AN APPLICATION OF REAL TIME EVOLUTIONARY ALGORITHMS

David R. Pratt
Science Applications International Corporation
Orlando, Florida

ABSTRACT

Historically, CGF systems have made runtime decisions via the use of prescriptive mechanisms such as Finite State
Machines (FSMs) and Rule Based Systems (RBS). The FSM and RBS mechanisms are the result of a complex and
time-consuming process of Knowledge Acquisition and Knowledge Engineering (KA/KE). The artifacts of the
KA/KE process are then turned over to the programmers to implement. The result is often a large, complex, and
brittle set of hard coded behaviors. The advantage to these approaches is that the entities execute the pre-
programmed behaviors faithfully and fairly efficiently. The downside is that it is often quite difficult to modify the
behaviors to account for new events, stimuli, or situations. To address these issues we have looked at the realm of
machine learning, specifically the use of Evolutionary Algorithms (EA), to make decisions that have historically
been hard coded in the FSM or RBS constructs. The use of EA is not new to the Computer Generated Forces (CGF)
community. However, the vast preponderance of its use has been in a priori offline runs to develop a rule base, plan
of attack, or path. This has largely been due to the computational costs of using EA. While the increase in processing
speed has not made performance considerations irrelevant, they have fundamentally changed the dynamics of the
development vs. runtime cost equations. It is with this in mind that we chose to investigate the use of EA to make
selected decisions at runtime. Specifically, we developed a proof of principle system to select the engagement rules
and target priorities for a tank platoon in a given tactical situation. Rather than having the prescriptive determination
of the engagement process, the EA subsystem randomly generates a set of shooter / target pairings and weapon se-
lection. The EA subsystem evaluates a set of possible engagements using a polynomial function comprised of the
proximity and obscuration of the entities, supporting fires, and lethality. The highest rated engagements, and newly
generated modifications of them, are carried forward to the next generation by the EA subsystem. The process of the
evaluation of a best engagement scenario is then repeated for a given number of generations. At the end of several
generations, or when a figure of merit is reached, the best engagement scenario is chosen as the course of action.
The main advantage to this approach is a relatively small amount of code needed to encode the EA mechanisms and
the evaluation function which can be easily changed to account for new weighting of factors. Thus, a whole series of
target selections can be made with a relatively compact flexible code base. This paper covers the development of the
proof of principle system and the results from the test runs. Specifically, we focus on three factors: the number of
engagement scenarios created per generation, the number of generations, and the evaluation function. Through the
interaction of these three factors, we show how the engagement scenarios evolved to suit the tactical scenario. Key
among the considerations is the time it takes for the system to come up with a viable target list. From these results,
we make extrapolations to where it is appropriate to use EA as a means of developmental cost reduction and code
simplification. This is the second in a series of papers that addresses the use of EA in real-time simulation systems.
The first paper focused on the ability to change formations based upon the detection of a threat.

ABOUT THE AUTHOR

Dr. David R. Pratt is a Chief Scientist/Fellow at SAIC's Applied Software Systems Engineering Technology
(ASSET) Group. As the Group's Technical Lead, he coordinates the internal research activities of the group and
establishes the technical directions. Prior to joining SAIC, he served as the JSIMS Technical Director, a tenured
Associate Professor of Computer Science at the Naval Postgraduate School, and was a Captain in the Marine Corps.
Dr. Pratt received a Ph.D. in Computer Science in 1993 and a Masters of Science degree in Computer Science in
1988 from the Naval Postgraduate School.

AN APPLICATION OF REAL TIME EVOLUTIONARY ALGORITHMS

David R. Pratt
Science Applications International Corporation
Orlando, Florida

INTRODUCTION

Historically, CGF systems have made runtime decisions
via the use of prescriptive mechanisms such as Finite
State Machines (FSMs) and Rule Based Systems
(RBS). The FSM and RBS mechanisms are the result of
a complex and time-consuming process of Knowledge
Acquisition and Knowledge Engineering (KA/KE). The
artifacts of the KA/KE process are then turned over to
the programmers to implement. The result is often a
large, complex, and brittle set of hard-coded behaviors.
The advantage to this approach is that the entities exe-
cute the pre-programmed behaviors faithfully and fairly
efficiently. The downside is that it is often difficult to
modify the behaviors to account for new events, stim-
uli, or situations. As we develop new systems that must
adapt to a an ever-changing world, the cycle time in
updating the behaviors renders modifications to the
system obsolete before the system is deployed.

To address these issues we have looked at the realm of
machine learning, namely, the use of Evolutionary Al-
gorithms (EA), to make decisions that have historically
been hard-coded in the FSM or RBS constructs. The
use of EA is not new to the Computer Generated Forces
(CGF) community. However, the vast preponderance of
its use has been in a priori offline runs to develop a rule
base, plan of attack, or path. This use has largely been
due to the large computational costs of using EA. While
the increase in processing speed has not made perform-
ance considerations irrelevant, they have fundamentally
changed the dynamics of the development vs. runtime
cost equations. It is with this in mind that we chose to
investigate the use of EA to make selected decisions at
runtime. Specifically, we developed a proof of principle
system to select the target list for a four gun artillery
battery in a given tactical situation.

Rather than having the prescriptive determination of the
target list, the EA subsystem randomly generates a set
of target and round selections. The EA subsystem
evaluates a set of possible target / round pairs using a
polynomial function comprised of the proximity of the
entities, target types, and probability of kill (Py). The
highest rated target lists, and newly generated modifica-
tions of them, are carried forward to the next generation
by the EA subsystem. The process of the evaluation of
a best target list is then repeated for a given number of

generations. At the end of several generations, or when
a figure of merit is reached, the best target list is chosen
as the course of action. The main advantages to this
approach are that there is a relatively small amount of
code needed to encode the EA mechanisms and the
evaluation function can be easily changed to account
for new weighting of factors. Thus, a whole series of
target list selections can be made with a relatively com-
pact flexible code base.

This is the second in a series of papers where we have
been exploring the uses of EA in runtime decision
making. The first paper discussed the applicability of
the EA as a means of determining formations for a pla-
toon of tanks when presented with a threat [1]. This
paper looks at the problem of round and target selection
for an artillery battery.'

[1] focused a considerable amount of the mechanics of
the EA and their interplay between the number of
chromosomes and generations. From this research we
determined that 200 of the chromosomes and 500 gen-
erations would provide a reasonable convergence to a
solution, provided the evaluation function was robust
and tractable.

This paper covers the development of the proof of prin-
ciple systems and the results from the experimental
runs. From these results, we make extrapolations to
where it is appropriate to use EA as a means of devel-
opmental cost reduction and code simplification.

OBJECTIVES

The goal of the series of studies was to evaluate the
applicability of the use of EA in on-the-fly behavior
generation and selection. As such, there were a series of
subgoals:

e Construct a suitable software testbed

e Develop a series of evaluation functions

e Conduct a series of time/space and evaluation func-
tion experimental runs

e Gather the appropriate data to evaluate the results

! Since [1] is not widely available, some of the introductory discus-
sion concerning EAs and the software testbed are repeated in this
paper.

e Extrapolate the results to a larger setting
e Suggest further study in this area

The following sections discuss how we went about
achieving these goals.

BASIC EA CONCEPTS

While a thorough introduction to EA can be found in
[1], the following discusses the fundamentals required
for this paper. As the name implies, the foundation idea
behind EA is that of Darwinian evolution: survival of
the fittest. The concepts of genetics, with the exception
of dominant and recessive genes, make this possible. In
the simplest form of EA, which we used, the best chro-
mosomes of population N are kept for generation N+1.
The rest of generation N+1 is made up of chromosomes
that resulted from the mating of selected chromosomes
in generation N and a number of mutant chromosomes.
It is through the crossover and mutation of chromo-
somes that new values are introduced to the gene pool.
This is key because, if no completely new chromo-
somes are introduced, successive inbreeding can result
in the propagation of undesirable traits. Hence, in every
generation a limited number of new chromosomes are
introduced. An evaluation function is used to deter-
mine which chromosome represents the strongest mem-
bers of the species. These chromosomes are then sorted
by the evaluation function and the cycle repeats.

By continually selecting the best of the generation, the
result of the fitness function will eventually converge
on the “best” solution. This might or might not be the
optimal solution, if one is known, but it should be close
enough to the goal. The problem of getting trapped in a
local minimum is handled by the use of the mutations.

Since the results are not guaranteed to be the optimal
solution, EAs are typically used on the class of prob-
lems that do not have universal solutions in predictable
time or problems with a large solution spaces. In the
case of our simple problem of target and round selec-
tion, there are roughly 96 possible solutions per volley.
Clearly, this is too many to try using brute force tech-
niques. Hence the use of EA to provide a guided explo-
ration of the solution space.

One of the things that intrigued us about using the EA
approach is the time adaptive algorithm nature of the
process. Since each generation provides, theoretically, a
better solution to the problem than the previous one, we
should be able to trade off how long the EA process
runs verses how “good” the solution is. We saw this as
a direct parallel to real world decision making, the more

time available, the more refined and, theoretically, bet-
ter the decision is.

SAMPLE PROBLEM

The problem selected for this set of experiments was
based upon a suggestion of research topics contained in
[2]. Specifically, the use of artificial intelligence tech-
niques for the automatic selection of targets and round
types for an Artillery Battery. Since the purpose of this
research was to evaluate the use of an EA system, vice
provide a functioning system, the problem framing
could be simplified. In doing so, we made several sim-
plifying assumptions. Shown in Table 1 is the data used
in the development of the problem. From this we can
see that there were a limited number of targets and
round combinations possible. Likewise, we did not con-
sider the effects of range on the accuracy of the guns or
anything short of a complete kill.

Table 1. Data used in the simplified artillery model

Infantry | Tank | Tanker | Artillery
Max 10.0 0.0 25.0 50.0
Range
Threat | 0.9 0.0 0.5 0.7
Value
Py for each type of round / target pair
HE’ 1.0 0.8 0.2 0.7
Armor | 0.1 0.3 0.8 0.3
WP 0.8 0.5 0.1 0.5

That is not to say that we did not use the range between
the guns and the target as a means of doing target pri-
oritization. As shown in Figure 1, the threat function is
a range dependent function based upon the maximum
effective threat range from the data file, Table 1, and
the range of the actual target. It is important to note that
both Artillery and Tankers had a constant threat value.
This provided a means of target prioritization that
looked roughly like this:

Close in Infantry

Artillery at any range

Tanks within range

Infantry within range

Tankers, Tanks and Infantry out of range

% The actual type of round and Py are made up for use in this problem
and bear very little, if any, resemblance to the real values.

While it was simple enough to deduce this list from the
figure, we wanted to see if the system could discover
the relationship.

99 Infantry
07— Artillery
<
2 o0s Tank
=
lli\
0 10 25 50

Range From Guns

Figure 1. Graphical depiction of the threat function

Target selection was only one part of the problem. The
other was the matching of the round type to the target.
Once again, using the AFCS method described in [4],
we can derive Table 2. However, the problem was con-
structed to see if the system could learn the same rela-
tionships.

Table 2. Round Selection by Target Type

Target Primary Round | Secondary
Round

Infantry HE WP

Tank Armor HE

Tanker HE WP

Artillery HE WP

The final challenge of this problem was having multi-
ple volleys. By firing multiple rounds per gun, and
weighting the effect of each volley, we could attempt to
see if the system would go after the high value targets
first and then shift fires to lower value ones.

COMPUTATIONAL PLATFORM

Since the timing aspects of this study are an important
part of the overall assessment, the computational plat-
form plays a role in the evaluation. The hardware plat-
form was a Dell Latitude CPx laptop with a Mobile P-
IIT 650Mhz processor. Additionally the system had
128Mb of RAM. The operating system was Microsoft
Windows 98 Second Edition build 4.10.222A. The Java
environment was: Java (TM) 2 Runtime Environment,
Standard Edition (build 1.3.0-C) with Java Hotspot
(TM) Client VM (build 1.3.0-C, mixed mode). Based
on our previous work [5], we felt that this was a repre-
sentative computational platform for this type of study.

THE EA SOFTWARE TESTBED

Since we plan on using the testbed for follow-on stud-
ies, we made the conscious choice to implement the
system in the most portable manner possible. The four
major classes are discussed below. They are linked to-
gether by means of a Driver class that controls the
number of chromosomes and generations based on user
input. It is also the Driver that calls the visualization at
the end of every generation to help monitor the evolu-
tion.

The genes and chromosome

The gene is the foundational element in an EA system.
It is here where all of the knowledge is captured. The
genes are then grouped in a chromosome for manipula-
tion and propagation. In this experiment, we used a
simple integer array to represent the values as a single
logical entity. Using a hierarchal model, we grouped the
genes representing the Target ID and Round type by
gun, and then, by volley. While we kept the battery size
fixed at four guns, we varied the number of volleys
between one and four. This allowed us to use a table
driven input scheme, thus ensuring the consistency of
the results. The resulting chromosome for a single vol-
ley run is shown in Figure 2.

Gun 1 Gun 2 Gun 3 Gun 4

T | R|T;p|R|Tip |R|[T;p |R

0 1 2 3 4 5 6 7
Array Index

T, is the target ID
R is the Round Type

Where:

Figure 2. The Elements of the Chromosome

The use of an array, vice a record structure, provided a
decoupling of the semantics of the data used in the
evaluation function from the syntax of the data used in
the EA Solver.

Simulation

Each chromosome was used as the input parameters for
a simple artillery simulator. For each run of the simula-
tor, a set of 8 targets was generated randomly. The type
of target was chosen from the four categories listed in
Table 1. The location was randomly chosen between
the minimum range, 0, and the maximum range, 50. All
the targets were marked as alive. The firing guns were
assumed to be at location 0. Each gun in a volley would

fire independently and once a target was destroyed, it
stayed dead for the remainder of the run.

The target selection for each gun was done via the
(Tip,R) pair from the chromosome. For each (Tp,R)
pair, a random number was drawn between 0.0 and 1.0
using the standard Java Random Number Generator. If
the number was less than the value from the input Py
table, the entity was marked dead. After a volley was
fired, the live entities were counted. Likewise, using
only the live entities, the threat value was computed.
Once a volley had been fired and the results computed,
the next volley would fire.

It is important to note that there was no changing of the
chromosome during a run of the simulation. Thus, even
if there was a high probability of kill and the random
number came up against the shot, the entity could not
be retargeted. Likewise, it is possible that an entity
might be targeted more than once in a volley and a dead
entity targeted and fired on.

Evaluation function

One of the advantages of using the EA approach is that
it is possible to evaluate the chromosome along several
different metrics concurrently. This is done by breaking
the evaluation function down into a series of subfactors.
The results of the subfactors are then summed to pro-
vide the overall figure of merit (FoM) for the chromo-
some. Since each of the subfactors might be on
different scales, the result of each can be weighted us-
ing a scalar or an expression. The resulting FoM ex-
pression looks like this:

FigureofMerit = z WeightingFactor; * SubExpression;

To capture the effect of multiple volleys, we used an
enhanced FoM function that weighted the previous vol-
ley’s FoM higher then the current volleys. This resulted
in the following equation:

FoM; =2*FoM,_; + FoM .,,.,en: -

This approach worked well since we were trying to
minimize the overall FoM.

For this experiment, we used scalars as the weighting
factors, although, on different runs we modified the
relative values to examine the interplay between the
subexpressions. The subexpressions are detailed in the
following sections.

It is essential to note that not all subexpressions were
used in all trial runs. By changing the weighting factors
associated with the various subexpression, we were able
to emphasize one factor at the expense of the others.
This points to the “art” in the use of EA approach, that
of crafting the evaluation function and the appropriate
weightings.

Number of Live Targets

Given that we had a fixed number of targets at the be-
ginning of the run, the number of targets killed and the
number of live targets are simple inverses of each other.
Since we are trying to minimize the overall FoM, the
number of live targets provided the logical choice to
measure the effectiveness of the fires.

Threat Value

The other subexpression was a measure of the enemy
threat the firing battery was exposed to. As described
above, the four types of targets each had different effec-
tive threat values. In the cases of the Infantry and Tank
threats the effective range played a part in the determi-
nation of the overall threat. The algorithm used to de-
termine the effective threat value is shown in Figure 3.

If (Artillery or Tanker) Then
Return (ThreatValue)
Else if (in Range) then
Return (ThreatValue * (1 — Range / MaxRange))

Figure 3. The Threat Subexpression
EA solver

As shown in Figure 4, the EA solver was an iterative
process. The first step was the creation of the first gen-
eration of chromosomes. The number of chromosomes
in a generation, as well as the number of generations,
was controlled by a parameter provided to the construc-
tor. The values for the genes in the first generation
would be generated randomly. Once the first generation
was run, the evaluation function was run on all of the
chromosomes to generate the subsequent generations.

Generate
First
Generation
: [[|
Run. J Select Build Create
Evalua'tlon Best Crossover Mutant
Function Genes Genes Genes
t i f

Create New

Generation

Figure 4. The EA solver flow of control

In keeping with the object oriented nature of Java, the
evaluation function was modeled as class with a single
public function. The various subexpressions were de-
veloped as protected functions. This ensured the encap-
sulation of the evaluation process. Once the entire
generation was evaluated, the chromosomes were
sorted in ascending order of the Figure of Merit (FoM).
At this point, if the maximum number of generations
was reached, the system would halt and report the
“best” candidate.

If this was not the final generation, a new empty gen-
eration was created. To populate this generation, the top
quarter of the previous generation was brought forward.
The second and third quarters were made of the combi-
nation of two adjacent chromosomes (even probability
of each one contributing a selected value). The final
quarter was comprised of randomly mated chromo-
somes. These were added to prevent the population
from getting too homogenous. Both mating functions
had a low, five percent, mutation rate. The mutation
rate was higher than in some other trials to reduce the
dependence on the initial population. Once this process
generation was completed, the generation was evalu-
ated and the process started over.

TEST RUNS

A series of experiments were run to characterize the
solution space and investigate the interplay between run
parameters. To reduce anomalies, each test was run ten
times and the results were averaged. In this section we
discuss the individual experiments and their setups,
present averaged results and draw conclusions from
them. With the exception of the timing runs test case,
all test were run with 200 chromosomes and 500 gen-
erations.

Timing Runs

We used the CYGWIN_98-4.10 as the command shell
and developed a batch driver that ran the test in an
automated mode. To reduce the variability in the test
results, a constant random number seed was used, the
computer was disconnected from the network, no other
applications were running, and the screen saver was
turned off. Each one of the chromosome/generation
pairs were run one hundred times and the results aver-
aged. Shown graphically in Figure 5, the results show
the linear growth of the execution time as a result of the
product of the number of generations and chromo-
somes. The slightly higher than expected result in the
10 chromosome/10 generation case can be attributed to
the start up transient cost that was not amortized over
the length of the run. This result is consistent with the
results obtained in [1].

100000

10000

P

1000 //‘

100 ‘//'//
-

—

Milliseconds

10 100 1000

Number of Generations

—e— 10 Chromosomes —g— 100 Chromosomes

—4— 1000 Chromosomes

Figure S. Results from the timing runs

Single Volley, Maximum Kills

In this experiment, and all the subsequent experiments,
a different random number seed was used for each of
the runs. This provided the variability we needed to
provide insight in the effectiveness of the EA approach.
The number of rounds per gun value was set to one, to
ensure that single volleys would be fired. To ensure that
the emphasis was set on maximizing the number of kills
(actually, we were minimizing the number of remaining
targets), the weighting factor for the threat value was
set to zero.

As expected, based on the input parametric data shown
in Table 1, the system selected the Infantry as the pri-
mary target. This was followed by the Tanker and Artil-
lery. Very few Tanks were targeted. The HE round
was the mostly commonly used round overall. Also as
expected, (Infantry / HE) pairing was the primary tar-
get/round pair. All this is consistent with our expecta-
tions based upon the input data.

Multiple Volleys, Maximum Kills

We ran this set of test cases twice. The first time we did
not have any incentive to target the easy targets first. To
do this, we just ran the evaluation function after all vol-
leys had been fired. In essence, we treated the system
like a single volley of many guns. As such there was no
prioritization of the targets. The easy to kill targets were
spread out through out the entire chromosome.

On the second set of two runs, those with the weighting
factor to reward kills in the early volleys , we noticed a
different behavior. In sets, the Tankers and Infantry
were targeted early on and the Tanks were saved for the
later volleys. This was not as prevalent when there were
only two or three volleys. We believe this was due to
the cases where the easy to kill entities were not killed
with the first round. In cases where there where more
than three volleys, the Tanks would be targeted multi-
ple times in the later volleys.

Single Volley, Minimum Threat

The lesson learned from this experiment was to go after
the Artillery first; next, deal with the close Tanks.
While the close in Infantry had a greater threat value,
there were not sufficient cases for the system to learn to
deal with them on a priority basis. Likewise, the Tank-
ers were completely ignored. This makes sense since
they did not represent any threat and were the same as
shooting things that were dead or out of range.

Multiple Volleys, Minimum Threat

We found out that many of the same things in the single
volley case, apply to the multiple volley case. The Ar-
tillery was targeted first, then the close in Tanks, fi-
nally, everything else. Since out of range and dead
entities had the same threat values, after two volleys
there was a wide range of targeting variations. Both in
terms of selection of targets and round types. Basically,
they were firing to fire, there was minimal if any con-
tribution to the FoM.

Multiple Volleys, Maximum Kills and Minimum
Threat

In the final experiment, we combined the two subex-
pressions to produce the overall figure of merit.
Through manipulation of the relative values of the two
weighting factors, we were able to produce results that
were skewed to either of the multiple cases described
above. To evenly weight the two subexpressions took
some doing. The number of dead was expressed in inte-
ger values, whereas the threat value was a float value
less than one. In most cases, it was below 0.5. To pro-
duce a balanced result, the threat subexpression had to
be multiplied by a value roughly four times greater than
the dead count subexpression. It was interesting to note
that when the two subexpressions were weighted
equally, the result was a seemingly random firing pat-
tern. While the target type and round selection made
sense, the selection of the targets seemed to be inconsis-
tent with our expectations. Upon closer investigation
we determined that the two subexpression were actually
in conflict. The things that were easier to kill were the
ones that presented less threat.

CONCLUSIONS

We caveat our findings by reiterating the limited scope
of this project. First and foremost, we caveat our find-
ings by acknowledging that the paper covers a very
limited and straightforward set of problems. We are
sufficiently confident in our validity work that they can
be generalized and used as a point of departure on
which to base system level decisions. We have devel-
oped and implemented evolutionary algorithms to ad-
dress relatively simple problems in CGF entity behavior
modeling, formation changing in the previous paper and
target selection in this one. We examined the feasibility
of using the EA approach, a traditional off-line com-
puter learning methodology, as a replacement for the
commonly used real-time finite state machine and fixed
rule set approaches. EA are useful primarily in a non-
time constrained mode where a directed search of the
solution space is needed. While this is primarily in the
offline learning mode, it can still be applicable to a case
where the system is “stuck” using the current rule base
or a new situation that was not covered in the rules
comes up.

While the computational cost of the run time EA far
exceeded what could reasonably be allocated to solving
a simple problem like this one, we were encouraged to
see that the system behaved as we expected and learned
to perform the desired actions. In doing so, the impor-
tance of a complete understanding of the Evaluation
Function and the FoM can not be overemphasized. This

represent the art that is still prevalent in the design of an
EA system.

One of the side benefits we found very interesting was
the sorting of the final generation. In essence, what it
provides is a rank ordering of the courses of action
available. As such, we believe that such a system can
also provide advisory information to decision makers
when selecting courses of action. In doing so, the hu-
man is providing the oversight and selecting the appro-
priate set of actions. This is particularly important when
dealing with actual vehicles where the world might not
be completely modeled and the system might generate
some course of action that is unsafe or impracticable for
reasons not included in the model.

FUTURE WORK

Based on our findings from this work, as well as the
results from our previous study, we are planning on
using EA for behavior generation in cases where the
desired behaviors are not known or readily apparent.
Specifically, we are planning to look into the co-
evolution of friendly/opposing tactics and doctrine and
equipment.

ACKNOWLEDGMENTS

This work was done under SAIC internal research fund-
ing. The author would like to thank Aurora Jablonowski
for her help in editing the paper.

REFERENCES

Pratt, David, “Use of Evolutionary Algorithms for
Runtime Decision Making”, The 10th Conference
on Computer Generated Forces & Behavior Repre-
sentation, Norfolk, Virginia, May 2001

Marshall, Henry, et al, “Fabulous Graduate Re-
search Topics in CGF, Improving the Army
Graduate Program”, The 10th Conference on Com-
puter Generated Forces & Behavior Representa-
tion, Norfolk, Virginia, May 2001

Mitchell, Melanie, “An Introduction to Genetic
Algorithms,” MIT Press, 1999, ISBN: 0-262-
13316-4

Henninger, Amy, “The Limitations of Static Per-
formance Metrics for Dynamic Tasks Learned
Through Observation,” , The 10th Conference on
Computer Generated Forces & Behavior Represen-
tation, Norfolk, Virginia, May 2001

Pratt, D., Courtemanche, A., Moyers, J., and
Campbell, C., “An Empirical Evaluation of Pro-
gramming Languages for Computer Generated
Forces,” The 9th Conference on Computer Gener-
ated Forces & Behavior Representation, Orlando,
Florida, May 2001

