, avoiding collisions
and obstacles along the way, some entities will
take alternate actions when confronted with the
enemy. In the EUSA program, all tactical
behaviors were to be controlled by the host
computer. Autonomous reactions from ModSAF

entities would only disrupt an effort to preserve a
predictable and deterministic threat environment.
Therefore, ModSAF entity reactions were
disabled. Entities no longer engage the enemy
nor do they retreat under control of ModSAF
behaviors. These entities will only be cognizant of
and respond to another entity’s presence as it
relates to following a route.

As a result of the above changes, ModSAF
became ready for real-time integration with the
host. After creating a scenario at an off-line
ModSAF station, an instructor at the IOS can
create players during real-time, assign them to
follow routes, alter their commanded route
following speed, insert threats at fixed sites, and
so forth. The host’s NIU handles the translation of
host tactical behaviors and IOS directives into DIS
PDUs. The EUSA modified ModSAF
discriminately listens for the NIU’s DIS PDUs and
reacts accordingly: appropriately acknowledging
the receipt of the DIS PDU, creating entities locally
within ModSAF, assigning entities to follow routes,
changing an entity’s traveling speed, etc. Since all
EUSA entities were created locally within
ModSAF, ModSAF will automatically, by default,
manage an entity’s movement through the CTDB,
perform any necessary dead reckoning, and
broadcast EntityState DIS PDUs. These PDUs
inform the NIU’s ground truth database of the
entity’s current geographical location and
orientation.

Even the solution to implement record/playback
and a “fly-out” functionality, within ModSAF, fell
out of the above DIS network interface
capabilities. Only the host computer needed to
worry about record/playback and the ability to “fly-
out” of a playback. During a recording of a training
exercise, all threat environment data the host
needs to record can be found in its NIU’s ground
truth database. All ModSAF does is continue to
behave in the same real-time manner as it always
does when it is not in freeze. To implement a
mission playback with ModSAF, the host merely
needs to reset ModSAF. In other words, the NIU
needs to place ModSAF in freeze (StopFreeze),
remove all ModSAF entities (RemoveEntity),
reinsert the entities present during the recording
(CreateEntity), setup each entity according to its
recorded location, orientation, velocity, and
assigned route (SetData), and take ModSAF out of
freeze (StartResume). ModSAF then resumes its
duty of moving entities along their assigned routes
just as it did during the real-time recording. Again,
most of ModSAF’s control over entity behaviors,

aside from route following abilities, was curtailed.
The increased degree of repeatability and
determinism gained from this behavior allows a
moving threat to virtually traverse a path in the
same manner as it did during the original mission.
Since ModSAF is already “live” during playback,
the ability to “fly-out” of a playback is already taken
care of.

FUTURE ENHANCEMENTS

Although a DIS interface capability was added to
each of the EUSA flight simulators, only a portion
of the ModSAF functionality was utilized. Most of
the control for each tactical environment, still
resided within the host computers. As a future
upgrade, this control could be removed. This
would allow for a more encompassing usage of
the constructive simulation and more robust
scenarios could be generated. With an expanded
ground truth database to maintain threat emission
data and fire detonation events, the data could be
used to stimulate existing host interfaces providing
appropriate interactions with the ownship.
Additionally, with a modified NIU to handle the
appropriate PDUs, the UH-60 and CH-47 would be
able to participate in distributive network
exercises. As part of the proof-of-concept
program, CELLNET, this capability has been
previously demonstrated on the UH-60 device.

A second area with potential for improvement
during a future upgrade, is in training
communications. Each of the simulators contain
on-board radios for use during a training exercise
and communication with the role playing instructor
and fellow crew members. The voice
transmissions are not broadcast onto the DIS
network as part of the EUSA program. Alternately,
transmitter and signal PDUs could be generated
and transmitted. This would permit
communication between EUSA flight simulators
(UH-60 and CH-47) as well as other participants in
a distributed exercise. This too, has already been
done on the CELLNET and F-16 Taiwan
programs.

Finally, a third area with potential for improvement
is in the area of HLA compliance. While the EUSA
program was not under the mandate to provide an
HLA compliant system, the use of ModSAF greatly
helps to ease the burden of such a transition. Due
to existing “gateway” products for DIS/HLA
translations, HLA compliance for many DIS
compliant products such as ModSAF has been
made possible.

SUMMARY

The use of ModSAF on the EUSA program
provided a cost effective means to meet contract
requirements of maintaining existing capabilities
within legacy training devices. In doing so, an
alternate implementation of the functionality of
ModSAF was utilized allowing dynamic scenario
generation while maintaining the existing host
controlled features.

As the EUSA program comes to closure, two
legacy flight simulators have taken their first steps
toward interoperating in a global synthetic
battlespace. Updating legacy simulators as a
whole can easily lend itself to high cost and
maintenance of stagnant technology. The EUSA
solution curtails unnecessary spending and
bridges the legacy technology into the next
generation of simulation.

