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Abstract 

 
The Eighth United States Army (EUSA) in the Republic of Korea employs UH-60 and CH-47 flight 
simulators to support individual and crew training for Blackhawk and Chinook pilots, respectively.  These 
simulators are high fidelity, man-in-the-loop, training devices that support initial entry, qualification, and 
sustainment training in system operations, crew coordination, emergency procedures, and combat skills.  
As part of the EUSA Korean Simulator Upgrade program, the two flight simulators are receiving an 
upgrade to the visual image generation system (including a geo-specific database of the Korean 
Peninsula) while maintaining, as a minimum, existing performance capabilities.  One of the key training 
areas to maintain was the tactical environment.  In the existing visual database, target sites and pathways 
were modeled into the database manually, based on training requirements and customer inputs, using 
custom database generation tools.  The sites and paths, along with the behaviors of these targets, were 
under instructor controls; thus, providing numerous, realistic, dynamic, yet deterministic and repeatable 
tactical scenarios.  In addition to these real-time scenarios, both training devices provide a reset and 
playback capability that allows the student and instructor to review the mission and allows fly-out to real-
time at any time during the playback.  Under the scope of the contract, these capabilities were to be 
maintained. 
 
The solution needed to be a constructive simulation that not only maintained previous tactical 
environment fidelity (critical to each helicopter’s training environment) but one that added enough 
robustness to provide a set of routes that can be altered as training requirements change without 
requiring a large database modeling effort.  With an off-line scenario generation capability and realistic 
target movement models, Modular Semi-Automated Forces (ModSAF) was selected as the constructive 
simulation.  By adding a Distributed Interactive Simulation (DIS) network interface between the legacy 
device and ModSAF, the Instructor Operator Station (IOS) at the training device can control each 
ModSAF target as directed by the existing tactics within the legacy training device.  The use of DIS as the 
interface also provides future growth potential for the devices to perform collective training in a DIS or 
High Level Architecture (HLA) networked environment. 
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INTRODUCTION 

 
During times when military budgets require an 
ever-increasing return on investment, engineering 
solutions need to achieve the same aggressive 
return on investment as they balance reusability, 
innovation, and new technology.  This return on 
investment equilibrium was sought on the EUSA 
program with an effort to upgrade to the 
capabilities of new image generation technology.  
The EUSA upgrade focussed on the installation of 
a new image generation system for legacy UH-60 
Blackhawk and CH-47 Chinook aircrew training 
devices.  This upgrade also promoted the 
safeguard of existing critical training capabilities 
such as trainer specific tactical behaviors, the 
ability to place threats anywhere within the tactical 
environment, record/playback functionality, and 
the ability to “fly-out” of a playback and return to 
real-time flight.  The engineering solution, in turn, 
strived to achieve a similar equilibrium with an 
effort to balance reusability by keeping existing 
tactical environment functionality, innovation by 
designing a DIS interface to command and control 
constructive simulation entities, and new 
technology by instituting a new image generation 
system with a geo-specific database.  In order to 
meet contract requirements and position for 
potential future growth in a distributive network, 
ModSAF was chosen as the constructive 
simulation to provide the off-line scenario 
generation and real-time target movement.  The 
system design allows the existing IOS to control 
ModSAF entities using DIS protocol.  This paper 
will summarize the current tactical capabilities that 
were retained, the modifications made to the off-
line and real-time ModSAF functionality, and the 
DIS interface that was established for 
communication between the flight simulator’s host 
computer (i.e. the host) and ModSAF. 
 

EXISTING TACTICAL ENVIRONMENT 
 
In general, the differences between the UH-60 and 
CH-47 simulators' tactical environment varied only 
in terms of the number of targets allowed in the 

threat environment, their interactions with the 
ownship, and the level of control that a training 
instructor had during a training mission.  The 
environments were analogous and each flight 
simulator had the capability to create tactical 
scenarios at its IOS.  Tactical missions were 
created by the training instructor via selecting 
targets from a predefined list and placing them in 
the environment at predefined sites and paths.  
These were only available for selection since they 
were included as part of the off-line database 
generation process.  The creation of these sites 
and paths was a labor-intensive task and did not 
allow real-time modifications once created.  Sites 
were defined in two categories: fixed and moving.  
A fixed site allowed a target to be placed at a 
predefined location within the database; however, 
the site could not be relocated during a real-time 
training mission.  As the name suggests, targets 
placed on these sites did not move through the 
database, yet they still interacted with the ownship 
based on tactical behavior selected at the flight 
simulator’s IOS.  Moving sites consisted of 
multiple pathways providing a means for targets to 
traverse through the database with a predefined 
knowledge of the terrain and its features, A large 
number of sites and paths were created during the 
database creation process. to provide the 
instructor with the ability to create a variety of 
training scenarios. 
 
During a training mission, the instructor could 
insert targets at the predefined database sites or 
paths, modify the locations of targets (limited to 
the predefined sites or paths), remove targets, and 
save the scenario for use at a later time.  When 
moving targets were inserted into a scenario, they 
were placed at the beginning of a path.  During 
real-time simulation, movement along that path 
was handled internally by the host and moved 
according to instructor controls and tactical 
behaviors. Examples of instructor controls are: 
commanding an air target to fly either Nap-Of-the-
Earth (NOE) or at a fixed altitude above Mean Sea 
Level (MSL), instructing a moving target to change 
its commanded route speed, and having a target 



reverse direction and proceed back to the 
beginning of its path.  An example of the tactical 
behaviors would be once a moving target reaches 
either the start or the end of its path, it would 
automatically come to a stop.  While crude by 
today’s standards, this was exceptional for the 
computing resources of the late 1980s when it was 
developed. 
 
Another common feature that is an integral part of 
training is the record/playback operation.  During a 
training mission, critical data is recorded in order 
to replay the mission for pilot and instructor 
review.  This data not only includes flight 
performance of the pilot trainee but the entire 
tactical environment and its interactions with the 
ownship.  While in playback mode, the training 
instructor can elect to have the pilot “fly-out” of the 
playback and return to live flight.  When this option 
is selected, the tactical environment returns to live 
interactions with the ownship.  Preserving this 
capacity during the EUSA upgrade would preclude 
the simple approach of logging and replaying an 
external constructive simulation’s activities.  Any 
external tactical environment would need to 
remain live, even during the playback of a mission, 
in order to allow for “fly-out.” 
 

OPERATIONAL OBJECTIVES 
 
With the addition of the Korean geo-specific 
database to complement the new image 
generation system for the UH-60 and CH-47 
simulators, it was desirable to provide a set of 
routes that can be altered as training requirements 
change without requiring a large database 
modeling effort.  The EUSA solution uses a 
constructive simulation to control individual targets 
along selected routes, based on instructor inputs, 
and provide realistic movement models throughout 
the database.  A high correlation between the 
visual database and the constructive simulation’s 
database has to be ensured to provide realistic 
interaction between the training device and the 
tactical targets.  However, with such a correlation, 
the deterministic and repeatable aspects of legacy 
scenarios could be maintained by adding a DIS 
interface between the constructive simulation and 
the host.  This allows the training device’s IOS and 
existing tactical behaviors to maintain control over 
the targets in the threat environment and 
concurrently allow delegation of target placement 
and movement to be placed in the hands of the 
constructive simulation.  
 

ARCHITECTURE AND DESIGN 
 
With an off-line scenario generation capability, 
realistic target movement models, DIS protocol 
compliance (i.e. a foundation for any future effort 
to become HLA compliant), and a key position in 
the Army’s migration towards synthetic battle-
spaces (i.e. ModSAF and OneSAF), ModSAF was 
selected as EUSA’s constructive simulation.  After 
reviewing the existing capabilities that needed to 
be retained and determining the composition of a 
platform needed for future growth, the following 
arrangement resulted: ModSAF 5.0 operating 
under a Linux Operating System (OS) version 6.1 
on an Intel Pentium Personal Computer (PC).  
This system would then be integrated with the 
current training devices for real-time control over 
target movement.  The host and ModSAF would 
communicate via an Ethernet connection using 
Institute of Electrical and Electronics Engineers 
(IEEE) 1278 standard DIS version 2.0.4 Protocol 
Data Units (PDUs).  Existing ModSAF DIS 
capability would need to be customized in order to 
provide the needed DIS standard interface.  This 
meant that CreateEntity, RemoveEntity, 
StopFreeze, StartResume, and SetData PDUs 
would be used by the host to communicate 
instructions to ModSAF while Data and 
Acknowledge PDUs would be used by ModSAF to 
properly confirm receipt of PDUs from the host. 
 
Off-line Architecture and Design 
 
Off-line, ModSAF’s scenario generation tools 
would be used to create sites and paths within the 
new geo-specific Korean database.  In order to 
maintain a similar capability with the existing 
system, only the creation of fixed sites and moving 
target pathways would be saved in a ModSAF 
scenario.  This means that ModSAF will 
essentially provide the same off-line capabilities 
and limitations as the former system: a scenario 
file will be generated, for the IOS and host, to 
provide a menu of selectable routes for mission 
creation during real-time operation.  The main 
difference is that unlike the previous system, a 
scenario file can be updated at an off-line ModSAF 
station any time training requirements change.  
Under the present contract, real-time modification 
of moving-target routes is not allowed.  However, 
targets placed at a fixed site can be relocated 
anywhere within the database. 
 



Real-time Architecture and Design 
 
During real-time, tactical behaviors and target 
weapon fires will remain within the host.  
Therefore, this functionality will be disabled within 
ModSAF.  Since ModSAF will take over 
responsibility for target movement, the target 
movement feature will be removed from the host.  
To consummate the integration of ModSAF, the 
host, and its IOS, a Network Interface Unit (NIU) 
will be added to the host to control the interface 
with ModSAF.  The NIU will convert instructor 
commands for target control into DIS PDUs and 
transmit them to ModSAF as well as receive and 
process any ModSAF acknowledgment PDUs.  As 
ModSAF controls the movement of targets, it will 
send each target’s location to the host via 
EntityState PDUs.  Upon receiving a target’s 
location and orientation, the NIU will convert to the 
host-specific coordinate system and perform any 
necessary extrapolation so as to provide smooth 
and continuous movement at a 60 Hz update rate 
to the visual system and other host applications.  
Conversely, in order to maintain the highly 
correlated interaction with the ownship, the host 
will retain control over entities such as ships and 
slingloads.  In these cases, the NIU will perform 
any essential dead reckoning, convert the internal 
entity data into EntityState DIS PDUs, and 
broadcast the PDUs to ModSAF so that ModSAF 
and its moving threats will be aware of and avoid 
collisions with these entities. 
 
The NIU will isolate the host applications from the 
ModSAF interface by maintaining a ground truth 
database, where all entity data will be kept, and 
providing Application Programmer Interface (API) 
routines.  The majority of the NIU will be software 
developed on former DIS programs, namely 
CELLNET and F-16 Taiwan, for host PDU 
management.  The remainder of the NIU will be 
developed to handle the EUSA host-ModSAF DIS 
interface.  An overview of the system’s integration 
solution is shown below (see Figure 1). 
 

NETWORK INTERFACE UNIT (NIU) 
 
The Network Interface Unit (NIU) provides an 
interface between the host application software 
and the Local Area Network (LAN).  The main 
functions of the NIU are:  
• Create and maintain a database that contains 

information, that is generated by the host and 
external applications, received via the LAN. 

• Provide API service routines that host 
applications can invoke to update internal 
data. 

• Provide API service  routines that host 
applications can invoke to acquire information 
from externally generated sources. 

• Provide services to send and receive PDUs 
across the LAN in accordance with the 
standards contained in DIS IEEE 1278.1. 

• Perform all coordinate conversions and data 
extrapolations required to correctly transmit 
data between the host and external 
applications. 

 
These functions are accomplished using two 
separate executable tasks.  One is a background 
task that communicates directly with the LAN, 
reading PDU data from the Ethernet connection, 
and performs filtering of the PDUs.  If a valid PDU 
is received, the PDU is stored into the next 
available location in the input circular queue and 
the Write pointers updated.  Then the output 
queue is read, checking for PDUs stored by the 
real-time portion of the NIU.  If one is found, it will 
be validated and sent to the LAN connection and 
the read pointers of the circular queue are 
updated. 
 
Upon receipt of a network PDU, the NIU performs 
a first stage filtering and only processes valid 
PDUs.  This filtering includes the following: 
• Host is the designated receiver of the PDU 
• Received PDU is for the exercise in which the 

host is participating 
• DIS version contained in the header of the 

received PDU matches the version used by 
the host 

• PDU type is one that is handled by the host 
 
If the PDU received is not valid, the type is logged 
and a message is displayed to request further 
investigation. 
 
The other portion of the NIU is contained within 
the real-time application (i.e., the synchronous 
task) that communicates with the other host 
applications through the use of API routines and to 
the background portion also via API routines.  
During the real-time task, the NIU processes all 
internal and external entities.  For internally 
generated entities, the NIU checks each entity’s 
data to see if a PDU needs to be sent based on 
the selected dead reckoning algorithm and the 
minimum time interval established.  If a PDU is 
required, the NIU performs any necessary data
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Figure 1.  Architecture and Design Overview 
 
 
conversions, constructs the PDU, and transmits 
the PDU to the LAN via the Write API routine.  For 
externally generated entities, the NIU performs all 
required data conversions from the PDU to the 
host format and any extrapolations to bring the 
current entity data to the host required iteration 
rate. 
 
The interface between the real-time and 
background NIU tasks consists of the service 
routines to receive and send PDUs.   If a PDU 
needs to be sent, the Write PDU routine is called, 
the PDU is placed in the next available location in 
the output queue, and the Write pointers are 
updated.  The background task monitors the 
output queue and, if one is found, writes the PDU 
to the LAN.  The background task also handles 

any PDUs received from the LAN and, if one is 
received, places it in the input queue and the read 
pointers of the input queue are updated.  During 
the real-time task, the NIU calls the read PDU 
routine and if a PDU is found in the input queue, 
the appropriate PDU processing routine is called 
and pointers are updated.  Both portions of the 
NIU, background and real-time, perform error 
checking while reading and writing from the 
circular queues, preventing potential data loss due 
to overwriting by one process or the other.  In 
other words, wrapping completely around the 
queue will be detected and logged for further 
investigation.  The data flow for the NIU is shown 
below (see Figure 2). 
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Figure 2.  Network Interface Unit Data Flow Diagram 
 



The NIU is responsible for maintaining internal 
data structures, called the Ground Truth Database 
(GTDB), which contains all the interface data 
between the host applications and the network.  
The GTDB also contains data for each of the 
entities that are active and a list of active requests 
made by the host that are waiting for replies.  The 
GTDB can be expanded to contain other data 
such as fire and detonation events, emission 
systems, active laser designators, and radios. 
 
The NIU interfaces with the other real-time host 
applications through the use of API routines for 
updating and retrieving data from the GTDB.  
These routines provide a layer of insulation 
between the host applications and the network 
interface.  Therefore, if a different protocol for 
network communication is required, it will be 
transparent to the host applications.  For any 
entities generated internally within the host, an 
entity update routine is called that passes the data 
and the local host identifier.  The NIU update 
routine determines if the entity is new and, if so, 
allocates a slot within the entity data portion of the 
GTDB.  A DIS Entity Identifier (ID) is assigned and 
the data within the slot is initialized.  In any case, 
the host entity data is stored in the slot for 
subsequent processing.   The host also requests 
current data for all active entities through an API 
routine.  This routine stores the current data into 
the input arguments that are passed from the host 
application for each of the requested entities. 
 
As part of the EUSA upgrade, ModSAF is used to 
control the movement of the external entities.  
However, the entity type, route, altitude (for air 
players), and speed are controlled within the host.  
The NIU handles all requests from the host 
applications for insertion, modification, or deletion 
of entities as well as any host initiated mode 
changes (i.e., freeze or restart).  The NIU receives 
the host requests via API routines and generates 
the appropriate Simulation Management PDU in 
accordance with DIS IEEE 1278.1 standard and 
transmits the PDU to the LAN.  The NIU also 
handles any Simulation Management PDUs 
received from the LAN that are acknowledging 
receipt, and performs the desired action on the 
ones that are sent.   The PDUs utilized include: 
• CreateEntity and RemoveEntity 
• StopFreeze or StartResume to control the 

state of an entity or group of entities 
• SetData to send the initial or modified control 

data for an entity 
• Acknowledge received for CreateEntity, 

ResumeEntity, StopFreeze, or StartResume 

• Data received to confirm receipt of the 
SetData 

 
When required, the NIU will send the appropriate 
Simulation Management PDU to the network via 
the Write API routine.  The NIU waits for the 
appropriate response PDU from the LAN and 
verifies the correct action has been acknowledged.  
When the request is not acknowledged within a 
fixed time period, another request is made.  If a 
maximum number of retries occurs without 
response, the error is reported to the system for 
message display and logging.  When the correct 
response is received, the NIU performs the 
necessary updates and removes the request from 
the wait list within the GTDB. 
 

MODSAF UPGRADES 
 
At a high level, the ModSAF upgrades can be 
categorized into two realms: off-line and real-time.  
The off-line modifications included tailoring 
ModSAF and its Graphical User Interface (GUI) to 
provide only the functions necessary to be able to 
generate a threat environment’s route scenario off-
line.  The real-time modifications focussed on 
implementing a DIS interface to compliment the 
host’s NIU.  The DIS interface would allow the 
host computer to command ModSAF entities, 
during real-time simulation, based on the host’s 
tactical behaviors and instructor inputs from the 
host’s IOS. 
 
Off-line ModSAF upgrades 
 
ModSAF already comes with an innate ability to 
create and save scenarios.  A ModSAF user can 
draw lines that traverse the Compact Terrain 
Database (CTDB), draw lines that adhere to roads 
in the CTDB, create and task entities to follow the 
lines/routes, etc.  The first ModSAF change was 
made as a precautionary measure: to customize 
the GUI, catering to the EUSA program’s needs.  
With this purpose in mind, the GUI was mitigated 
to offer only selections and features applicable for 
EUSA scenario creation and testing.  Historical 
ModSAF features, such as Chemical Editor, which 
do not offer any added EUSA application value or 
subscribe to the theme of generating/testing a 
EUSA route scenario, were removed. Even vehicle 
and task selection menus were altered to offer 
only EUSA suitable options.  Once the GUI was 
tailored for EUSA scenario generation, a ModSAF 
user can generate a scenario of routes (fixed sites 
and paths) for real-time usage.  For EUSA 



purposes, a fixed site is merely a route with one 
waypoint, using ModSAF’s Point Editor, and a 
path is a route with more than one waypoint, using 
ModSAF’s Line Editor.  Additional off-line changes 
were required within scenario saving and scenario 
loading to make the routes available for real-time 
usage. 
 
ModSAF saves a scenario in its own format.  In 
order for the host’s IOS to instruct a ModSAF 
entity during real-time training to follow an IOS 
selected route, both ModSAF and the IOS need to 
be able to reference the same list of routes.  
Consequently, when a scenario is saved using 
ModSAF’s GUI, an additional scenario file needs 
to be saved.  This file matches what is in 
ModSAF’s scenario file but is in an IOS readable 
format.  A second scenario saving aspect that 
required change related to what ModSAF saved in 
a scenario.  Lines and points (i.e. routes), their 
waypoints, and any related comments/labels are 
the only items of particular interest to the IOS.  
Anything else is superfluous to what is needed by 
the EUSA program.  Therefore, ModSAF’s 
scenario saving feature was revised to match what 
was saved in the IOS-specific scenario file (i.e. 
only those items that related to lines and points). 
 
To ensure compatibility between ModSAF and IOS 
route specification, both ModSAF and the IOS 
needed to coordinate the loading of particular 
scenario files, each referencing the same routes.  
Normally, a ModSAF user will load a saved 
scenario via the GUI.  On the EUSA program, only 
the back end of ModSAF (i.e., the simulation 
engine, not the GUI) will be operational during 
real-time training.  To facilitate a coordinated 
loading of compatible scenario files, ModSAF was 
modified so that it automatically loaded a scenario 
with an arbitrary name.  Likewise, the IOS was 
constructed so that it would load its particular 
arbitrarily named scenario file that correlated with 
ModSAF’s scenario file.  Consequently, upon 
start-up of a training session, both ModSAF and 
the IOS would each, automatically load their 
respective content-correlated scenario file.  Once 
the real-time simulation was operational, the 
instructor at the IOS could create ModSAF entities 
and assign them to any one of the automatically 
loaded and pre-defined routes.  To allow the IOS 
the ability to create, control, and remove ModSAF 
entities and allow the host’s tactical behaviors to 
maintain control over ModSAF entities, a real-time 
DIS interface needed to be developed. 
 

Real-time ModSAF Upgrades 
 
On the host computer, the real-time DIS interface 
developed is the previously discussed NIU.  In 
ModSAF, its counterpart needed to be conceived. 
The interface would allow for coordination 
between a real-time, man-in-the-loop, flight 
simulation and an event-driven synthetic tactical 
environment. Specifically, the interface would 
allow the host and its IOS to elicit control over 
ModSAF in the following manners: 
• Freeze, unfreeze, and quit ModSAF  
• Create, position, orient, pause, resume, and 

remove ModSAF entities 
• Task ModSAF entities to follow pre-defined 

routes  
• Command moving entities to reverse direction 

along a route, change an entity’s commanded 
route speed, and change an aircraft entity’s 
commanded route altitude 

 
To utilize this interface during real-time training, 
the host’s NIU would need to take advantage of 
the following DIS PDUs: CreateEntity, 
RemoveEntity, StopFreeze, StartResume, 
SetData, Data, and Acknowledge. 
 
Although version 5.0 ModSAF is DIS compliant, its 
DIS communication abilities needed to be 
embellished in order for this DIS interface to 
succeed.  ModSAF possesses the capacity to 
display entities from external simulations, provided 
the external simulations are part of the same DIS 
exercise.  However, these external simulation 
entities are not controlled by ModSAF, but are 
controlled by an external simulation.  ModSAF 
knows only of their presence via EntityState DIS 
PDUs.  As previously mentioned, the EUSA 
program desired differently.  The EUSA program 
needed ModSAF to take control of an entity in the 
sense that it would assume responsibility for 
placing stationary entities within its environment 
and for moving threats throughout its terrain 
database (i.e. its CTDB that is correlated with the 
host’s visual database).  This meant that entities 
needed to be created locally within ModSAF in 
order for ModSAF to assume responsibility for 
them.  This resulted in the following ModSAF 
changes. 
 
Additional SetData DIS PDU attributes needed to 
be added to ModSAF’s existing repertoire.  As part 
of the EUSA program’s DIS network interface, 
many of the entity controlling commands were 
implemented as an attribute within the SetData 
PDU.  Therefore, when an instructor relocates a 



threat at the IOS, ModSAF is subsequently 
instructed to relocate its corresponding entity to 
the location contained within the SetData DIS PDU 
that it received from the host’s NIU.  Other 
instructional information that required unique 
SetData DIS PDU attributes includes: tasking an 
entity to follow a route, changing an entity’s 
commanded route altitude or speed, and setting 
an entity’s initial velocity or orientation. 
 
In order for ModSAF to appropriately respond to 
instructions from the host’s NIU, ModSAF’s 
existing DIS interface was modified filtering out the 
appropriate NIU generated PDUs from the rest of 
the simulation’s network traffic.  Without such 
changes, ModSAF would not respond to an NIU’s 
CreateEntity DIS PDU as a request to create an 
entity locally within ModSAF.  Rather, ModSAF 
would default to treating the PDU as a request, 
from an external simulation, to simply place the 
entity within ModSAF as an “external entity.”  That 
is, one whose movement and behavior would be 
controlled by an external simulation through 
EntityState DIS PDUs. 
 
To provide the functional foundation behind the 
DIS network interface, a new library of EUSA 
specific code needed to be added to ModSAF.  
With this addition, ModSAF would appropriately 
respond to the host’s NIU DIS PDUs.  When the 
host’s NIU generates instructions through DIS 
PDUs, there exists EUSA specific code to interpret 
the instructions.  This means that when the NIU 
requests an entity to be created within ModSAF, 
via a CreateEntity DIS PDU, EUSA specific 
ModSAF code will create an entity locally within 
ModSAF, retrieve a DIS identifier for that entity, 
and send an Acknowledge DIS PDU back to the 
host’s NIU with that entity’s new DIS identifier.  
Upon receiving the Acknowledge DIS PDU, the 
host’s NIU will then be able to use the entity’s DIS 
identifier to further address PDUs it sends to 
ModSAF.  In this fashion, control over the behavior 
of EUSA’s ModSAF entities was established. 
 
As control was established, it became necessary 
to tame ModSAF.  Many of ModSAF’s entities, by 
default, have a fundamental ability to respond and 
react to more than obstacles in the path they are 
tasked to follow.  While an entity may have been 
tasked to follow a certain route, avoiding collisions 
and obstacles along the way, some entities will 
take alternate actions when confronted with the 
enemy.  In the EUSA program, all tactical 
behaviors were to be controlled by the host 
computer.  Autonomous reactions from ModSAF 

entities would only disrupt an effort to preserve a 
predictable and deterministic threat environment.  
Therefore, ModSAF entity reactions were 
disabled.  Entities no longer engage the enemy 
nor do they retreat under control of ModSAF 
behaviors.  These entities will only be cognizant of 
and respond to another entity’s presence as it 
relates to following a route. 
 
As a result of the above changes, ModSAF 
became ready for real-time integration with the 
host.  After creating a scenario at an off-line 
ModSAF station, an instructor at the IOS can 
create players during real-time, assign them to 
follow routes, alter their commanded route 
following speed, insert threats at fixed sites, and 
so forth.  The host’s NIU handles the translation of 
host tactical behaviors and IOS directives into DIS 
PDUs.  The EUSA modified ModSAF 
discriminately listens for the NIU’s DIS PDUs and 
reacts accordingly: appropriately acknowledging 
the receipt of the DIS PDU, creating entities locally 
within ModSAF, assigning entities to follow routes, 
changing an entity’s traveling speed, etc.  Since all 
EUSA entities were created locally within 
ModSAF, ModSAF will automatically, by default, 
manage an entity’s movement through the CTDB, 
perform any necessary dead reckoning, and 
broadcast EntityState DIS PDUs.  These PDUs 
inform the NIU’s ground truth database of the 
entity’s current geographical location and 
orientation. 
 
Even the solution to implement record/playback 
and a “fly-out” functionality, within ModSAF, fell 
out of the above DIS network interface 
capabilities.  Only the host computer needed to 
worry about record/playback and the ability to “fly-
out” of a playback.  During a recording of a training 
exercise, all threat environment data the host 
needs to record can be found in its NIU’s ground 
truth database.  All ModSAF does is continue to 
behave in the same real-time manner as it always 
does when it is not in freeze.  To implement a 
mission playback with ModSAF, the host merely 
needs to reset ModSAF.  In other words, the NIU 
needs to place ModSAF in freeze (StopFreeze), 
remove all ModSAF entities (RemoveEntity), 
reinsert the entities present during the recording 
(CreateEntity), setup each entity according to its 
recorded location, orientation, velocity, and 
assigned route (SetData), and take ModSAF out of 
freeze (StartResume).  ModSAF then resumes its 
duty of moving entities along their assigned routes 
just as it did during the real-time recording.  Again, 
most of ModSAF’s control over entity behaviors, 



aside from route following abilities, was curtailed.  
The increased degree of repeatability and 
determinism gained from this behavior allows a 
moving threat to virtually traverse a path in the 
same manner as it did during the original mission.  
Since ModSAF is already “live” during playback, 
the ability to “fly-out” of a playback is already taken 
care of. 
 

FUTURE ENHANCEMENTS 
 
Although a DIS interface capability was added to 
each of the EUSA flight simulators, only a portion 
of the ModSAF functionality was utilized.  Most of 
the control for each tactical environment, still 
resided within the host computers.  As a future 
upgrade, this control could be removed.   This 
would allow for a more encompassing usage of 
the constructive simulation and more robust 
scenarios could be generated.  With an expanded 
ground truth database to maintain threat emission 
data and fire detonation events, the data could be 
used to stimulate existing host interfaces providing 
appropriate interactions with the ownship.  
Additionally, with a modified NIU to handle the 
appropriate PDUs, the UH-60 and CH-47 would be 
able to participate in distributive network 
exercises.  As part of the proof-of-concept 
program, CELLNET, this capability has been 
previously demonstrated on the UH-60 device. 
 
A second area with potential for improvement 
during a future upgrade, is in training 
communications.  Each of the simulators contain 
on-board radios for use during a training exercise 
and communication with the role playing instructor 
and fellow crew members.  The voice 
transmissions are not broadcast onto the DIS 
network as part of the EUSA program.  Alternately, 
transmitter and signal PDUs could be generated 
and transmitted.  This would permit 
communication between EUSA flight simulators 
(UH-60 and CH-47) as well as other participants in 
a distributed exercise.  This too, has already been 
done on the CELLNET and F-16 Taiwan 
programs. 
 
Finally, a third area with potential for improvement 
is in the area of HLA compliance.  While the EUSA 
program was not under the mandate to provide an 
HLA compliant system, the use of ModSAF greatly 
helps to ease the burden of such a transition.  Due 
to existing “gateway” products for DIS/HLA 
translations, HLA compliance for many DIS 
compliant products such as ModSAF has been 
made possible. 

  
SUMMARY 

 
The use of ModSAF on the EUSA program 
provided a cost effective means to meet contract 
requirements of maintaining existing capabilities 
within legacy training devices.  In doing so, an 
alternate implementation of the functionality of 
ModSAF was utilized allowing dynamic scenario 
generation while maintaining the existing host 
controlled features. 
 
As the EUSA program comes to closure, two 
legacy flight simulators have taken their first steps 
toward interoperating in a global synthetic 
battlespace.  Updating legacy simulators as a 
whole can easily lend itself to high cost and 
maintenance of stagnant technology.  The EUSA 
solution curtails unnecessary spending and 
bridges the legacy technology into the next 
generation of simulation. 




