
AN APPLICATION OF REAL TIME EVOLUTIONARY ALGORITHMS

David R. Pratt

Science Applications International Corporation

Orlando, Florida

ABSTRACT

Historically, CGF systems have made runtime decisions via the use of prescriptive mechanisms such as Finite State

Machines (FSMs) and Rule Based Systems (RBS). The FSM and RBS mechanisms are the result of a complex and

time-consuming process of Knowledge Acquisition and Knowledge Engineering (KA/KE). The artifacts of the

KA/KE process are then turned over to the programmers to implement. The result is often a large, complex, and

brittle set of hard coded behaviors. The advantage to these approaches is that the entities execute the pre-

programmed behaviors faithfully and fairly efficiently. The downside is that it is often quite difficult to modify the

behaviors to account for new events, stimuli, or situations. To address these issues we have looked at the realm of

machine learning, specifically the use of Evolutionary Algorithms (EA), to make decisions that have historically

been hard coded in the FSM or RBS constructs. The use of EA is not new to the Computer Generated Forces (CGF)

community. However, the vast preponderance of its use has been in a priori offline runs to develop a rule base, plan

of attack, or path. This has largely been due to the computational costs of using EA. While the increase in processing

speed has not made performance considerations irrelevant, they have fundamentally changed the dynamics of the

development vs. runtime cost equations. It is with this in mind that we chose to investigate the use of EA to make

selected decisions at runtime. Specifically, we developed a proof of principle system to select the engagement rules

and target priorities for a tank platoon in a given tactical situation. Rather than having the prescriptive determination

of the engagement process, the EA subsystem randomly generates a set of shooter / target pairings and weapon se-

lection. The EA subsystem evaluates a set of possible engagements using a polynomial function comprised of the

proximity and obscuration of the entities, supporting fires, and lethality. The highest rated engagements, and newly

generated modifications of them, are carried forward to the next generation by the EA subsystem. The process of the

evaluation of a best engagement scenario is then repeated for a given number of generations. At the end of several

generations, or when a figure of merit is reached, the best engagement scenario is chosen as the course of action.

The main advantage to this approach is a relatively small amount of code needed to encode the EA mechanisms and

the evaluation function which can be easily changed to account for new weighting of factors. Thus, a whole series of

target selections can be made with a relatively compact flexible code base. This paper covers the development of the

proof of principle system and the results from the test runs. Specifically, we focus on three factors: the number of

engagement scenarios created per generation, the number of generations, and the evaluation function. Through the

interaction of these three factors, we show how the engagement scenarios evolved to suit the tactical scenario. Key

among the considerations is the time it takes for the system to come up with a viable target list. From these results,

we make extrapolations to where it is appropriate to use EA as a means of developmental cost reduction and code

simplification. This is the second in a series of papers that addresses the use of EA in real-time simulation systems.

The first paper focused on the ability to change formations based upon the detection of a threat.

ABOUT THE AUTHOR

Dr. David R. Pratt is a Chief Scientist/Fellow at SAIC's Applied Software Systems Engineering Technology

(ASSET) Group. As the Group's Technical Lead, he coordinates the internal research activities of the group and

establishes the technical directions. Prior to joining SAIC, he served as the JSIMS Technical Director, a tenured

Associate Professor of Computer Science at the Naval Postgraduate School, and was a Captain in the Marine Corps.

Dr. Pratt received a Ph.D. in Computer Science in 1993 and a Masters of Science degree in Computer Science in

1988 from the Naval Postgraduate School.

AN APPLICATION OF REAL TIME EVOLUTIONARY ALGORITHMS

David R. Pratt

Science Applications International Corporation

Orlando, Florida

INTRODUCTION

Historically, CGF systems have made runtime decisions

via the use of prescriptive mechanisms such as Finite

State Machines (FSMs) and Rule Based Systems

(RBS). The FSM and RBS mechanisms are the result of

a complex and time-consuming process of Knowledge

Acquisition and Knowledge Engineering (KA/KE). The

artifacts of the KA/KE process are then turned over to

the programmers to implement. The result is often a

large, complex, and brittle set of hard-coded behaviors.

The advantage to this approach is that the entities exe-

cute the pre-programmed behaviors faithfully and fairly

efficiently. The downside is that it is often difficult to

modify the behaviors to account for new events, stim-

uli, or situations. As we develop new systems that must

adapt to a an ever-changing world, the cycle time in

updating the behaviors renders modifications to the

system obsolete before the system is deployed.

To address these issues we have looked at the realm of

machine learning, namely, the use of Evolutionary Al-

gorithms (EA), to make decisions that have historically

been hard-coded in the FSM or RBS constructs. The

use of EA is not new to the Computer Generated Forces

(CGF) community. However, the vast preponderance of

its use has been in a priori offline runs to develop a rule

base, plan of attack, or path. This use has largely been

due to the large computational costs of using EA. While

the increase in processing speed has not made perform-

ance considerations irrelevant, they have fundamentally

changed the dynamics of the development vs. runtime

cost equations. It is with this in mind that we chose to

investigate the use of EA to make selected decisions at

runtime. Specifically, we developed a proof of principle

system to select the target list for a four gun artillery

battery in a given tactical situation.

Rather than having the prescriptive determination of the

target list, the EA subsystem randomly generates a set

of target and round selections. The EA subsystem

evaluates a set of possible target / round pairs using a

polynomial function comprised of the proximity of the

entities, target types, and probability of kill (Pk). The

highest rated target lists, and newly generated modifica-

tions of them, are carried forward to the next generation

by the EA subsystem. The process of the evaluation of

a best target list is then repeated for a given number of

generations. At the end of several generations, or when

a figure of merit is reached, the best target list is chosen

as the course of action. The main advantages to this

approach are that there is a relatively small amount of

code needed to encode the EA mechanisms and the

evaluation function can be easily changed to account

for new weighting of factors. Thus, a whole series of

target list selections can be made with a relatively com-

pact flexible code base.

This is the second in a series of papers where we have

been exploring the uses of EA in runtime decision

making. The first paper discussed the applicability of

the EA as a means of determining formations for a pla-

toon of tanks when presented with a threat [1]. This

paper looks at the problem of round and target selection

for an artillery battery.1

[1] focused a considerable amount of the mechanics of

the EA and their interplay between the number of

chromosomes and generations. From this research we

determined that 200 of the chromosomes and 500 gen-

erations would provide a reasonable convergence to a

solution, provided the evaluation function was robust

and tractable.

This paper covers the development of the proof of prin-

ciple systems and the results from the experimental

runs. From these results, we make extrapolations to

where it is appropriate to use EA as a means of devel-

opmental cost reduction and code simplification.

OBJECTIVES

The goal of the series of studies was to evaluate the

applicability of the use of EA in on-the-fly behavior

generation and selection. As such, there were a series of

subgoals:

Construct a suitable software testbed

Develop a series of evaluation functions

Conduct a series of time/space and evaluation func-

tion experimental runs

Gather the appropriate data to evaluate the results

1 Since [1] is not widely available, some of the introductory discus-

sion concerning EAs and the software testbed are repeated in this

paper.

Extrapolate the results to a larger setting

Suggest further study in this area

The following sections discuss how we went about

achieving these goals.

BASIC EA CONCEPTS

While a thorough introduction to EA can be found in

[1], the following discusses the fundamentals required

for this paper. As the name implies, the foundation idea

behind EA is that of Darwinian evolution: survival of

the fittest. The concepts of genetics, with the exception

of dominant and recessive genes, make this possible. In

the simplest form of EA, which we used, the best chro-

mosomes of population N are kept for generation N+1.

The rest of generation N+1 is made up of chromosomes

that resulted from the mating of selected chromosomes

in generation N and a number of mutant chromosomes.

It is through the crossover and mutation of chromo-

somes that new values are introduced to the gene pool.

This is key because, if no completely new chromo-

somes are introduced, successive inbreeding can result

in the propagation of undesirable traits. Hence, in every

generation a limited number of new chromosomes are

introduced. An evaluation function is used to deter-

mine which chromosome represents the strongest mem-

bers of the species. These chromosomes are then sorted

by the evaluation function and the cycle repeats.

By continually selecting the best of the generation, the

result of the fitness function will eventually converge

on the “best” solution. This might or might not be the

optimal solution, if one is known, but it should be close

enough to the goal. The problem of getting trapped in a

local minimum is handled by the use of the mutations.

Since the results are not guaranteed to be the optimal

solution, EAs are typically used on the class of prob-

lems that do not have universal solutions in predictable

time or problems with a large solution spaces. In the

case of our simple problem of target and round selec-

tion, there are roughly 96 possible solutions per volley.

Clearly, this is too many to try using brute force tech-

niques. Hence the use of EA to provide a guided explo-

ration of the solution space.

One of the things that intrigued us about using the EA

approach is the time adaptive algorithm nature of the

process. Since each generation provides, theoretically, a

better solution to the problem than the previous one, we

should be able to trade off how long the EA process

runs verses how “good” the solution is. We saw this as

a direct parallel to real world decision making, the more

time available, the more refined and, theoretically, bet-

ter the decision is.

SAMPLE PROBLEM

The problem selected for this set of experiments was

based upon a suggestion of research topics contained in

[2]. Specifically, the use of artificial intelligence tech-

niques for the automatic selection of targets and round

types for an Artillery Battery. Since the purpose of this

research was to evaluate the use of an EA system, vice

provide a functioning system, the problem framing

could be simplified. In doing so, we made several sim-

plifying assumptions. Shown in Table 1 is the data used

in the development of the problem. From this we can

see that there were a limited number of targets and

round combinations possible. Likewise, we did not con-

sider the effects of range on the accuracy of the guns or

anything short of a complete kill.

Table 1. Data used in the simplified artillery model

Infantry Tank Tanker Artillery

Max

Range

10.0 0.0 25.0 50.0

Threat

Value

0.9 0.0 0.5 0.7

Pk for each type of round / target pair

HE2 1.0 0.8 0.2 0.7

Armor 0.1 0.3 0.8 0.3

WP 0.8 0.5 0.1 0.5

That is not to say that we did not use the range between

the guns and the target as a means of doing target pri-

oritization. As shown in Figure 1, the threat function is

a range dependent function based upon the maximum

effective threat range from the data file, Table 1, and

the range of the actual target. It is important to note that

both Artillery and Tankers had a constant threat value.

This provided a means of target prioritization that

looked roughly like this:

Close in Infantry

Artillery at any range

Tanks within range

Infantry within range

Tankers, Tanks and Infantry out of range

2 The actual type of round and Pk are made up for use in this problem

and bear very little, if any, resemblance to the real values.

While it was simple enough to deduce this list from the

figure, we wanted to see if the system could discover

the relationship.

Artillery

Infantry

Tank

Range From Guns

T
h

re
a
t

0 10 25

0.9

0.7

0.5

50

Artillery

Infantry

Tank

Range From Guns

T
h

re
a
t

0 10 25

0.9

0.7

0.5

50

Figure 1. Graphical depiction of the threat function

Target selection was only one part of the problem. The

other was the matching of the round type to the target.

Once again, using the AFCS method described in [4],

we can derive Table 2. However, the problem was con-

structed to see if the system could learn the same rela-

tionships.

Table 2. Round Selection by Target Type

Target Primary Round Secondary

Round

Infantry HE WP

Tank Armor HE

Tanker HE WP

Artillery HE WP

The final challenge of this problem was having multi-

ple volleys. By firing multiple rounds per gun, and

weighting the effect of each volley, we could attempt to

see if the system would go after the high value targets

first and then shift fires to lower value ones.

COMPUTATIONAL PLATFORM

Since the timing aspects of this study are an important

part of the overall assessment, the computational plat-

form plays a role in the evaluation. The hardware plat-

form was a Dell Latitude CPx laptop with a Mobile P-

III 650Mhz processor. Additionally the system had

128Mb of RAM. The operating system was Microsoft

Windows 98 Second Edition build 4.10.222A. The Java

environment was: Java (TM) 2 Runtime Environment,

Standard Edition (build 1.3.0-C) with Java Hotspot

(TM) Client VM (build 1.3.0-C, mixed mode). Based

on our previous work [5], we felt that this was a repre-

sentative computational platform for this type of study.

THE EA SOFTWARE TESTBED

Since we plan on using the testbed for follow-on stud-

ies, we made the conscious choice to implement the

system in the most portable manner possible. The four

major classes are discussed below. They are linked to-

gether by means of a Driver class that controls the

number of chromosomes and generations based on user

input. It is also the Driver that calls the visualization at

the end of every generation to help monitor the evolu-

tion.

The genes and chromosome

The gene is the foundational element in an EA system.

It is here where all of the knowledge is captured. The

genes are then grouped in a chromosome for manipula-

tion and propagation. In this experiment, we used a

simple integer array to represent the values as a single

logical entity. Using a hierarchal model, we grouped the

genes representing the Target ID and Round type by

gun, and then, by volley. While we kept the battery size

fixed at four guns, we varied the number of volleys

between one and four. This allowed us to use a table

driven input scheme, thus ensuring the consistency of

the results. The resulting chromosome for a single vol-

ley run is shown in Figure 2.

Array Index

Where: T
ID

is the target ID

R is the Round Type

}

TID R

Gun 1

0 1 2 3 4 5 6 7

}
TID R

Gun 2

}
TID R

Gun 3

}

TID R

Gun 4

Array Index

Where: T
ID

is the target ID

R is the Round Type

}

TID R

Gun 1

0 1 2 3 4 5 6 7

}
TID R

Gun 2

}
TID R

Gun 3

}

TID R

Gun 4

}

TID R

Gun 1

}

TID RTID R

Gun 1

0 1 2 3 4 5 6 7

}
TID R

Gun 2

}
TID R

Gun 3

}

TID R

Gun 4

0 1 2 3 4 5 6 7

}
TID R

Gun 2
}

TID RTID R

Gun 2

}
TID R

Gun 3

}
TID RTID R

Gun 3

}

TID R

Gun 4

}

TID RTID R

Gun 4

Figure 2. The Elements of the Chromosome

The use of an array, vice a record structure, provided a

decoupling of the semantics of the data used in the

evaluation function from the syntax of the data used in

the EA Solver.

Simulation

Each chromosome was used as the input parameters for

a simple artillery simulator. For each run of the simula-

tor, a set of 8 targets was generated randomly. The type

of target was chosen from the four categories listed in

Table 1. The location was randomly chosen between

the minimum range, 0, and the maximum range, 50. All

the targets were marked as alive. The firing guns were

assumed to be at location 0. Each gun in a volley would

fire independently and once a target was destroyed, it

stayed dead for the remainder of the run.

The target selection for each gun was done via the

(TID,R) pair from the chromosome. For each (TID,R)

pair, a random number was drawn between 0.0 and 1.0

using the standard Java Random Number Generator. If

the number was less than the value from the input Pk

table, the entity was marked dead. After a volley was

fired, the live entities were counted. Likewise, using

only the live entities, the threat value was computed.

Once a volley had been fired and the results computed,

the next volley would fire.

It is important to note that there was no changing of the

chromosome during a run of the simulation. Thus, even

if there was a high probability of kill and the random

number came up against the shot, the entity could not

be retargeted. Likewise, it is possible that an entity

might be targeted more than once in a volley and a dead

entity targeted and fired on.

Evaluation function

One of the advantages of using the EA approach is that

it is possible to evaluate the chromosome along several

different metrics concurrently. This is done by breaking

the evaluation function down into a series of subfactors.

The results of the subfactors are then summed to pro-

vide the overall figure of merit (FoM) for the chromo-

some. Since each of the subfactors might be on

different scales, the result of each can be weighted us-

ing a scalar or an expression. The resulting FoM ex-

pression looks like this:

ii ionSubExpressactorWeightingFritFigureofMe *

To capture the effect of multiple volleys, we used an

enhanced FoM function that weighted the previous vol-

ley’s FoM higher then the current volleys. This resulted

in the following equation:

currentii FoMFoMFoM 1*2 .

This approach worked well since we were trying to

minimize the overall FoM.

For this experiment, we used scalars as the weighting

factors, although, on different runs we modified the

relative values to examine the interplay between the

subexpressions. The subexpressions are detailed in the

following sections.

It is essential to note that not all subexpressions were

used in all trial runs. By changing the weighting factors

associated with the various subexpression, we were able

to emphasize one factor at the expense of the others.

This points to the “art” in the use of EA approach, that

of crafting the evaluation function and the appropriate

weightings.

Number of Live Targets
Given that we had a fixed number of targets at the be-

ginning of the run, the number of targets killed and the

number of live targets are simple inverses of each other.

Since we are trying to minimize the overall FoM, the

number of live targets provided the logical choice to

measure the effectiveness of the fires.

Threat Value
The other subexpression was a measure of the enemy

threat the firing battery was exposed to. As described

above, the four types of targets each had different effec-

tive threat values. In the cases of the Infantry and Tank

threats the effective range played a part in the determi-

nation of the overall threat. The algorithm used to de-

termine the effective threat value is shown in Figure 3.

If (Artillery or Tanker) Then

 Return (ThreatValue)

Else if (in Range) then

Return (ThreatValue * (1 – Range / MaxRange))

Figure 3. The Threat Subexpression

EA solver

As shown in Figure 4, the EA solver was an iterative

process. The first step was the creation of the first gen-

eration of chromosomes. The number of chromosomes

in a generation, as well as the number of generations,

was controlled by a parameter provided to the construc-

tor. The values for the genes in the first generation

would be generated randomly. Once the first generation

was run, the evaluation function was run on all of the

chromosomes to generate the subsequent generations.

Start

Generate

First

Generation

Run

Evaluation

Function

Sort

Select

Best

Genes

Create

Mutant

Genes

Build

Crossover

Genes

Create New

Generation

of Generations

End

Start

Generate

First

Generation

Run

Evaluation

Function

Sort

Select

Best

Genes

Create

Mutant

Genes

Build

Crossover

Genes

Create New

Generation

of Generations

End

Start

Generate

First

Generation

Run

Evaluation

Function

Sort

Select

Best

Genes

Create

Mutant

Genes

Build

Crossover

Genes

Create New

Generation

of Generations

End

Figure 4. The EA solver flow of control

In keeping with the object oriented nature of Java, the

evaluation function was modeled as class with a single

public function. The various subexpressions were de-

veloped as protected functions. This ensured the encap-

sulation of the evaluation process. Once the entire

generation was evaluated, the chromosomes were

sorted in ascending order of the Figure of Merit (FoM).

At this point, if the maximum number of generations

was reached, the system would halt and report the

“best” candidate.

If this was not the final generation, a new empty gen-

eration was created. To populate this generation, the top

quarter of the previous generation was brought forward.

The second and third quarters were made of the combi-

nation of two adjacent chromosomes (even probability

of each one contributing a selected value). The final

quarter was comprised of randomly mated chromo-

somes. These were added to prevent the population

from getting too homogenous. Both mating functions

had a low, five percent, mutation rate. The mutation

rate was higher than in some other trials to reduce the

dependence on the initial population. Once this process

generation was completed, the generation was evalu-

ated and the process started over.

TEST RUNS

A series of experiments were run to characterize the

solution space and investigate the interplay between run

parameters. To reduce anomalies, each test was run ten

times and the results were averaged. In this section we

discuss the individual experiments and their setups,

present averaged results and draw conclusions from

them. With the exception of the timing runs test case,

all test were run with 200 chromosomes and 500 gen-

erations.

Timing Runs

We used the CYGWIN_98-4.10 as the command shell

and developed a batch driver that ran the test in an

automated mode. To reduce the variability in the test

results, a constant random number seed was used, the

computer was disconnected from the network, no other

applications were running, and the screen saver was

turned off. Each one of the chromosome/generation

pairs were run one hundred times and the results aver-

aged. Shown graphically in Figure 5, the results show

the linear growth of the execution time as a result of the

product of the number of generations and chromo-

somes. The slightly higher than expected result in the

10 chromosome/10 generation case can be attributed to

the start up transient cost that was not amortized over

the length of the run. This result is consistent with the

results obtained in [1].

1

10

100

1000

10000

100000

10 100 1000

Num be r of Ge ne ra tions

M
il

li
s
e

c
o

n
d

s

10 Chromosomes 100 Chromosomes

1000 Chromosomes

Figure 5. Results from the timing runs

Single Volley, Maximum Kills

In this experiment, and all the subsequent experiments,

a different random number seed was used for each of

the runs. This provided the variability we needed to

provide insight in the effectiveness of the EA approach.

The number of rounds per gun value was set to one, to

ensure that single volleys would be fired. To ensure that

the emphasis was set on maximizing the number of kills

(actually, we were minimizing the number of remaining

targets), the weighting factor for the threat value was

set to zero.

As expected, based on the input parametric data shown

in Table 1, the system selected the Infantry as the pri-

mary target. This was followed by the Tanker and Artil-

lery. Very few Tanks were targeted. The HE round

was the mostly commonly used round overall. Also as

expected, (Infantry / HE) pairing was the primary tar-

get/round pair. All this is consistent with our expecta-

tions based upon the input data.

Multiple Volleys, Maximum Kills

We ran this set of test cases twice. The first time we did

not have any incentive to target the easy targets first. To

do this, we just ran the evaluation function after all vol-

leys had been fired. In essence, we treated the system

like a single volley of many guns. As such there was no

prioritization of the targets. The easy to kill targets were

spread out through out the entire chromosome.

On the second set of two runs, those with the weighting

factor to reward kills in the early volleys , we noticed a

different behavior. In sets, the Tankers and Infantry

were targeted early on and the Tanks were saved for the

later volleys. This was not as prevalent when there were

only two or three volleys. We believe this was due to

the cases where the easy to kill entities were not killed

with the first round. In cases where there where more

than three volleys, the Tanks would be targeted multi-

ple times in the later volleys.

Single Volley, Minimum Threat

The lesson learned from this experiment was to go after

the Artillery first; next, deal with the close Tanks.

While the close in Infantry had a greater threat value,

there were not sufficient cases for the system to learn to

deal with them on a priority basis. Likewise, the Tank-

ers were completely ignored. This makes sense since

they did not represent any threat and were the same as

shooting things that were dead or out of range.

Multiple Volleys, Minimum Threat

We found out that many of the same things in the single

volley case, apply to the multiple volley case. The Ar-

tillery was targeted first, then the close in Tanks, fi-

nally, everything else. Since out of range and dead

entities had the same threat values, after two volleys

there was a wide range of targeting variations. Both in

terms of selection of targets and round types. Basically,

they were firing to fire, there was minimal if any con-

tribution to the FoM.

Multiple Volleys, Maximum Kills and Minimum

Threat

In the final experiment, we combined the two subex-

pressions to produce the overall figure of merit.

Through manipulation of the relative values of the two

weighting factors, we were able to produce results that

were skewed to either of the multiple cases described

above. To evenly weight the two subexpressions took

some doing. The number of dead was expressed in inte-

ger values, whereas the threat value was a float value

less than one. In most cases, it was below 0.5. To pro-

duce a balanced result, the threat subexpression had to

be multiplied by a value roughly four times greater than

the dead count subexpression. It was interesting to note

that when the two subexpressions were weighted

equally, the result was a seemingly random firing pat-

tern. While the target type and round selection made

sense, the selection of the targets seemed to be inconsis-

tent with our expectations. Upon closer investigation

we determined that the two subexpression were actually

in conflict. The things that were easier to kill were the

ones that presented less threat.

CONCLUSIONS

We caveat our findings by reiterating the limited scope

of this project. First and foremost, we caveat our find-

ings by acknowledging that the paper covers a very

limited and straightforward set of problems. We are

sufficiently confident in our validity work that they can

be generalized and used as a point of departure on

which to base system level decisions. We have devel-

oped and implemented evolutionary algorithms to ad-

dress relatively simple problems in CGF entity behavior

modeling, formation changing in the previous paper and

target selection in this one. We examined the feasibility

of using the EA approach, a traditional off-line com-

puter learning methodology, as a replacement for the

commonly used real-time finite state machine and fixed

rule set approaches. EA are useful primarily in a non-

time constrained mode where a directed search of the

solution space is needed. While this is primarily in the

offline learning mode, it can still be applicable to a case

where the system is “stuck” using the current rule base

or a new situation that was not covered in the rules

comes up.

While the computational cost of the run time EA far

exceeded what could reasonably be allocated to solving

a simple problem like this one, we were encouraged to

see that the system behaved as we expected and learned

to perform the desired actions. In doing so, the impor-

tance of a complete understanding of the Evaluation

Function and the FoM can not be overemphasized. This

represent the art that is still prevalent in the design of an

EA system.

One of the side benefits we found very interesting was

the sorting of the final generation. In essence, what it

provides is a rank ordering of the courses of action

available. As such, we believe that such a system can

also provide advisory information to decision makers

when selecting courses of action. In doing so, the hu-

man is providing the oversight and selecting the appro-

priate set of actions. This is particularly important when

dealing with actual vehicles where the world might not

be completely modeled and the system might generate

some course of action that is unsafe or impracticable for

reasons not included in the model.

FUTURE WORK

Based on our findings from this work, as well as the

results from our previous study, we are planning on

using EA for behavior generation in cases where the

desired behaviors are not known or readily apparent.

Specifically, we are planning to look into the co-

evolution of friendly/opposing tactics and doctrine and

equipment.

ACKNOWLEDGMENTS

This work was done under SAIC internal research fund-

ing. The author would like to thank Aurora Jablonowski

for her help in editing the paper.

REFERENCES

[1] Pratt, David, “Use of Evolutionary Algorithms for

Runtime Decision Making”, The 10th Conference

on Computer Generated Forces & Behavior Repre-

sentation, Norfolk, Virginia, May 2001

[2] Marshall, Henry, et al, “Fabulous Graduate Re-

search Topics in CGF, Improving the Army

Graduate Program”, The 10th Conference on Com-

puter Generated Forces & Behavior Representa-

tion, Norfolk, Virginia, May 2001

[3] Mitchell, Melanie, “An Introduction to Genetic

Algorithms,” MIT Press, 1999, ISBN: 0-262-

13316-4

[4] Henninger, Amy, “The Limitations of Static Per-

formance Metrics for Dynamic Tasks Learned

Through Observation,” , The 10th Conference on

Computer Generated Forces & Behavior Represen-

tation, Norfolk, Virginia, May 2001

[5] Pratt, D., Courtemanche, A., Moyers, J., and

Campbell, C., “An Empirical Evaluation of Pro-

gramming Languages for Computer Generated

Forces,” The 9th Conference on Computer Gener-

ated Forces & Behavior Representation, Orlando,

Florida, May 2001

