

AN EMPIRICAL EVALUATION OF THE JAVA AND C++
PROGRAMMING LANGUAGES

David R. Pratt, Anthony J. Courtemanche, Jamie Moyers and Charles Campbell
Science Applications International Corporation

Orlando, Florida

Abstract

The scarcity of applicable empirical data on the issue of C++ versus Java performance led the authors to conduct
their own series of performance studies. A performance comparison was made of Java and C++ in the implementa-
tion of a test system representative of those encountered in simulation systems. The algorithms chosen were deemed
to be representative of both the algorithms used in simulation systems and those which consume the majority of the
time-based computational load. They included a hull dynamics model, geometric intervisibility, and a scheduler /
dispatcher. The exact same algorithms were implemented in both Java and C++.

As with some developmental programs, execution speed was not the only item of concern in this study. Often pro-
grammer productivity and error rates are major factors in choosing a particular programming language. To capture
information about these factors, productivity rates of each of the programmers were recorded as they developed code
from scratch and ported the code to the new language. Subjective evaluations from each of the programmers con-
cerning their opinions on the ease of using the language for the given applications was also collected. This paper
describes the programming language study and presents empirical and subjective findings that both program manag-
ers and developers should be aware of when making programming language selections for future simulation sys-
tems.

This is the second paper in a series of empirical studies the authors have conducted into the relative performance
programming languages and their suitability to the Modeling and Simulation Domain.

Author Biographies

Dr. David R. Pratt is a Chief Scientist/Fellow at SAIC's Applied Software Systems Engineering Technology
(ASSET) Group. As the Group's Technical Lead, he coordinates the internal research activities of the group and
helps to set the technical directions. Prior to joining SAIC, he served as the JSIMS Technical Director, a tenured
Associate Professor of Computer Science at the Naval Postgraduate School, and a Captain in the Marine Corps. Dr.
Pratt received a Ph.D. in Computer Science in 1993 and a Masters of Science degree in Computer Science in 1988
from Naval Postgraduate School.

Anthony J. Courtemanche has over ten years of experience in virtual entity simulations utilizing Computer Gener-
ated Forces, with contributions in software architecture, weapons systems simulation, targeting behaviors, network
simulation protocols, and user interfaces. Mr. Courtemanche was one of the principal contributors to the ModSAF
architecture and was the Project Engineer for ModSAF system development. At SAIC, Mr. Courtemanche is a
Chief Scientist in the Advanced Distributed Simulation Research Team and supports research projects in the areas of
object-oriented software architectures, advanced software technologies, and computer generated forces. Mr. Cour-
temanche received his Masters of Science in Electrical Engineering and Computer Science from MIT in 1987.

Charles Campbell is a senior software engineer assigned to SAIC's ASSET Research Programs division. His re-
sponsibilities include design and development of Synthetic Natural Environment representations and services for
CGF systems. Mr. Campbell holds a Masters of Science in Computer Science from the University of Central Flor-
ida and a Bachelor of Science in Computer Science from Indiana University. His interests include simulation, soft-
ware engineering, computational geometry, and computer graphics.

James Moyers is a software engineer assigned to SAIC's ASSET Research Programs division. Mr. Moyers holds a
Masters of Science in Computer Science from the University of Missouri - Rolla (UMR) and a Bachelor of Science
in Computer Science from Southeast Missouri State University. His interests include computer graphics, visualiza-
tion, object oriented programming, and image processing.

AN EMPIRICAL EVALUATION OF THE JAVA AND C++
PROGRAMMING LANGUAGES

David R. Pratt, Anthony J. Courtemanche, Charles Campbell, and James Moyers
Science Applications International Corporation

Orlando, Florida

INTRODUCTION

When C++ and Ada first came into widespread use, many
simulation developers felt they would not be suitable as
development languages for simulations due to their per-
ceived slower execution speed when compared with C
and FORTRAN. However, both languages have been
used quite successfully on large-scale systems. A similar
situation now exists with Java, the new programming
language rave. Its use is widespread in the commercial
sector and the market forces behind Java are developing
feature and performance enhancements rapidly. Never-
theless, many traditionalists are concerned about using
Java in simulations due to perceived performance issues.

Despite the current popularity of both C++ and Java as
development languages and frequent discussions compar-
ing the two, the authors were surprised to find little appli-
cable empirical data on the issue of C++ versus Java
performance. This scarcity of data led the authors to con-
duct a series of studies comparing the performance of
Java and C++. The studies focused on implementing test
systems that are representative of those encountered in
simulations. While the first study focused on the com-
parison of the programming languages across a series of
computational platforms (Pratt, 2000), this study exam-
ines the different optimization and execution modes of
the sample programs. This paper describes the program-
ming language study and presents empirical and subjec-
tive findings that both program managers and developers
should be aware of when making programming language
selections for future simulations.

OBJECTIVES

The goal of this study was to gather scientifically defen-
sible data to allow a comparison of Java and C++ with
respect to development and runtime performance in simu-
lations. Four basic objectives were identified:

• Objectively evaluate the performance of Java and
C++ as applied to the development and execution of
simulations

• Evaluate the optimization options and their effect on
run times

• Gather subjective evaluations of the Java and C++
languages and development issues

• Logically extrapolate the results for future simula-
tions

As with some developmental programs, execution speed
was not the only item of concern in this study. Often pro-
grammer productivity and error rates are major factors for
choosing a particular programming language. To capture
information about these factors, productivity rates of each
of the programmers were recorded as they developed
code from scratch and ported the code to the new lan-
guage. Subjective evaluations from each of the program-
mers concerning their opinions on the ease of using the
language for the given applications was collected in addi-
tion to objective performance data.

STUDY SETUP

To achieve the above objectives, we selected a series of
different compiler and runtime optimizations and repre-
sentative simulation components. The next few sections
describe the study setup.

Computer Platform

To minimize variable results caused by the use of differ-
ent computer platforms, a single computer platform was
used in this study. The designated system was a Dell
Latitude CPi running Windows 95 with a 300 MHz Pen-
tium II CPU and 128 MB of RAM. The computer was
disconnected from the network and the screen saver was
turned off to minimize computational variations during
the runs.

Development Environment

This effort focused on evaluating the two programming
languages independently of any Integrated Development
Environments (IDEs) that might be used to generate,
compile and/or run the code. We decided to use a combi-
nation of in-house, free, and evaluation software as the
development environment. This actually duplicated the
normal development environments of most of the mem-
bers of the evaluation team (i.e., the developers).

Java Due to Sun's effective lock on the Java Standard,
the Java Development Kit (JDK) is the reference imple-
mentation for Java. Fortunately, it is available free of
charge from www.javasoft.com. The version used for this

http://www.javasoft.com.

project was JDK 1.3. The “java –version” com-
mand returned the following result: Java(TM) 2
Runtime Environment, Standard Edition
(build 1.3.0-C) Java HotSpot(TM) Cli-
ent VM (build 1.3.0-C, mixed mode).

One of the key features of this JDK version is the Just In
Time (JIT) compiler. Besides doing some code optimiza-
tions when a class is loaded at runtime, the JIT compiler
speeds performance by compiling Java byte-code into a
native instruction set for the machine. The result is
stored in an instruction cache similar to how natively
compiled code would be stored. A more complete discus-
sion of the Java JIT can be found in (McManis). More
details on the HotSpot™ VM can be found in (Sun).

C++ Maintaining the freeware philosophy and our desire
for cross-platform compatibility, we chose to use the
GNU C++ compiler for this study (GCC). The GNU C++
compiler is part of the GNU Compiler Collection (GCC).
The particular version used was gcc version egcs-
2.91.57 19980901 (egcs-1.1 release).
GCC is available from gcc.gnu.org.

Constraints

To avoid the problems that plagued Precheltr's study
(Precheltr, 1999) (namely, different programming styles),
we decided to levy some constraints on the developers
participating in this study. A detailed discussion of the
programming constraints is contained in 0. To summa-
rize, the imposed constraints were:

• Consistent implementation across platforms and pro-
gramming languages

• Solid and explicit coding style
• No visual/graphical components

While some of the developers felt that the constraints
skewed the study in favor of Java, which was considered
to be the simpler of the two languages, the majority of the
developers viewed the constraints as being the only way
to ensure a fair comparison between the programming
languages. A discussion of the differences between the
languages can be found in (Thimbleby 1999).

STUDY APPROACH

Three of the four performance tests from the previous
study were used again in this study:

• Line of Sight (LOS) Computation
• Dynamics Modeling
• Scheduler

Once the initial reference implementations were com-
pleted, the code was given to the other two developers to
be rewritten in the other language. The language imple-
mentations were designed so that a line for line transla-
tion could be done to ensure the consistency of the results
and execution semantics. After the coding and debugging
phases were completed, a peer review was conducted to
verify that the implementations were consistent and that
they produced the same results.

In the production phase of the project, each of the three
tests was run ten times using the Java Virtual Machine
(JVM) / C++ compiler command arguments shown in
Table 1. The results were averaged over the number of
runs. If a value was more then 30% away from the mean,
it was discarded along with the opposite minimum or
maximum. This happened in only two cases. The final
results were then analyzed for trends and insights.

Java C++

java g++ -Wall

java -Xint g++ -Wall -01

java -Server g++ -Wall -02

 g++ -Wall -03

Table 1. Command Options Used

Java Test Cases

The same Java class files were used for all three Java
cases. The only difference among the cases was the exe-
cution mode of the programs. In the first case, the system
was run in a mixed mode. In mixed mode, the most heav-
ily executed code was compiled to machine code at run-
time by the JIT compiler, which was part of the JVM.
The mixed mode is the default mode for the JDK 1.3.

The second "-Xint" mode was a non-standard JVM
option that did not involve any JIT compilation of code.
Instead, the JVM operated strictly in the interpreted mode
on the source byte code. As a result, no code optimiza-
tions were performed as part of the execution. In both the
first and second cases, the JVM ran in the client mode.
The client mode is optimized for smaller programs and
allows quicker program startup.

The final Java mode was the HotSpot™ server mode in-
voked using the "-Server" option. In this mode, the
program's byte code was compiled more aggressively and
optimized for long periods of execution. Note, it is still a
mixed mode execution. Use of the HotSpot™ server
mode entailed additional compilation, optimization of the
memory allocation process, and better threading perform-
ance. The tradeoffs for using this mode, however, in-

cluded a longer startup period and a larger memory foot-
print.

C++ Test Cases

For all the C++ cases, the “– Wall” option forced notifi-
cation of all warnings generated by the compiler. The
option did not affect the runtime performance of the sys-
tem though. The different C++ modes stemmed from
using the GNU C++ compiler with four different levels of
performance optimization as discussed below.

The first C++ mode involved no optimizations. High
level C++ instructions were converted directly to ma-
chine code with no attempt to allocate variables to regis-
ters or to merge any of the instructions. Since there was
no real buffering or modification to the code during com-
pilation, this was the fastest and least resource intensive
compilation mode. This mode also provided the best de-
bugging support because there was a well established,
independent mapping between the machine code and the
C++ code statements.

The second “–O1” compiler mode involved optimizations
that could be done quickly. Principally, variable alloca-
tions to registers and attempts to reduce code size and
execution time are done. The compiler also attempts to
optimize the branching and function calling processes.

The third “–O2” compiler mode involved additional op-
timizations beyond those of the “–O1” compiler mode.
Typically the compiler invokes nearly all the supported
optimizations that do not involve a space-speed tradeoff
such as inlining functions or unrolling loops. The compile
process generally takes longer, but it should generate
faster executing code. The optimizations do increase the
difficulty of the runtime tracing and debugging process,
however.

The fourth and last “–O3” compiler mode involved all
possible optimizations to reduce the execution time of the
program. Inlining functions and unrolling loops may be
done. Resulting program executables tend to be larger in
size, but they have shorter execution times (space / speed
tradeoff).

It is interesting to note that since the GNU C++ compiler
supports a wide range of platforms, the optimizations that
are performed on one platform may or may not be per-
formed on another platform. Thus, the optimization char-
acteristics may vary by machine and operating system.

TEST SUITE

The three different performance tests comprised a test
suite that allowed a wide range of data to be collected.

Each of the tests is described further in this section along
with it associated performance metric.

LOS Computation Test

One of the most common computations carried out by a
simulation is the Line Of Sight (LOS)1 calculation.
Hence, it was one of the key algorithms included in our
performance test suite. Graphically depicted in Figure 1,
we chose a simple LOS algorithm that is based on a
regularly gridded elevation matrix. It returned a boolean
value to indicate whether intervisibility existed between a
given start point (viewer) and end point (target).

1 . C h e c k a l l X = C
i n t e r c e p t s

2 . C h e c k a l l Y = C
i n t e r c e p t s

3 . C h e c k a l l
d ia g o na l i n te r c e p ts

Figure 1. Line of Sight Algorithm

The algorithm consisted of three loops. The first loop
stepped through all of the north-south (X = Constant
Value) divisions to determine if the point on the line
segment connecting the viewer and target end points was
below the terrain skin. If so, the LOS method ceased all
further processing and returned a value of FALSE. After
stepping though all of the north-south divisions, a similar
loop was used to step through and check all of the east-

1 Some purists prefer the term geometric intervisibility (GI) for a calcu-
lation that deals only with binary point to point occlusion by the geo-
metric components of the terrain data base. We are using the more
common term of Line of Sight (LOS) without any loss of generality.

west (Y = Constant Value) divisions. Then lastly, all of
the diagonals were considered and checked. If all three
loops executed to completion, the LOS method returned a
value of TRUE, which implied intervisibility does exist
between the two given points.

The terrain database used for the study was constructed
from a Digital Elevation Terrain Data (DTED) level 0
sample of 121 by 121 posts. The intervals between post-
ings were set to a constant 100 units value. A uniform
right triangulation was imposed with the diagonals going
from the lower left to upper right corners of each grid
box.

A driver class was used to run the test. A sample set of
200,000 segments, each 60,000 units long, was used for
the LOS test. The start point and the direction of the seg-
ment along which LOS was to be computed were ran-
domly generated. If the computed end point was outside
the bounds of the terrain sample, the direction was ad-
justed until the end point was within the bounds.

The LOS test driver set the initial eye points and targets
to zero units above the terrain. The sample set of
200,000 segments was then tested. If over half of the
segment tests returned TRUE (e.g., LOS existed between
the eye point and the target), then the program exited. If
less then half returned TRUE, then the eye points and
targets were raised 100 units and the 200,000 segments
were tested again. For the sample database, over half of
the segments tested returned TRUE when the eye points
and targets were 700 units above the terrain. As a result,
1,600,000 LOS calculations were done for each timed
run. The collected performance metric was elapsed time
for all of the LOS test runs.

Dynamics Modeling Test

One of the major applications of polymorphic method
invocation in continuous and time stepped simulations is
the use of the vehicle.tick(deltaTime) construct to abstract
the details of the entity movement routines. For this rea-
son, we designed the Dynamics Modeling test to imple-
ment three of the most common ways of modeling an
entity's motion. The test involves the use of a single base
class, the HullClass, and three derived child classes:
StaticClass, KinematicClass and DynamicClass (see
Figure 2).

HullClass

+tick()

StaticClass

+tick()

KinematicClass

+tick()

DynamicClass

+tick()

Figure 2. The HullClass Hierarchy

The StaticClass performed no actual movement computa-
tions and was used primarily as a means to compute the
overhead costs associated with using the method. Move-
ment for the KinematicClass was determined algorithmi-
cally based on commanded and actual values for
orientation and velocity. Movement for the Dynamic-
Class was based on a summation of forces using Newto-
nian physics. In all cases, interactions with the terrain
were not taken into account. The performance metric
collected for the Dynamics Modeling test was elapsed
time using the three HullClass child classes.

A second set of runs were made for the Dynamics Model-
ing test using a modified version of the Java code. During
these runs, “scratch” vectors were allocated as part of the
classes to eliminate the requirement for the system to
allocate space to handle the intermediate values used in
the vector computations. The algorithms, control struc-
tures, and geographic ending locations of the hulls did not
change from those of the initial code version runs, how-
ever.

For the Dynamics Modeling test runs, a driver program
was created to simulate two days of simulation time.
With a tick rate of 15 Hz, this amounted to 2,592,000
calls to each of the vehicle movement routines. For each
run, the driver program exercised each of the three differ-
ent leaf classes separately, reported the elapsed time for
each, and then summed the results for the run.

Scheduler Test

The Scheduler test was an implementation of a Discrete
Event Simulation (DES) As Fast As Possible (AFAP)
control structure. It used a singly linked list as the event
queue. As an initial condition, it was seeded with 200
events, of which 25% were Recurring Events and 75%
were Single Events. When a Recurring Event fired, it was
rescheduled at a constant interval based on an initial ran-
dom draw in the constructor between 1 and 100 time
units. When a Single Event fired there was a 25% chance

that no new event would be scheduled, a 50% chance that
one event would be scheduled, and a 25% chance that
two independent events would be scheduled.

All Single Events were scheduled based upon a random
draw between 1 and 100 time units in the future. The
system was set to run for 50,000 time units and resulted
in the firing of 145,402 events. Again, elapsed time was
the performance metric used for all the Scheduler test
runs.

RESULTS

This section presents a subset of the results from this pro-
gram language study. Though informative, source data
spreadsheets and graphs of all three performance test
results were too voluminous to be included in this paper.
The subset presented below is representative of the study
and is not biased toward any of the conclusions.

 LOS Computation Test Results

In the LOS test runs, the relative performances of the two
languages were about what we had expected based upon
our previous work comparing them. The results from the
various runs using the different execution and optimiza-
tion modes were new and interesting, however. Figure 3
shows that by simply activating the first level of compiler
optimizations (OPT1), the C++ program ran 27% faster
than it did with no optimizations (noOPT). While we had
expected an increase in performance, we did not expect it
to be quite so significant. Surprisingly, the other two C++
optimizations modes did not produce as large an increase
in performance. Use of both the “–O2” and “–O3” opti-
mization modes resulted in only a 26% improvement in
the run times over the non-optimized case. We believe
this can be attributed to the relative simplicity of the call-
ing and branching structure of the code and the dynamic
nature of the For loops.

0

1 0 0 0 0 0

2 0 0 0 0 0

3 0 0 0 0 0

4 0 0 0 0 0

5 0 0 0 0 0

6 0 0 0 0 0

7 0 0 0 0 0

8 0 0 0 0 0

9 0 0 0 0 0

1 0 0 0 0 0 0

C + +

n o O P T

C + +

O P T1

C + +

O P T2

C + +

O P T3

J a va

M ix e d

J a va

In t e rp

J a va

S e rve r

T im e in M il l is e c o n d s

Figure 3. Line of Sight Computation Test Results

The mixed mode Java implementations (labeled “Java
Mixed” and “Java Server” in Figure 3) were observed to
perform better than C++ implementation. This can be
attributed to the type of coding and program structure
used for this study. Namely, the type of coding was better
suited for Java JIT optimizations than it was for the C++
compiler's optimizations. However, the biggest factor
was most likely use of the JIT compiler. The large num-
ber of repetitive calls to compute LOS and the fact that
the LOS algorithm had a high degree of locality of refer-
ence (i.e., code located in a small loop) contributed to
increased JIT performance. A detailed discussion of the
HotSpot™ JIT performance engine architecture and the
optimization process is presented in (Sun, 1999).

The effect of the JIT can be seen most clearly by compar-
ing the results of the two Java mixed mode runs to the
results of the Java interpreted mode runs. On average, the
mixed mode run times were approximately 27% to 28%
of the interpreted mode run times

Dynamics Modeling Test Results

Table 2 shows the results for the Dynamics Modeling test
runs. It is interesting to see the meager performance im-
provements exhibited by the three C++ cases involving
optimizations, only 1% to 4%. These results are in stark
contrast to the performance increases seen before for the
LOS test. This finding emphasizes the point that results

of performance metrics analyses are dependent on how
the performance metrics are generated. There are limits
to the inferences that can be drawn regarding the domain

of applicability for such results. Too often, the limits are
not fully understood and misleading, blanket statements
are made.

Test Static Kinematics Dynamics Total Normalized
C++ noOPT 429 5614 31899 37942 100%
C++ OPT1 258 5986 31364 37608 99%
C++ OPT2 257 5948 31226 37431 99%
C++ OPT3 247 5620 30496 36363 96%
Java Mixed 550 10995 38344 49889 131%
Java Interp 3389 64642 272518 340549 898%
Java Server 5644 8394 31001 45039 119%
Java Mixed 2 167 2800 18620 21587 57%
Java Interp 2 805 16072 92841 109718 289%
Java Server 2 1652 4730 16665 23047 61%

Table 2. Dynamics Modeling Test Run Times in Milliseconds

Consistent with the results obtained in (Pratt, 2000), the
first set of Java runs performed slower than the C++
runs. In our first study, we attributed this to the memory
allocations performed as part of the computations. We
felt that this was justified based upon the very high cost
associated with doing memory allocations in Java. This
trend was quantified in the Object Oriented test runs
conducted in our previous work.

The results from the second set of Dynamics Modeling
test runs using Java classes which included scratch vec-
tors are shown in tabular form in Table 2 and in graphi-
cal form in Figure 4. There was a significant
improvement in the runtime performance just by having
the pre-allocated scratch vectors. In Figure 4, the bar
representing the Java interpreted mode run time without
the scratch vector (labeled “Java Interp”) actually ex-

tends beyond the limits of the graph’s vertical axis by a
factor of more than three.

When comparing the strictly interpreted Java runs to
each other, the pre-allocated vectors cut the run times of
the second series of runs by 68%, one of the biggest
performance differences of any of the comparisons
conducted on this study. In terms of machine perform-
ance, the increase is roughly equivalent to the use of a
900 MHz machine over a 300 MHz machine. In the
Java mixed mode and server mode cases, the run times
were 43% and 51%, respectively, of the corresponding
original run times. These improved times were still
quite significant, but not as dramatic as the increase
seen with the interpreted mode runs.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

S ta t ic K inem atic s D y nam ic s

Java M ix ed Java M ix ed 2 Java In te rp Java In te rp 2

Java S erve r Java S erve r 2

Figure 4. Comparison of the Two Java Implementations of the Dynamics Modeling Test

Scheduler Test Results

Of all the test runs conducted in this study, the Sched-
uler test runs had the shortest run times. The results of
these runs highlighted a drastic difference in the startup
costs between the mixed mode and server mode imple-
mentations of the JVM. Specifically, there was simply

not enough run time to recoup the up front time invest-
ment made in doing the optimization. Figure 5 shows
that using the server mode JVM was roughly 11 times
more expensive than using the mixed mode JVM. Us-
ing the server mode JVM was also 1.75 times more
expensive than using the plain Java interpreter.

0 1000 2000 3000 4000 5000 6000 7000

C + + noO P T

C + + O P T1

C + + O P T2

C + + O P T3

Java M ix ed

Java In te rp

Java S erve r

Tim e in M illis ec onds

Figure 5. Scheduler Test Results

Interestingly, the C++ implementations provided better
performance than the Java implementations in all of the
Scheduler test cases. This counters the results obtained
in a similar test in our previous study. Because the test
in the previous study had a smaller number of events
and was shorter in duration, the scheduler's queue was
significantly smaller. From this we might be tempted to
hypothesize about the languages’ relative abilities to
handle large data structures. However, further study is
needed before any definitive conclusion can be drawn
on this issue.

Subjective Language Evaluations

The two languages were also subjectively evaluated by
the study team. All of the developers had significantly
more experience with C/C++ than Java. However, with
one exception, the developers preferred coding in Java
rather than C++. For example, one of the developers
commented that he hated to have do all the "tricks"
necessary to write code in C++. The single dissenting
developer, who was perhaps the best C++ programmer
but also the least familiar with Java, had internalized
the C++ "tricks" and felt constrained that he could not
do similar things in Java. Nearly all of the developers
perceived Java to be a safer and cleaner programming
language.

There was not a significant difference in the develop-
ment time between the two languages for these simple
programs. However, there is documented anecdotal
evidence that Java is both a safer and quicker develop-
ment environment (Phipps, 1999). In fact, during part
of this study, we noticed that the C++ version of the
Scheduler tests had astronomical run times. Upon fur-
ther investigation, we found a memory leak that had
gone undetected.

CONCLUSIONS

In this paper, we have presented a scientifically defen-
sible argument for the use of Java relative to C++ based
on performance considerations. We caveat our findings
by reiterating the scope of programming language
study. Namely, the study was designed to compare the
performance and use of Java and C++ as programming
language options for simulations. It involved a rela-
tively simple set of test programs and test cases target-
ing components of simulations that are commonly
considered to be computationally intensive. The simula-
tion specific tests were run across a range of optimiza-
tion options and execution modes. From our validity
assessment and analysis of the data, especially when it
is combined with the information in (Pratt, 2000),
(Price) and (Rijk), we feel confident that the results can
be generalized and used as a point of departure on

which to base system level decisions. The study results,
however, like all benchmarks, are only relevant to the
domains from which they were taken.

Our findings are consistent with the results from (Pre-
cheltr, 1999), which found that the differences in pro-
grammer ability were more significant then any
difference in programming language. We have shown
in this study that the developer's knowledge of the
compilers and run time environments can have a much
greater bearing than the choice of language. In one
case, a simple change in command line options and
memory management resulted in a 15-fold increase in
performance. The poor performance of the Java inter-
preted modes, along with the fact that the initial JVMs
ran strictly in interpreted modes, are what gave Java its
reputation as a slow language. But the results of our
programming language studies show that use of the JIT
puts Java in the same performance league with C++.

When making programming language decisions for
future simulations, one cannot overlook the large in-
vestment in legacy simulations written C/C++. C++ is a
relatively stable and mature programming language.
Java, on the other hand, is a relatively new language,
and it is still undergoing many performance and feature
improvements. As mentioned in our previous study, we
believe that Java will continue to improve to a point
where performance is no longer an issue. Market forces
behind Java continue to develop significantly faster and
more efficient JIT compilers and JVMs and other con-
siderations such as Java programming ease, portability
of legacy source code to Java, and the advantages of an
interpreted language further Java’s continued growth
and popularity. The results of this study have affirmed
our expectation that Java will overtake C++ as the lan-
guage of choice for many applications, including simu-
lations, in the near future.

ACKNOWLEDGMENTS

This work was done under SAIC internal research fund-
ing.

REFERENCES

GCC Home Page, http://gcc.gnu.org/

McManis, Chuck, "Just In Time Compilation",
http://www.javacats.com/us/articles/chuckmcmanis
091696.html

Phipps, Geoffrey, "Comparing Observed Bug and Pro-
ductivity Rates for Java and C++," Software -
Practice And Experience , 29(4), 345–358 (1999)

Pratt, David, et al. "An Emperical Evaluation of Pro-
gramming Languguages for Computer Generated
Forces," 9th Conference on Computer Generated
Forces and Behavioral Representation, May 2000
Pages 151-161.

Precheltr, Lutz, "Technical opinion: comparing Java
vs. C/C++ efficiency differences to interpersonal
differences", Communications of the ACM, Vol-
ume 42 , Issue 10 (1999), Pages 109-112.

Price, John W., "Programming Language Performance
Testing," http://www.r2systems.com/LangTest/

Rijk, Chris, "Binaries Vs Byte-Codes,"
http://www.aceshardware.com/Spades/read.php?art
icle_id=153

Sun Microsystems, Inc. “Java HotSpotTM Server VM
2.0” Web Site,
http://www.javasoft.com/products/hotspot/

Sun Microsystems, Inc. "The Java Hotspot Performance
Engine Architecture,"
http://java.sun.com/products/hotspot/whitepaper.ht
ml, April 1999

Thimbleby, Harold, "A Critique of Java," Software -
Practice And Experience , 29(5), 457–478 (1999)

http://gcc.gnu.org/
http://www.javacats.com/us/articles/chuckmcmanis091696.html
http://www.r2systems.com/LangTest/
http://www.aceshardware.com/Spades/read.php?article_id=153
http://www.javasoft.com/products/hotspot/
http://java.sun.com/products/hotspot/whitepaper.htm

