
A THEORY-BASED MODEL OF COGNITIVE WORKLOAD AND ITS
APPLICATIONS

Christian Lebiere, Human-Computer Interaction Institute
Carnegie Mellon University
Pittsburgh, Pennsylvania

ABSTRACT

We present a model of cognitive workload based on the ACT-R (Adaptive Character of Thought –
Rational) cognitive architecture.  That model has been validated in a synthetic air traffic control task
according to a wide range of behavioral measures.  Its cognitive workload predictions are sensitive to
level of task embedding, interaction speed, level of interface decision support and individual
differences.  We sketch possible extensions of the model that support multiple workload dimensions
and instantaneous workload ratings.  We also discuss possible applications of this kind of fine-
grained computational models to system design, operator training and selection and dynamic load
balancing.

ABOUT THE AUTHOR

Christian Lebiere is a Research Scientist in the Human-Computer Interaction Institute at Carnegie
Mellon University.  He received his B.S. in Computer Science from the University of Liege (Belgium)
and his M.S. and Ph.D. from the School of Computer Science at Carnegie Mellon University.  During
his graduate career, he worked on the development of connectionist models, including the Cascade-
Correlation neural network learning algorithm that has been used in hundreds of scientific, technical
and commercial applications.  Since 1990, he has worked on the development of the ACT-R hybrid
cognitive architecture and is co-author with John R. Anderson of the 1998 book The Atomic
Components of Thought.  His main research interest is cognitive architectures and their applications
to psychology, artificial intelligence, human-computer interaction, decision-making, game theory, and
computer-generated forces.



A THEORY-BASED MODEL OF COGNITIVE WORKLOAD AND ITS
APPLICATIONS

Christian Lebiere, Human-Computer Interaction Institute
Carnegie Mellon University
Pittsburgh, Pennsylvania

INTRODUCTION

Cognitive workload is a primary indicator of human
performance in many tasks, in particular those
involving human control of a dynamic interactive
environment.  Precisely predicting which situations
will lead to a high level of cognitive workload and
dynamically modifying or restructuring the task or
environment to avoid those situations could lower
operator stress, reduce the likelihood of errors,
enhance the efficiency of teamwork and generally
improve performance.

We present a cognitive model of a human
controller in a synthetic air traffic control task.  The
model is implemented in the ACT-R (Adaptive
Character of Thought – Rational) cognitive
architecture (Anderson & Lebiere, 1998).  ACT-R
is a hybrid architecture of cognition that combines
a symbolic production system with a subsymbolic
activation calculus that determines the
performance of the symbolic level.  The model
makes precise predictions for cognitive activity at
a subsecond scale and is validated against a
broad measure of behavioral measures, including
amount and type of errors, response latency,
decision making and attentional focus.

We extended the theory to have the model predict
the overall level of cognitive workload, as reported
by the subjects in a post-experiment test.  The
model’s workload prediction is based on the
percentage of time spent in cognitively demanding
unit tasks, and is also sensitive to the level of task
embedding.  The model correctly predicts not only
the average workload level, but also its sensitivity
to the speed of the scenario-driven interaction and
the level of decision support embedded in the
simulation interface.  It also predicts the impact of
individual differences in working memory capacity
on performance and cognitive workload.

The model can be readily extended to account in a
principled fashion for the impact on cognitive
workload and performance of knowledge and
strategies that can be vary with individual
differences and level of training.  The workload

definition can also be straightforwardly extended
to account for moment-to-moment workload and
for different categories of workload measures.

Finally, we discuss potential applications of our
model based on its capacity to predict cognitive
workload as a function of a range of environmental
conditions and system designs.  Because the
model interacts with the system in the same way
as humans, it can be used to inform issues of
system design.  Because ACT-R captures the
effect of individual differences on performance, it
can provide a principled measure for operator
selection.  It can also be used to assist operator
training by providing a source of feedback to the
trainee.  Finally the model can provide the input to
warning systems and load-balancing algorithms
for the operation of complex multi-operator
systems such as air-traffic control.

ACT-R

ACT-R (Anderson & Lebiere, 1998) is a hybrid
production system theory that models the steps of
cognition by a sequence of production rules that
fire to coordinate retrieval of information from the
environment and from memory.  It is a cognitive
architecture that can be used to model a wide
range of human cognition. In all domains, ACT-R
is distinguished by the detail and fidelity with which
it models human cognition.  It predicts what
happens cognitively every few hundred
milliseconds in performance of a task.  ACT-R is
situated at a level of aggregation above basic
brain processes but considerably below significant
tasks like air-traffic control.  The newest version of
ACT-R has been designed to be more relevant to
tasks that are being performed under conditions of
time pressure and high information-processing
demand.



  Conflict
Resolution

Retrieval
 Request

Transform
      Goal

Current
  Goal

Procedural
  Memory

Declarative
  Memory

 Goal
Stack

Retrieval
  Result

PopPush

Production

ACT-R

OUTSIDE WORLD

Action Perception

Popped
  Goal

Figure 1: Overall flow of control in ACT-R.

Figure 1 displays the information flow in the ACT-
R system.  There are essentially three memories --
a goal stack that encodes the hierarchy of
intentions guiding behavior, a procedural memory
containing production rules, and a declarative
memory containing chunks.  Productions are
condition-action pairs that determine which basic
cognitive actions can be taken and when.  Chunks
are knowledge structures holding a small set of
elements (e.g. 3+4=7) in labeled slots.  Access to
these memories is coordinated around the current
goal that represents the focus of attention.  The
current goal can be temporarily suspended when a
new goal is pushed on the stack.  The current goal
can be popped in which case the next goal will be
retrieved from the stack.  Productions are selected
to fire through a conflict resolution process that
chooses one production from among the
productions that match the current goal.  The
selected production can cause actions to be taken
in the outside world, can transform the current
goal (possibly resulting in pushes and pops to the
stack), and can make retrieval requests of
declarative memory (e.g., “what is the sum of 3
and 4?”).  The retrieval result (e.g., “7”) can be
returned to the goal.  The arrows in Figure 1 also
describe how new declarative chunks and
productions are acquired.  Chunks can be added
to declarative memory either as popped goals
reflecting the solutions to past problems or as
perceptions from the environment.  Productions

are created from declarative chunks through a
process called production compilation which takes
an encoding of an execution trace resulting from
multiple production firings and produces a new
production that implements a generalization of that
transformation in a single production cycle.

ACT-R also has a subsymbolic level in which
continuously varying quantities are processed in
parallel to produce much of the qualitative
structure of human cognition.  These subsymbolic
quantities participate in neural-like activation
processes that determine the speed and success
of access to chunks in declarative memory as well
as the conflict resolution among production rules.
ACT-R also has a set of learning processes that
can modify these subsymbolic quantities.

The activation of a declarative memory chunk
determines its availability.  The context activation
is a function of the attentional weight given to the
current goal, which is thought to provide an
individual difference parameter of working memory
(Lovett, Reder & Lebiere, 1999).  The base level
activation of a chunk is learned by an architectural
mechanism according to Bayesian statistics to
reflect the past history of use of the information
contained in the chunk.  As Anderson and
Schooler (1991) have shown, this learning
produces such basic features of human cognition
as the Power Law of Forgetting (Rubin & Wenzel,
1990) and the Power Law of Practice (Newell &
Rosenbloom, 1981).

When trying to retrieve a chunk to instantiate a
production, ACT-R selects the chunk with the
highest activation.  That activation includes a
random component that provides stochasticity to
memory retrieval and hence to the model’s
behavior (e.g. Lebiere & West, 1999), as well as a
similarity-based matching component, which
provides generalization and robustness (e.g.
Lebiere, 1998; Sanner, Anderson, Lebiere &
Lovett, 2000).  Thus, ACT-R is capable both of
errors of omission, in which a chunk cannot be
retrieved because its activation cannot reach a
threshold, and errors of commission, in which the
wrong chunk is retrieved instead of the correct one
(Anderson, Reder & Lebiere, 1996).  The retrieval
time of a chunk is an exponential function of its
activation, providing a fine-grained account of the
time scale of memory access. The total time of
selecting and applying a production is determined
by executing the actions of a production’s action
part, whereby a value of 50 ms is typically
assumed for elementary internal actions. External



actions, such as pressing a key, usually have a
longer latency determined by the ACT-R/PM
Perceptual-Motor modules (Byrne & Anderson,
1998).

ACT-R was developed at Carnegie Mellon
University under sponsorship from the Office of
Naval Research.  ACT-R is implemented in
Common Lisp and runs on MacOS, Windows and
Unix platforms.  A number of user tools are
available, including a graphical environment to

author and run ACT-R models, an adaptive web
tutorial for learning how to model in ACT-R, a
parameter optimizer that automates the task of
model fitting and a multi-model extension that
enables multiple ACT-R models to run
concurrently and communicate with each other
and with an interactive simulation.  ACT-R is open-
source and all software, models and tools are
freely available on the web at the ACT-R web site
http://act.psy.cmu.edu.

Figure 2: Air Traffic Control simulation in D-OMAR

Task

The Agent-based Modeling of Behavior
Representation (AMBR) comparison is structured
as a sequence of one-year tasks each designed to
emphasize a specific aspect of human behavior.
The behavior targeted in the first phase was multi-
tasking, an activity directly related to cognitive
workload (Wickens, 1992).  Pew and Mavor (1998)
describe multi-tasking as “clearly relevant to
military simulations and to human performance
generally” but note that “the relevant theories and
models are not well developed or validated, and

the computational models are somewhat ad hoc.”
The task designed to elicit complex multi-tasking
behavior is a synthetic air traffic control simulation
(MacMillan, Deutsch & Young, 1997).  This
domain requires a controller to manage one sector
of air space, especially the transition of aircraft into
and out of the sector.  Scenarios can vary the
number, speed, altitude and type of aircraft
requesting access to the sector and can be
complicated by having them arrive from multiple
directions and adjoining sectors.  This is a rich
enough infrastructure to create a variety of

http://act.psy.cmu.edu


scenarios having variable task load levels and
varying levels of planning complexity.

A simulation of the task was developed using the
Distributed Operator Model ARchitecture D-OMAR
(Deutsch, MacMillan, Cramer & Chopra, 1997) to
facilitate setting up, running and collecting data
from both human performance and computer
models interchangeably.  Figure 2 displays a
screen shot of the simulation. The main part of the
screen on the left contains a graphical
representation of the entire airspace, with the part
controlled by the human or model agent contained
in the central yellow square.  The rest of the
airspace is divided by the yellow lines in four
regions, named North, East, South and West,
each managed by a separate controller.  At any
point during the simulation a number of airplanes
(the exact number being a parameter controlling
the difficulty of the task) are present in the
airspace, flying through the central region or
entering or exiting it.  The task of the central
controller is to exchange messages with the
airplanes (each tagged with its identifying code,
e.g. UAL344) and neighboring controllers to
manage their traversal of its airspace.  Those
messages are displayed in the text windows on
the right of the screen, with each window
dedicated to a specific message category.  The
top left window concerns messages sent when a
plane is entering the central controller’s region
while the top right window concerns messages
sent when a place is exiting the central region.
Both windows include messages exchanged
between controllers as well as messages between
the central controller and the plane itself.  The
bottom window concerns messages from and to
planes requesting a speed increase, which should
be granted unless that plane is overtaking another
plane, which is the only airspace conflict that this
simplified task allows.

A single event involves a number of messages
being exchanged, all of which are appended to the
relevant text window.  For example, in the case of
a plane about to enter the central region, a
message requesting permission to enter will first
be sent to the central controller from the controller
of the neighboring region from which the plane
originates.  The central controller must reply to the
other controller in a timely manner to accept the
plane, then contact the plane to welcome it to the
airspace.  Those two cannot be performed in
immediate succession, but instead require waiting
for the first party contacted (in this case the other
controller) to reply before taking the final action.

This delay allows for the interleaving of unit tasks
but also requires the maintenance of the currently
incomplete tasks in working memory.  Messages
from other tasks can arrive when a task is being
processed, thus requiring some search of the text
window to identify the messages relevant to a
task.  A message is composed by clicking a button
above the relevant text window (e.g. Accepting
AC), then clicking in the graphical window on the
intended recipient (e.g. another controller) and
optionally the target of the message (i.e. a plane,
unless it is the intended recipient in which case
this is omitted), then the send button above the
graphic window.  The message being composed is
displayed at the top left of the display in a text
window.

To objectively measure performance on the task,
penalties were assessed for a variety of failures to
act in a timely manner.  To develop on the
experience accrued in MacMillan et al. (1997), a
decision support condition contrasted with a
support condition were implemented to dissociate
two aspects of multi-tasking behavior.  In the
standard condition, subjects had to parse the
messages printed in the text windows on the right
side of the screen to determine which planes
needed attention and which functions needed to
be performed on them.  In the assisted condition,
planes that require assistance were color-coded in
the graphical display on the left side of the screen
according to the task needed to be performed
(green for accept, blue for welcome, orange for
transfer, yellow for contact, magenta for speed
change and red for holding).  This helped the
subjects track visually which tasks need to be
attended to and removed any necessity to parse
the text windows on the left, a complex and time-
consuming task.  Therefore it dissociated the
maintenance and updating of the queue of to-be-
attended tasks from the resolution of conflicts
between high-priority tasks.

Two sets of scenarios were created: one set was
provided to the developers on which to base their
designs, and another set was reserved to be used
at the time of the competitive validation, a.k.a. the
fly-off.  Human performance data on the first set of
scenarios were provided to the developers to fine-
tune their model.  The data from the second set of
scenarios were withheld until after the fly-off for
comparison with the model performance.  The
range of behavior requirements of both sets had
the same scope, but the way in which those
behaviors were exercised were not identical in
order to test the robustness of the models.



MODEL

If it is to justify its structural costs, a cognitive
architecture should facilitate the development of a
model in several ways.  It should limit the space of
possible models to those that can be expressed
concisely in its language and work well with its
built-in mechanisms. It should provide for
significant transfer from models of similar tasks,
either directly in the form of code or more
generally in the form of design patterns and
techniques.  Finally, it should provide learning
mechanisms that allow the modeler to only specify
in the model the structure of the task and let the
architecture learn the details of the task in the
same way that human cognition constantly adapts
to the structure of its environment.  These
architectural advantages not only reduce the
amount of knowledge engineering required and
the number of trial-and-error development cycles,
providing significant savings in time and labor, but
also improve the predictiveness of the final model.
If the “natural” model (derived a priori from the
structure of the task, the constraints of the
architecture and the guidelines from previous
models of related tasks) provides a good fit to the
empirical data, one can be more confident that it
will generalize to unforeseen scenarios and
circumstances than if it is the result of post hoc
knowledge engineering and data analysis.  That is
the approach that we have adopted in developing
a model of this task, and indeed more generally
our design and use of the ACT-R architecture.

Thus we did not try to reverse-engineer the
subjects’ strategies but instead tried to develop the
simplest and most natural model for the
architecture.  We organized the model around a
few goal types with their associated productions.
Goal types correspond closely to the unit tasks in
Human-Computer Interaction (Card, Moran &
Newell, 1983) as well as to the tasks in task
network models (e.g. Allender et al, 1995). Five
goal types called color-goal, text-goal, scan-
text, scan-screen and process were defined,
together with a total of 36 very simple productions.
Goals were simple and would hold just a few
elements, such as the aircraft currently being
handled together with related information such as
its position and the action to be performed.

Two basic modes of human interaction with the
simulation were defined: one in which the operator
had to rely mostly on text messages scrolling in
windows to identify events that required action (the

text condition), and one in which aircraft on the
radar screen that required action would turn a
color corresponding to the action (the color
condition).  The simulation also had three speeds
(low, medium and high) that controlled how much
time the subjects would have (10, 7.5 and 5
minutes respectively) to perform a given number
of actions.

The goal type color-goal was the top goal for the
color condition.  Five productions were defined
that applied to that goal.  They scanned the radar
screen continuously, identified an aircraft that had
turned color, mapped the color into the required
action by relying upon five simple memory chunks
encoding the instructions that the subjects were
given regarding the color-action mappings, then
created a goal to perform the given action on the
aircraft.  The goal type process executed the
sequence of mouse clicks required to perform the
action.  Twelve productions were defined to
handle the five possible actions.  This required
clicking on a button identifying the action, then on
the aircraft, then perhaps on a neighboring
controller, then finally on the send button.

As expected, the text condition was both more
difficult for the subjects and slightly more
complicated for the model.  The goal type text-
goal was the top goal for the text condition.  Four
productions were defined to cycle through the
three text windows and the radar screen looking
for aircraft requiring action by creating goals of
type scan-text and scan-screen respectively.  A
goal of type scan-text would handle the scanning
of a single text window for a new message from
another controller requesting action.  A production
was defined to systematically scan the window for
such a message.  If one was found, another
production would attempt to retrieve a memory of
handling such a request.  Memories for such
requests would be automatically created by the
architecture when the corresponding goal was
completed, but their availability was subject to
their subsymbolic parameters, which were in turn
subject to decay as well as reinforcement.  If no
memory could be retrieved, then the window
would be scanned for another message indicating
completion.  If none could be found, then a
process goal would be created to perform the
action requested.  Note that this is the same goal
as in the color condition.  A key component of the
model was an additional production that would
detect the onset of a new message in another
window and interrupt the current goal to scan that
window instead.  This allowed the model to be



sensitive to new events and handle them promptly.
Scanning the radar screen was accomplished in a
similar manner by goals of type scan-screen and
their eight associated productions.

Finally, all the architectural parameters that control
the performance of the simulation were left at their
default values provided by previous models.  Only
two task-specific parameters were roughly
estimated from the data: the production time to
perform a mouse action was set at 1 second and
the production time to perform a basic visual scan
was set at 0.5 second.1

Finally, a key aspect of our methodology, which is
also pervasive in ACT-R modeling, is the use of
Monte Carlo simulations to reproduce not only the
aggregate subject data (such as the mean
performance or response time) but also the
variation that is a fundamental part of human
cognition.  In that view, the model doesn’t
represent an ideal or even average subject but
instead each model run is meant to be equivalent
to a subject run, in all its variability and
unpredictiveness.  For that to happen, it is
essential that the model not be merely a
deterministic symbolic system but be able to
exhibit meaningful non-determinism.  To that end,
randomness is incorporated in every part of ACT-
R’s subsymbolic level, including chunk activations,
which control their probability and latency of
retrieval, production utilities, which control their
probability of selections, and production efforts,
which control the time that they spent executing.
Moreover, as has been found in other ACT-R
models (e.g. Lebiere & West, 1999, Lerch,
Gonzalez & Lebiere, 1999), that randomness is
amplified in the interaction of the model with a
dynamic environment: even small differences in
the timing of execution might mean missing a
critical deadline, which results in an error
condition, which requires immediate attention,
which might cause another missed deadline and
so on.  To model the variation as well as the mean
of subject performance, the model was always run
as many times as there were subject runs.  For
that to be a practical strategy of model
development, it is essential that the model run
very fast, ideally significantly faster than real-time.

                                                  
1 For software compatibility reasons, we did not
use the perceptual-motor module of ACT-R/PM,
which would have provided more precise
estimates of those times.

Our model ran up to 5 times faster than real-time2

on a desktop PC, making it possible to run a full
batch of 48 scenarios in about an hour and a half,
enabling a relatively quick cycle of model
development.

RESULTS

Because the variability in performance between
runs, even of the same subject, is a fundamental
characteristic of this task, we ran as many model
runs as there were subject runs (48 total runs on
12 different scenarios).  Figure 3 compares the
mean performance in terms of penalty points for
subjects and model for color (left three bars) and
text (right three bars) condition by increasing
workload level, i.e. simulation speed.

Color - Low Color - Mid Color - High Text - Low Text - Mid Text - High
0

100

200

300

400

Subjects Mean
Model Mean

Condition

P
en

al
ty

 P
o

in
ts

Figure 3: Mean performance for subjects vs.
model

The model matches the data quite well, including
the strong effects of color-vs-text condition and of
workload for the text condition.  Because ACT-R
includes stochasticity in chunk retrieval, production
selection and perceptual/motor actions, and
because that stochasticity is amplified by the
interaction with a highly dynamic simulation, it can
reproduce a large part of the variability in human
performance, as indicated by Figure 4 which plots
the individual subject and model runs for the two
conditions that generated a significant percentage

                                                  
2 ACT-R models have run thousands of times
faster than real-time.  The limiting factor in this
case was the simulation speed, especially the
synchronization time between the air traffic control
simulation and the model.



of errors (text condition in medium and high
workload).  The range of performance in the
medium workload condition is almost perfectly
reproduced other than for two outliers and a
significant portion of the range in the high
condition is also reproduced, albeit shifted slightly
upward.  It should be noted that each model run is
the result of an identical model that only differs
from another in its runtime stochasticity.  The
model neither learns from trial to trial nor is
modified to take into account individual
differences.

Human - Text Mid Model - Text Mid Human - Text High Model - Text High
0

100

200

300

400

500

600

700

Condition

P
en

al
ty

 P
o

in
ts

Figure 4: Performance for each subject vs. model
run

The model reproduces not only the subject
performance in terms of total penalty points, but
also matches well to the detailed subject profile in
terms of penalties accumulated under eight
different error categories. The model also fits the
detailed pattern of latencies to perform a required
action in terms of condition and number of
intervening events.  In a crucial test of the model’s
multi-tasking abilities, it also closely reproduces
the pattern of response to a required action in
terms of number of intervening events before the
action can be performed, a very sensitive measure
of the ability to detect and process events
immediately after they occur. That multi-tasking
capacity results from the model’s ability to detect
event onsets and set the next goal to process
those events.  Thus, despite ACT-R’s strong goal-
directed behavior, it can exhibit the proper level of
multi-tasking abilities without requiring any
alteration to its basic control structure.

Finally, the model reproduces the subjects’
answers to the self-reporting workload test
administered after each trial.  Since ACT-R does
not have any built-in concept of cognitive
workload, we simply defined the workload of an
ACT-R model as the scaled ratio between the time
spent in critical unit tasks to the total time on task.
The critical unit tasks in which the model feels
“pressured” or “busy” are defined as the Process
goals, in which the model is busy performing a
stream of actions, and those Scan-Text goals that
are the result of an onset detection, in which the
model feels “pressured” to find and process a new
event requiring action.  As shown in Figure 5, that
simple definition captures the main workload
effects, more specifically the effects of display
condition and of schedule speed. Another
quantitative effect that is reproduced is the higher
rate of impact of schedule speed in the text
condition (and the related fact that workload in the
slowest text condition is higher than workload in
the fastest color condition).  This results because
some Process goals are subgoals of Scan-Text
goals, thus the time of the inner goals count twice,
reflecting the cost of multi-tasking.

Color - Low Color - Mid Color - High Text - Low Text - Mid Text - High
0

1

2

3

4

5

6

Subjects Mean

Model Mean

Condition

W
o

rk
lo

ad
 R

at
in

g

Figure 5: Mean workload for subjects vs. model

In summary, the advantages of this model are that
it is relatively simple, requires almost no
parameter tuning or knowledge engineering,
provides a close fit to both the mean and variance
of a wide range of subject performance measures
as well as workload estimates, and suggests a
straightforward account of multi-tasking behavior
within the existing constraints of the ACT-R
architecture.



WORKLOAD

The National Air and Space Administration Task
Load indeX (NASA TLX) scale (Hart & Steveland,
1988) used by the subjects assesses workload
according to six seven-point scales corresponding
to the dimensions of mental demand, physical
demand, temporal demand, performance, effort
and frustration level.  Because the subjects reports
were highly correlated along these dimensions, we
did not attempt to provide an estimate of workload
for the ACT-R model along each dimension.  It
would seem possible to estimate workload along
at least some of those dimensions.  Mental
workload would correspond to the more
demanding cognitive operations, such as
declarative memory retrieval, decision-making,
etc.  Physical workload would map more closely to
the operations of the motor modules, e.g. how
much time were these modules busy performing
actions.  Temporal demand, as a measure of the
pace or time pressure, could be estimated from
the amount of multi-tasking the model had to do,
itself reflected in the amount of goal switch
resulting from interruptions.  Performance is an
estimate of how well one accomplished the task.
This is likely to be highly sensitive to the nature of
the task and to the specific success criterion set
for it, e.g. in this case the number of penalty
points.  Effort and frustration level also seem to be
fairly subjective measures that are likely to vary
from one individual to another according to poorly
understood conditions.  Any variation beyond the
obvious correlation with the other dimensions (e.g.
effort is likely to be positively correlated with the
various demand dimensions and frustration is
likely to be negatively correlated with
performance) might be hard to capture in a purely
computational model.

Our definition of cognitive workload is by no
means limited to the unit task level.  While that
was a convenient level in which to ground the
measure for our current purposes, the definition
can be refined to the level of individual cognitive
cycles and the use that they make of the various
resources at a millisecond grain-scale.  As such, it
could be considered a theoretically grounded
measure that could serve as the underlying basis
for task-level formulas (e.g. Wickens, 1992,
Allender et al, 1995).  While the workload output
by the model are average for the entire run, it
could easily be generalized to provide a time-
sensitive measure.  A given, presumably short,
time interval could be defined over which to apply
the same formula to give the workload at the end

of that interval.  Perhaps more generally, the
instantaneous workload at all points in the past
could be decayed according to the same power
law function used to compute the decay in ACT-R
base-level activation.  This would allow the entire
past history to be taken into account, but would
give precedence to the more recent events. In any
case, better data on moment-to-moment variations
in workload assessment would be needed to test
this extension.

Wickens (1992) describe practical applications of
research in cognitive workload.  They involve
predicting multiple-task performance for purposes
of system design, operator training and operator
selection.  Our method of performance prediction
differs from the methods described by Wickens
(1992) in a fundamental way.  Whereas they use
workload measures to estimate performance in
multiple-tasks settings, the performance generated
by the ACT-R model originates directly from the
cognitive constraints of the model and the
demands of the task and is not a function of the
model workload.3   For system design, the ACT-R
model can account for the effect of different design
decisions, including interfaces, because ACT-R
interacts with the system through the same
interface as subjects thanks to i ts
perceptual/motor modules (e.g. Salvucci, 2001).
Assistance in operator training can also be
provided through the ACT-R model by a technique
called model-tracing used in cognitive tutors
(Anderson, Corbett, Koedinger & Pelletier, 1995).
Finally, operator selection can also be performed
using the model through ACT-R’s account of
individual differences.  Lovett, Reder & Lebiere
(1999) showed that variation in a single parameter
controlling activation spreading, called W, can
account for individual differences in performance
in a wide range of tasks.  Reliable estimation of a
subject’s W on one or more tasks can then be
used to predict the subject’s performance on
other, potentially more complex tasks.

Finally, fine-grained computational models such as
this ACT-R model makes possible a new class of
applications that dynamically use the models to
determine future points of potential problems.  For
example, in settings such as air traffic control in
which a composite task load is shared among
multiple human operators, a dynamic load-

                                                  
3 Though it could if some of the model’s decisions
depended on its estimate of workload.  There is
anecdotal evidence that subjects sometimes make
strategic adjustments on the basis of workload.



balancer could be designed that determines the
best way to assign or re-assign tasks to operators
based on projections of specific cognitive
bottlenecks for individual operators at some point
in the future.  Such model-based projections would
also be useful in providing advanced warning
systems for periods of workload transitions that
occur when cognitive demands suddenly increase.
(Huey & Wickens, 1993).  In all of these
applications, fine-grained computational models
are essential to provide the proper precision and
generality of application to varying circumstances.

REFERENCES

Adams, M. J., Tenney, Y. J., & Pew, R. W.
(1991).  Strategic Workload and the Cognitive
Management of Advanced Multi-task Systems.
Crew System Ergonomics Information Analysis
Center. Wright-Patterson AFB, OH.

Allender, L., Kelley, T. D., Salvi, L., Lockett, J.,
Headley, D. B., Promisel, D., Mitchell, D., Richer,
C., & Feng, T. (1995).  Verification, validation, and
accreditation of a soldier-system modeling tool.  In
Proceedings of the Human Factors and
Ergonomics Society 29th Annual Meeting-1995
(pp. 1219-1223).  San Diego.

Anderson, J. R., Corbett, A. T., Koedinger, K.,
& Pelletier, R. (1995).  Cognitive Tutors: Lessons
learned.  Journal of Learning Sciences, 4, 167-
207.

Anderson, J. R. & Lebiere, C. (1998). The
atomic components of thought.  Mahwah, NJ:
Erlbaum.

Anderson, J. R., Reder, L. M., & Lebiere, C.
(1996).  Working memory: Activation limitations on
retrieval.  Cognitive Psychology, 30, 221-256.

Anderson, J.R. & Schooler, L.J. (1991).
Reflections of the environment in memory.
Psychological Science, 2, 396-408.

Byrne, M.D. & Anderson, J.R. (1998).
Perception and action. In J.R. Anderson & C.
Lebiere (Eds.). The atomic components of thought
(pp. 167-200). Mahwah: LEA.

Card, S. K., Moran, T. P., & Newell, A. (1983).
The Psychology of Human Computer Interaction.
Hillsdale, NJ: Lawrence Erlbaum Associates.

Deutsch, S. E., MacMillan, J., Cramer, N. L., &
Chopra, S. (1997).  Operator Model Architecture
(OMAR) Final Report.  BBN Report No. 8179.
BBN Corporation, Cambridge, MA.

Hart, S. G., & Staveland, L. E. (1988).
Development of NASA-TLX (Task Load Index):
Results of empirical and theoretical research.  In
P. A. Hancock & N. MeshKati (eds.), Human
Mental Workload.  Amsterdam: North Holland.

Huey, B. M., & Wickens, C. D. (1993).
Workload Transition: Implications for Individual
and Team Performance.  Washington, DC: NAP.

Lebiere, C. (1998).  The dynamics of
cognition: An ACT-R model of cognitive arithmetic.
Ph.D. Dissertation.  CMU Computer Science Dept
Techn ica l  Repor t   CMU-CS-98-186.
Pittsburgh,PA.  Available at h t t p : / / r e p o r t s -
archive.adm.cs.cmu.edu/.

Lebiere, C., & West, R. L. (1999).  A dynamic
ACT-R model of simple games.  In Proceedings of
the Twenty-first Conference of the Cognitive
Science Society, pp. 296-301.  Mahwah, NJ:
Erlbaum.

Lerch, F. J., Gonzalez, C., & Lebiere, C.
(1999). Learning under high cognitive workload.
In Proceedings of the Twenty-first Conference of
the Cognitive Science Society, pp. 302-307.
Mahwah, NJ: Erlbaum.

Lovett, M. C., Reder, L. M., & Lebiere, C.
(1999). Modeling working memory in a unified
architecture: An ACT-R perspective. In Miyake, A.
& Shah, P. (Eds.)  Models of Working Memory:
Mechanisms of Active Maintenance and Executive
Control.  New York: Cambridge University Press.

MacMillan, J., Deutsch, S. E., & Young, M. J.
(1997). A comparison of alternatives for
automated decision support in a multi-task
environment. Proceedings the 41st Annual
Meeting of the Human Factors and Ergonomics
Society.

Newell, A. & Rosenbloom, P.S. (1981).
Mechanisms of skill acquisition and the power law
of practice. In J.R. Anderson (Ed.).Cognitive skills
and their acquisition (pp. 1-56). Hillsdale, LEA.

Pew, R. W., & Mavor, A. S. (1998).  Modeling
Human and Organizational Behavior.  Application
to Military Simulations.  Washington, DC: National
Academy Press.

Rubin, D.C. & Wenzel, A.E. (1990). One
hundred years of forgetting: A quantitative
description of retention. Psychological Review,
103, 734-760.

Salvucci, D. D. (2001).  Predicting the effects
of in-car interfaces on driver behavior using a
cognitive architecture. CHI Letters, CHI 2001
Conference Proceedings.

Sanner, S., Anderson, J. R., Lebiere, C., &
Lovett, M. C. (2000).  Achieving efficient and
cognitively plausible learning in Backgammon.
Proceedings of The Seventeenth International
Conference on Machine Learning.  San Francisco:
Morgan Kaufmann.

Wickens, C. D. (1992).  E n g i n e e r i n g
Psychology and Human Performance. New York,
New York: Harper Collins.




