
  
  

AN EMPIRICAL EVALUATION OF THE JAVA AND C++ 
PROGRAMMING LANGUAGES 

David R. Pratt, Anthony J. Courtemanche, Jamie Moyers and Charles Campbell 
Science Applications International Corporation 

Orlando, Florida 
 

Abstract 

The scarcity of applicable empirical data on the issue of C++ versus Java performance led the authors to conduct 
their own series of performance studies. A performance comparison was made of Java and C++ in the implementa-
tion of a test system representative of those encountered in simulation systems. The algorithms chosen were deemed 
to be representative of both the algorithms used in simulation systems and those which consume the majority of the 
time-based computational load. They included a hull dynamics model, geometric intervisibility, and a scheduler / 
dispatcher. The exact same algorithms were implemented in both Java and C++.  

As with some developmental programs, execution speed was not the only item of concern in this study. Often pro-
grammer productivity and error rates are major factors in choosing a particular programming language. To capture 
information about these factors, productivity rates of each of the programmers were recorded as they developed code 
from scratch and ported the code to the new language. Subjective evaluations from each of the programmers con-
cerning their opinions on the ease of using the language for the given applications was also collected. This paper 
describes the programming language study and presents empirical and subjective findings that both program manag-
ers and developers should be aware of when making programming language selections for future simulation sys-
tems.  

This is the second paper in a series of empirical studies the authors have conducted into the relative performance 
programming languages and their suitability to the Modeling and Simulation Domain. 
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INTRODUCTION 

When C++ and Ada first came into widespread use, many 
simulation developers felt they would not be suitable as 
development languages for simulations due to their per-
ceived slower execution speed when compared with C 
and FORTRAN. However, both languages have been 
used quite successfully on large-scale systems. A similar 
situation now exists with Java, the new programming 
language rave. Its use is widespread in the commercial 
sector and the market forces behind Java are developing 
feature and performance enhancements rapidly. Never-
theless, many traditionalists are concerned about using 
Java in simulations due to perceived performance issues. 

Despite the current popularity of both C++ and Java as 
development languages and frequent discussions compar-
ing the two, the authors were surprised to find little appli-
cable empirical data on the issue of C++ versus Java 
performance. This scarcity of data led the authors to con-
duct a series of studies comparing the performance of 
Java and C++. The studies focused on implementing test 
systems that are representative of those encountered in 
simulations. While the first study focused on the com-
parison of the programming languages across a series of 
computational platforms (Pratt, 2000), this study exam-
ines the different optimization and execution modes of 
the sample programs. This paper describes the program-
ming language study and presents empirical and subjec-
tive findings that both program managers and developers 
should be aware of when making programming language 
selections for future simulations.  

OBJECTIVES 

The goal of this study was to gather scientifically defen-
sible data to allow a comparison of Java and C++ with 
respect to development and runtime performance in simu-
lations. Four basic objectives were identified: 

• Objectively evaluate the performance of Java and 
C++ as applied to the development and execution of 
simulations 

• Evaluate the optimization options and their effect on 
run times 

• Gather subjective evaluations of the Java and C++ 
languages and development issues 

• Logically extrapolate the results for future simula-
tions 

 
As with some developmental programs, execution speed 
was not the only item of concern in this study. Often pro-
grammer productivity and error rates are major factors for 
choosing a particular programming language. To capture 
information about these factors, productivity rates of each 
of the programmers were recorded as they developed 
code from scratch and ported the code to the new lan-
guage. Subjective evaluations from each of the program-
mers concerning their opinions on the ease of using the 
language for the given applications was collected in addi-
tion to objective performance data. 

STUDY SETUP 

To achieve the above objectives, we selected a series of 
different compiler and runtime optimizations and repre-
sentative simulation components. The next few sections 
describe the study setup. 
 
Computer Platform  

To minimize variable results caused by the use of differ-
ent computer platforms, a single computer platform was 
used in this study. The designated system was a Dell 
Latitude CPi running Windows 95 with a 300 MHz Pen-
tium II CPU and 128 MB of RAM. The computer was 
disconnected from the network and the screen saver was 
turned off to minimize computational variations during 
the runs. 

Development Environment 

This effort focused on evaluating the two programming 
languages independently of any Integrated Development 
Environments (IDEs) that might be used to generate, 
compile and/or run the code. We decided to use a combi-
nation of in-house, free, and evaluation software as the 
development environment. This actually duplicated the 
normal development environments of most of the mem-
bers of the evaluation team (i.e., the developers).  

Java Due to Sun's effective lock on the Java Standard, 
the Java Development Kit (JDK) is the reference imple-
mentation for Java. Fortunately, it is available free of 
charge from www.javasoft.com. The version used for this 

http://www.javasoft.com.


 

  
  

project was JDK 1.3. The “java –version” com-
mand returned the following result: Java(TM) 2 
Runtime Environment, Standard Edition 
(build 1.3.0-C) Java HotSpot(TM) Cli-
ent VM (build 1.3.0-C, mixed mode). 

One of the key features of this JDK version is the Just In 
Time (JIT) compiler. Besides doing some code optimiza-
tions when a class is loaded at runtime, the JIT compiler 
speeds performance by compiling Java byte-code into a 
native instruction set for the machine.  The result is 
stored in an instruction cache similar to how natively 
compiled code would be stored. A more complete discus-
sion of the Java JIT can be found in (McManis). More 
details on the HotSpot™ VM can be found in (Sun). 

C++ Maintaining the freeware philosophy and our desire 
for cross-platform compatibility, we chose to use the 
GNU C++ compiler for this study (GCC). The GNU C++ 
compiler is part of the GNU Compiler Collection (GCC). 
The particular version used was gcc version egcs-
2.91.57 19980901 (egcs-1.1 release). 
GCC is available from gcc.gnu.org. 

Constraints 

To avoid the problems that plagued Precheltr's study 
(Precheltr, 1999) (namely, different programming styles), 
we decided to levy some constraints on the developers 
participating in this study. A detailed discussion of the 
programming constraints is contained in 0. To summa-
rize, the imposed constraints were: 

• Consistent implementation across platforms and pro-
gramming languages 

• Solid and explicit coding style 
• No visual/graphical components  
 
While some of the developers felt that the constraints 
skewed the study in favor of Java, which was considered 
to be the simpler of the two languages, the majority of the 
developers viewed the constraints as being the only way 
to ensure a fair comparison between the programming 
languages. A discussion of the differences between the 
languages can be found in (Thimbleby 1999). 

STUDY APPROACH 

Three of the four performance tests from the previous 
study were used again in this study: 

• Line of Sight (LOS) Computation  
• Dynamics Modeling  
• Scheduler  
 

Once the initial reference implementations were com-
pleted, the code was given to the other two developers to 
be rewritten in the other language. The language imple-
mentations were designed so that a line for line transla-
tion could be done to ensure the consistency of the results 
and execution semantics. After the coding and debugging 
phases were completed, a peer review was conducted to 
verify that the implementations were consistent and that 
they produced the same results.  

In the production phase of the project, each of the three 
tests was run ten times using the Java Virtual Machine 
(JVM) / C++ compiler command arguments shown in 
Table 1. The results were averaged over the number of 
runs. If a value was more then 30% away from the mean, 
it was discarded along with the opposite minimum or 
maximum. This happened in only two cases. The final 
results were then analyzed for trends and insights. 

Java C++ 

java g++ -Wall 

java -Xint g++ -Wall  -01 

java -Server g++ -Wall  -02 

 g++ -Wall  -03 

Table 1. Command Options Used 

Java Test Cases 

The same Java class files were used for all three Java 
cases. The only difference among the cases was the exe-
cution mode of the programs. In the first case, the system 
was run in a mixed mode. In mixed mode, the most heav-
ily executed code was compiled to machine code at run-
time by the JIT compiler, which was part of the JVM. 
The mixed mode is the default mode for the JDK 1.3.  

The  second "-Xint" mode was a non-standard JVM 
option that did not involve any JIT compilation of code. 
Instead, the JVM operated strictly in the interpreted mode 
on the source byte code. As a result, no code optimiza-
tions were performed as part of the execution. In both the 
first and second cases, the JVM ran in the client mode. 
The client mode is optimized for smaller programs and 
allows quicker program startup. 

The final Java mode was the HotSpot™ server mode in-
voked using the "-Server" option. In this mode, the 
program's byte code was compiled more aggressively and  
optimized for long periods of execution. Note, it is still a 
mixed mode execution. Use of the HotSpot™ server 
mode entailed additional compilation, optimization of the 
memory allocation process, and better threading perform-
ance. The tradeoffs for using this mode, however, in-



 

  
  

cluded a longer startup period and a larger memory foot-
print.  

C++ Test Cases 

For all the C++ cases, the  “– Wall” option forced notifi-
cation of all warnings generated by the compiler. The 
option did not affect the runtime performance of the sys-
tem though. The different C++ modes stemmed from 
using the GNU C++ compiler with four different levels of 
performance optimization as discussed below.  

The first C++ mode involved no optimizations. High 
level C++ instructions were converted directly to ma-
chine code with no attempt to allocate variables to regis-
ters or to merge any of the instructions. Since there was 
no real buffering or modification to the code during com-
pilation, this was the fastest and least resource intensive 
compilation mode. This mode also provided the best de-
bugging support because there was a well established, 
independent mapping between the machine code and the 
C++ code statements. 

The second “–O1” compiler mode involved optimizations 
that could be done quickly. Principally, variable alloca-
tions to registers and attempts to reduce code size and 
execution time are done. The compiler also attempts to 
optimize the branching and function calling processes. 

The third “–O2” compiler mode involved additional op-
timizations beyond those of the “–O1” compiler mode. 
Typically the compiler invokes nearly all the supported 
optimizations that do not involve a space-speed tradeoff 
such as inlining functions or unrolling loops. The compile 
process generally takes longer, but it should generate 
faster executing code. The optimizations do increase the 
difficulty of the runtime tracing and debugging process, 
however. 

The fourth and last “–O3” compiler mode involved all 
possible optimizations to reduce the execution time of the 
program. Inlining functions and unrolling loops may be 
done. Resulting program executables tend to be larger in 
size, but they have shorter execution times (space / speed 
tradeoff).  

It is interesting to note that since the GNU C++ compiler 
supports a wide range of platforms, the optimizations that 
are performed on one platform may or may not be per-
formed on another platform. Thus, the optimization char-
acteristics may vary by machine and operating system. 

TEST SUITE 

The three different performance tests comprised a test 
suite that allowed a wide range of data to be collected. 

Each of the tests is described further in this section along 
with it associated performance metric. 

LOS Computation Test 

One of the most common computations carried out by a 
simulation is the Line Of Sight (LOS)1 calculation. 
Hence, it was one of the key algorithms included in our 
performance test suite.  Graphically depicted in Figure 1, 
we chose a simple LOS algorithm that is based on a  
regularly gridded elevation matrix. It returned a boolean 
value to indicate whether intervisibility existed between a 
given start point (viewer) and end point (target).  

1 . C h e c k  a l l X  =  C
i n t e r c e p t s

2 . C h e c k  a l l Y  =  C
i n t e r c e p t s

3 . C h e c k  a l l
d ia g o na l  i n te r c e p ts

 

Figure 1. Line of Sight Algorithm 

The algorithm consisted of three loops. The first loop 
stepped through all of the north-south (X = Constant 
Value) divisions to determine if the point on the line 
segment connecting the viewer and target end points was 
below the terrain skin. If so, the LOS method ceased all 
further processing and returned a value of FALSE. After 
stepping though all of the north-south divisions, a similar 
loop was used to step through and check all of the east-
                                                        
1 Some purists prefer the term geometric intervisibility (GI) for a calcu-
lation that deals only with binary point to point occlusion by the geo-
metric components of the terrain data base. We are using the more 
common term of Line of Sight (LOS) without any loss of generality. 



 

  
  

west (Y = Constant Value) divisions. Then lastly, all of 
the diagonals were considered and checked. If all three 
loops executed to completion, the LOS method returned a 
value of TRUE, which implied intervisibility does exist 
between the two given points. 

The terrain database used for the study was constructed 
from a Digital Elevation Terrain Data (DTED) level 0 
sample of 121 by 121 posts. The intervals between post-
ings were set to a constant 100 units value.  A uniform 
right triangulation was imposed with the diagonals going 
from the lower left to upper right corners of each grid 
box. 

A driver class  was used to run the test.  A sample set of  
200,000 segments, each 60,000 units long, was used for 
the LOS test. The start point and the direction of the seg-
ment along which LOS was to be computed were ran-
domly generated. If the computed end point was outside 
the bounds of the terrain sample, the direction was ad-
justed until the end point was within the bounds.  

The LOS test driver set the initial eye points and targets 
to zero units above the terrain.  The sample set of 
200,000 segments was then tested. If over half of the 
segment tests returned TRUE (e.g., LOS existed between 
the eye point and the target), then the program exited. If 
less then half returned TRUE, then the eye points and 
targets were raised 100 units and the 200,000 segments 
were tested again. For the sample database, over half of 
the segments tested returned TRUE when the eye points 
and targets were 700 units above the terrain. As a result, 
1,600,000 LOS calculations were done for each timed 
run. The collected performance metric was elapsed time 
for all of the LOS test runs. 

Dynamics Modeling Test 

One of the major applications of polymorphic method 
invocation in continuous and time stepped simulations is 
the use of the vehicle.tick(deltaTime) construct to abstract 
the details of the entity movement routines. For this rea-
son, we designed the Dynamics Modeling test to imple-
ment three of the most common ways of modeling an 
entity's motion. The test involves the use of a single base 
class, the HullClass, and three derived child classes: 
StaticClass, KinematicClass and DynamicClass (see 
Figure 2). 

HullClass

+tick()

StaticClass

+tick()

KinematicClass

+tick()

DynamicClass

+tick()  

Figure 2. The HullClass Hierarchy 

The StaticClass performed no actual movement computa-
tions and was used primarily as a means to compute the 
overhead costs associated with using the method. Move-
ment for the KinematicClass was determined algorithmi-
cally based on commanded and actual values for 
orientation and velocity. Movement for the Dynamic-
Class was based on a summation of forces using Newto-
nian physics. In all cases, interactions with the terrain 
were not taken into account. The performance metric 
collected for the Dynamics Modeling test was elapsed 
time using the three HullClass child classes. 

A second set of runs were made for the Dynamics Model-
ing test using a modified version of the Java code. During 
these runs, “scratch” vectors were allocated as part of the 
classes to eliminate the requirement for the system to 
allocate space to handle the intermediate values used in 
the vector computations. The algorithms, control struc-
tures, and geographic ending locations of the hulls did not 
change from those of the initial code version runs, how-
ever. 

For the Dynamics Modeling test runs, a driver program 
was created to simulate two days of simulation time. 
With a tick rate of 15 Hz, this amounted to 2,592,000 
calls to each of the vehicle movement routines. For each 
run, the driver program exercised each of the three differ-
ent leaf classes separately, reported the elapsed time for 
each, and  then summed the results for the run. 

Scheduler Test 

The Scheduler test was an implementation of a Discrete 
Event Simulation (DES) As Fast As Possible (AFAP) 
control structure. It used a singly linked list as the event 
queue. As an initial condition, it was seeded with 200 
events, of which 25% were Recurring Events and 75% 
were Single Events. When a Recurring Event fired, it was 
rescheduled at a constant interval based on an initial ran-
dom draw in the constructor between 1 and 100 time 
units. When a Single Event fired there was a 25% chance 



 

  
  

that no new event would be scheduled, a 50% chance that 
one event would be scheduled, and a 25% chance that 
two independent events would be scheduled.  

All Single Events were scheduled based upon a random 
draw between 1 and 100 time units in the future. The 
system was set to run for 50,000 time units and resulted 
in the firing of 145,402 events. Again, elapsed time was 
the performance metric used for all the Scheduler test 
runs. 

RESULTS 

This section presents a subset of the results from this pro-
gram language study. Though informative,  source data 
spreadsheets and graphs of all three performance test 
results were too voluminous to be included in this paper. 
The subset presented below is representative of the study 
and is not biased toward any of the conclusions.  

 LOS Computation Test Results 

In the LOS test runs, the relative performances of the two 
languages were about what we had expected based upon 
our previous work comparing them. The results from the 
various runs using the different execution and optimiza-
tion modes were new and interesting, however. Figure 3 
shows that by simply activating the first level of compiler 
optimizations (OPT1), the C++ program ran 27% faster 
than it did with no optimizations (noOPT). While we had 
expected an increase in performance, we did not expect it 
to be quite so significant. Surprisingly, the other two C++ 
optimizations modes did not produce as large an increase 
in performance. Use of both the “–O2” and “–O3” opti-
mization modes resulted in only a 26% improvement in 
the run times over the non-optimized case. We believe 
this can be attributed to the relative simplicity of the call-
ing and branching structure of the code and the dynamic 
nature of the For loops. 

0
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Figure 3. Line of Sight Computation Test Results 

The mixed mode Java implementations (labeled “Java 
Mixed” and “Java Server” in Figure 3) were observed to 
perform better than C++ implementation. This can be 
attributed to the type of coding and program structure 
used for this study. Namely, the type of coding was better 
suited for Java JIT optimizations than it was for the C++ 
compiler's optimizations. However, the biggest factor 
was most likely use of the JIT compiler. The large num-
ber of repetitive calls to compute LOS and the fact that 
the LOS algorithm had a high degree of locality of refer-
ence (i.e., code located in a small loop) contributed to 
increased JIT performance. A detailed discussion of the 
HotSpot™ JIT performance engine architecture and the 
optimization process is presented in (Sun, 1999).  

The effect of the JIT can be seen most clearly by compar-
ing the results of the two Java mixed mode runs to the 
results of the Java interpreted mode runs. On average, the 
mixed mode run times were approximately 27% to 28% 
of the interpreted mode run times  

Dynamics Modeling Test Results 

Table 2 shows the results for the Dynamics Modeling test 
runs. It is interesting to see the meager performance im-
provements exhibited by the three C++ cases involving 
optimizations, only 1% to 4%. These results are in stark 
contrast to the performance increases seen before for the 
LOS test. This finding emphasizes the point that results 



 

  
  

of performance metrics analyses are dependent on how 
the performance metrics are generated.   There are limits 
to the inferences that can be drawn regarding the domain 

of applicability for such results.  Too often, the limits are 
not fully understood and misleading, blanket statements 
are made. 

 

Test Static Kinematics Dynamics Total Normalized 
C++ noOPT 429 5614 31899 37942 100% 
C++ OPT1 258 5986 31364 37608 99% 
C++ OPT2 257 5948 31226 37431 99% 
C++ OPT3 247 5620 30496 36363 96% 
Java Mixed 550 10995 38344 49889 131% 
Java Interp 3389 64642 272518 340549 898% 
Java Server 5644 8394 31001 45039 119% 
Java Mixed 2 167 2800 18620 21587 57% 
Java Interp 2 805 16072 92841 109718 289% 
Java Server 2 1652 4730 16665 23047 61% 

Table 2. Dynamics Modeling Test Run Times in Milliseconds

Consistent with the results obtained in (Pratt, 2000), the 
first set of Java runs performed slower than the C++ 
runs. In our first study, we attributed this to the memory 
allocations performed as part of the computations. We 
felt that this was justified based upon the very high cost 
associated with doing memory allocations in Java. This 
trend was quantified in the Object Oriented test runs 
conducted in our previous work. 

The results from the second set of Dynamics Modeling 
test runs using Java classes which included scratch vec-
tors are shown in tabular form in Table 2 and in graphi-
cal form in Figure 4. There was a significant 
improvement in the runtime performance just by having 
the pre-allocated scratch vectors. In Figure 4, the bar 
representing the Java interpreted mode run time without 
the scratch vector (labeled “Java Interp”) actually ex-

tends beyond the limits of the graph’s vertical axis by a 
factor of more than three.  

When comparing the strictly interpreted Java runs to 
each other, the pre-allocated vectors cut the run times of 
the second series of runs by 68%, one of the biggest 
performance differences of any of the comparisons 
conducted on this study. In terms of machine perform-
ance, the increase is roughly equivalent to the use of a 
900 MHz machine over a 300 MHz machine. In the 
Java mixed mode and server mode cases, the run times 
were 43% and 51%, respectively, of the corresponding 
original run times. These improved times were still 
quite significant, but not as dramatic as the increase 
seen with the interpreted mode runs. 
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Figure 4.  Comparison of the Two Java Implementations of the Dynamics Modeling Test 

 
 
Scheduler Test Results 

Of all the test runs conducted in this study, the Sched-
uler test runs had the shortest run times. The results of 
these runs highlighted a drastic difference in the startup 
costs between the mixed mode and server mode imple-
mentations of the JVM. Specifically, there was simply 

not enough run time to recoup the up front time invest-
ment made in doing the optimization. Figure 5 shows 
that using the server mode JVM was roughly 11 times 
more expensive than using the mixed mode JVM. Us-
ing the server mode JVM was also 1.75 times more 
expensive than using the plain Java interpreter. 
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Figure 5.  Scheduler Test Results 

 



 

  
  

Interestingly, the C++ implementations provided better 
performance than the Java implementations in all of the 
Scheduler test cases. This counters the results obtained 
in a similar test in our previous study. Because the test 
in the previous study had a smaller number of events 
and was shorter in duration, the scheduler's queue was 
significantly smaller. From this we might be tempted to 
hypothesize about the languages’ relative abilities to 
handle large data structures. However, further study is 
needed before any definitive conclusion can be drawn 
on this issue. 

Subjective Language Evaluations 

The two languages were also subjectively evaluated by 
the study team. All of the developers had significantly 
more experience with C/C++ than Java.  However, with 
one exception, the developers preferred coding in Java 
rather than C++. For example, one of the developers 
commented that he hated to have do all the "tricks" 
necessary to write code in C++. The single dissenting 
developer, who was perhaps the best C++ programmer 
but also the least familiar with Java, had internalized 
the C++ "tricks" and felt constrained that he could not 
do similar things in Java. Nearly all of the developers 
perceived Java to be a safer and cleaner programming 
language. 

There was not a significant difference in the develop-
ment time between the two languages for these simple 
programs. However, there is documented anecdotal 
evidence that Java is both a safer and quicker develop-
ment environment (Phipps, 1999). In fact, during part 
of this study, we noticed that the C++ version of the 
Scheduler tests had astronomical run times. Upon fur-
ther investigation, we found a memory leak that had 
gone undetected. 

CONCLUSIONS 

In this paper, we have presented a scientifically defen-
sible argument for the use of Java relative to C++ based 
on performance considerations. We caveat our findings 
by reiterating the scope of programming language 
study. Namely, the study was designed to compare the 
performance and use of Java and C++ as programming 
language options for simulations. It involved a rela-
tively simple set of test programs and test cases target-
ing components of simulations that are commonly 
considered to be computationally intensive. The simula-
tion specific tests were run across a range of optimiza-
tion options and execution modes. From our validity 
assessment and analysis of the data, especially when it 
is combined with the information in (Pratt, 2000), 
(Price) and (Rijk), we feel confident that the results can 
be generalized and used as a point of departure on 

which to base system level decisions. The study results, 
however, like all benchmarks, are only relevant to the 
domains from which they were taken. 

Our findings are consistent with the results from (Pre-
cheltr, 1999), which found that the differences in pro-
grammer ability were more significant then any 
difference in programming language. We have shown 
in this study that the developer's knowledge of the 
compilers and run time environments can have a much 
greater bearing than the choice of language. In one 
case, a simple change in command line options and 
memory management resulted in a 15-fold increase in 
performance. The poor performance of the Java inter-
preted modes, along with the fact that the initial JVMs 
ran strictly in interpreted modes, are what gave Java its 
reputation as a slow language. But the results of our 
programming language studies show that use of the JIT 
puts Java in the same performance league with C++. 

When making programming language decisions for 
future simulations, one cannot overlook the large in-
vestment in legacy simulations written C/C++. C++ is a 
relatively stable and mature programming language. 
Java, on the other hand, is a relatively new language, 
and it is still undergoing many performance and feature 
improvements. As mentioned in our previous study, we 
believe that Java will continue to improve to a point 
where performance is no longer an issue. Market forces 
behind Java continue to develop significantly faster and 
more efficient JIT compilers and JVMs and other con-
siderations such as Java programming ease, portability 
of legacy source code to Java, and the advantages of an 
interpreted language further Java’s continued growth 
and popularity. The results of this study have affirmed 
our expectation that Java will overtake C++ as the lan-
guage of choice for many applications, including simu-
lations, in the near future.  
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