APPLYING A GENERIC INTELLIGENT TUTORING SYSTEM (ITS) AUTHORING
TOOL TO SPECIFIC MILITARY DOMAINS

Dick Stottler, Daniel Fu, and Sowmya Ramachandran
Stottler Henke Associates, Inc.
San Mateo, California

and

Terresa Jackson
Air Force Research Laboratory
Brooks AFB, TX

ABSTRACT

This paper describes our experience in applying a generic Intelligent Tutoring System (ITS) authoring tool
to specific training applications. The Internet ITS Authoring Tool (IITSAT) was developed to decrease the
time to develop tactical decision-making ITSs and was based on the experience from several previous ITS
projects. IITSAT allows ITS authors to organize course principles, articulate teaching methods, specify
courseware, and develop a case base of scenarios for students along with a s pecification of how the
student’s actions will be evaluated and his mastery of the required knowledge assessed. Evaluation of the

correctness of actions and inference of the student’s knowledge may be performed by external code, or with
libraries supplied with IITSAT. They support both the use of finite state machines (FSMs) to evaluate a
student’s actions in a free play simulation, or comparison to correct and likely incorrect solutions for each
scenario. Different instructional methods can be chosen including who should control the sequence of
instructional events -t he student, the author, or the ITS, and what that sequence should be. The
FBCB2/Tactical Decision-Making ITS prototype teaches armor company commanders by presenting
course material and examples, then testing the commander in tactical situations displayed as F BCB2
overlays or in a commercial tank simulator interfaced to the actual FBCB2 software and the ITS. IITSAT’s

comparison libraries successfully evaluated a student’s battle plan with the addition of domain-specific
code. The next ITS to bede veloped with IITSAT was an F/A-18 Air Tactics ITS prototype which
intelligently evaluated a pilot’s actions during mission rehearsal to practice perishable skills. IITSAT was
interfaced to ACM, a commercially available flight simulator which was altered to output a log of actions
and events. FSMs evaluated the correctness of the pilot’s actions and inferred mastery of different
principles. The Air Tactics ITS was developed in a small fraction of the normal time and IITSAT did not
need to be modified, but FSMs were less general than planned. An authoring tool was very helpful since it
could be modified to increase its generality and flexibility.

ABOUT THE AUTHORS

Dick Stottler co-founded Stottler Henke Associates, Inc. (SHAI) in 1988 and is the president of the
company. He has been principal investigator on a number of intelligent tutoring system projects.

Dan Fu is an Al Researcher and project manager at SHAI. Dr. Fu currently leads the IITSAT project and
an Immersive Wargaming project.

Sowmya Ramachandran is an A 1 Researcher at SHAI with a strong background in a wide variety of
Artificial Intelligence techniques, including Intelligent Tutoring Systems and Machine Learning.

Terresa Jackson is a program manager with the Air Force Research Laboratory at Brooks AFB, TX. She
manages contractor, military and civilian research in design and development of advanced training
technologies, intelligent training systems, and distance learning techniques.

APPLYING A GENERIC INTELLIGENT TUTORING SYSTEM (ITS) AUTHORING
TOOL TO SPECIFIC MILITARY DOMAINS
Dick Stottler, Daniel Fu, and Sowmya Ramachandran
Stottler Henke Associates, Inc.
San Mateo, California

and

Terresa Jackson
Air Force Research Laboratory
Brooks AFB, TX

INTRODUCTION

This paper describes our experience in applying a
generic Intelligent Tutoring System (ITS) authoring
tool to specific training applications. We will first
describe that tool and the ITS projects which
contributed to its development. We will then discuss
the applications that were developed using the tool.
For each application we will describe its functionality
and the process and benefits of using the tool as well
as the difficulties. Finally we will summarize the
lessons we have learned in applying the generic tool
to several ITS applications and discuss the future
work.

IITSAT DESCRIPTION

IITSAT was developed specifically to greatly
facilitate the development of ITSs for tactical
decision-making. Tactical instructors universally
agree that coached practice of decision-making in
tactical situations is most important for development
of a high-level of expertise in tactical decision-
making [Lussier IITSEC 2000 ref]. Therefore,
IITSAT was designed to provide instruction centered
around scenarios (i.e. cases) and required principles.

In case-based ITSs each case (or scenario) should
include (1) a multi-media description of the problem,
which may evolve over time (as in tactical simulated
scenarios); (2) a description of the correct actions to
take, possibly including order-independent, optional,
and alternative steps; (3) multi-media explanations of
why these steps are correct; (4) the list of methods
which determine whether the steps have been
correctly executed by the student; and (5) the list of
principles required to know the correct action to take,
typically extracted from the explanations that
accompany the solution steps.

Cases for Correct Action Determination

The most difficult and domain dependent aspect of
the ITS (after the simulation itself) is the
determination of the correctness or incorrectness of a
student’s action. Since there are domains where it is
impractical to build a general expert system to

produce the correct actions, the expert’s knowledge
of the correct actions specific to a scenario are stored
within the scenario itself. This knowledge typically
takes different forms, based on the domain and the
ability of the student to alter the flow of the scenario
in unexpected or multiple ways. The simplest
representation lists the correct actions at the
appropriate time in the scenario. Obviously this will
only be applicable if the flow of the scenario is
unaltered by actions of the student or if at each
mistake, the student is immediately corrected, and
thus the scenario’s timeline is restored. For each
scenario, methods are required for comparing these
correct actions to the actual actions produced by the
student. These methods may also be able to assess
which principles associated with a particular action
the student knows and which ones he doesn’t, based
on a whole or partially correct action. For example,
in some AWACS Weapon Director (WD) scenarios,
the WDs are supposed to advise rather than
command. Thus the scenarios can be structured such
that the simulated pilots ignore WD mistakes, and the
scenario timeline proceeds unaltered. The WD
actions are the advice, specific utterances made to
specific pilots over the simulated radio, usually less
than 20 words each. The correct actions are the
utterances of expert WDs, previously recorded while
they played the scenario. The software methods to
compare the correct actions to the student’s actions
must convert each to a text representation. The WDs,
according to their orders, are supposed to use a
specific grammar. This allows the text to be parsed
and compared piece by piece. The software methods
can then assign knowledge of principles based on
subparts of the student’s utterance. Some principles,
such as “give the most important information first,”
actually span multiple actions, as well.

Of course these types of scripted scenarios preclude
one of the most important learning opportunities - for
students to see the results of their own mistakes.
Mistakes a WD makes in real missions can easily
cause loss of life, including his own. So there is a
strong desire to use more flexible and dynamic
simulations and scenarios, where a student’s actions
can radically affect the outcome. Since these
simulations are typically continuous, there are an
infinite number of variations that different students

can create. In fact, in these types of situations the
same scenario never plays exactly the same way
twice, since minor timing differences of student
actions affect the precise trajectories of the simulated
players. Clearly, listing the correct action at the
appropriate time, based on the way the expert played
the scenario is inappropriate, since when the student
plays the same scenario, his timeline will diverge
from the expert’s, often in radically different ways.
For example, a particular scenario may dictate that
the student remain covert while gathering
information. If he understands how to do this, the
enemy may never detect his existence, and thus never
attack him. However, a student who does not
understand the principles of covertness may turn on
his active sensors, be detected by the enemy, and thus
come under attack. At this point he may correctly
assess the need for and execute several self-defense
actions. These actions were not required of the
expert or of other students in the same scenario who
performed the information gathering tasks in the
correct, covert way. Yet, they are entirely
appropriate for the situation in which the student
finds himself, and not only should they not be
considered incorrect, but he should also get credit for
understanding the appropriate self-defense principles.

The solution is the other extreme of the forms of
knowledge, in which knowledge of correct actions
may be stored and used is in situations where the
system in no way can produce the correct or all the
possible correct actions but for which the knowledge
exists, within the context of a scenario, to evaluate
the appropriateness of the student’s action. For
example, to refine the location of an enemy platform,
an aircraft may be sent to a general area. To keep the
aircraft’s home platform location unknown, it should
take an indirect route to the area. There may be
several factors to consider when determining an
appropriate route, many of which may be considered
commonsensical or at least not part of the course the
ITS is teaching. The ITS may not include the
knowledge required to generate a good route.
Furthermore, there may be a very large number of
acceptable routes. But, for the purposes of making
sure that the student understands the concept of
taking an indirect route to the target area, it is fairly
easy to devise a simple calculation to check that the
route was indirect. One way to represent these types
of scenario specific evaluation machines is using
Finite State Machines (FSMs) which are discussed
later. (Figure 1) shows a FSM used for evaluation in
an ITS prototype developed with IITSAT.

Start

sceededriLw Wi oee dedRunwayLengh—> JakelD
4
Debrief Diebrief Sunoess
ExceededRurivwaplengl Takell> woeededRuniv ayWwidt

Debrief Mone Debrief

Figure 1. Example Finite State Machine.
Creating an ITS with IITSAT

There are six kinds of knowledge that must be
entered by the domain and/or instructional expert to
create an ITS for a specific domain. These are the
case base of scenarios to be used as examples and
exercises, the hierarchy of principles referenced from
those scenarios, multi-media descriptions which
explain each principle, knowledge used to asses the
correctness of student actions, knowledge used to
assess a student’s mastery of a principle given the
history of his performance in relation to that
principle, and pedagogical knowledge. Methods to
enter the scenarios tend to be very domain specific
and closely tied to the simulation. For tactical
scenarios, typically graphical editors are employed
based on an electronic map and intelligent tactical
knowledge entry techniques not particular to ITS
concerns. The principle hierarchy is entered through
a simple tree-based graphical editor as shown in
Figure 2. The multi-media descriptions of principles
are entered using commercial multi-media authoring
tools, such as Macromedia Director. The different
ways to represent the knowledge to determine student
action correctness was discussed in a previous
section. In the following paragraphs we discuss the
capabilities for entering mastery assessment and
pedagogical knowledge.

Representation and entry of the knowledge to assess
principle mastery, given a history of actions related to
it, is one of the simplest aspects of the authoring tool.
The author specifies and names the levels of mastery.
For example, those might be novice, intermediate,
and expert. For any principle in the hierarchy, he
then defines the conditions that must be met to attain
each level of mastery. These conditions typically
define the percentage of correct usage of a principle
from the last N actions using the principle in the last
M scenarios in a specified time period. The required
parameters are simply entered using a fill-in-the-
blank format. Which principles the mastery level
applies to is determined by which principle node the
author selected in the principle hierarchy editor. The
mastery assessment definitions defined at a higher
level in the hierarchy are inherited by all of its

subprinciples unless over-ridden with a more local
definition.

File Yiew Help
D[c|d| 2|

HIERARCHY | SCEMARIOS/EWALUATIONS | TYPES/EVENTS

r~ Hierarch

AIR-ITS Principles -
Take off

- Flap handling

Brake handhng

B Dzt within (L
Gear handllng
- Proper flap and gear settings for b
Route Navigation
Altitude contral
- Air speed conral
Timing control
- Mavigation contral for waypoints
Reached all wappoints
- System mode selection NAY
- System mode selection A4
Target
i~ Test system mods sslection 4G

- Systemmode selection A6 _

Ready

Figure 2. Principle Hierarchy Editor.

More complicated is the pedagogical knowledge. A
somewhat simplified description follows. The
authoring tool allows different instructional methods
to be defined for different types of students (based on
background and principle mastery) and different
regions of the principle hierarchy. Aspects of an
instructional method include degree of instructional
support; degree of student control; how much
instructional material to present; what kinds of
examples to show, and how many; what kinds of
exercises to present, and how many; type and timing
of debriefing; remediation, and exercise selection.

Perhaps the greatest challenge in designing the
functionality and capabilities of the ITS authoring
tool was maintaining the proper balance between
flexibility/power and usability. By designing a lot of
flexibility in the instructional method specification,
many inputs are required. Our design philosophy is
based on the assumption that domain knowledge
experts (a.k.a. Subject Matter Experts) are more
readily available than pedagogical experts and that
pedagogical knowledge can be generalized over
domains. We therefore have made pedagogical
knowledge specification easy by having the authoring
tool intelligently select default specifications that an
author can choose to over-ride. We are developing a
case base of instructional techniques so that when
some preliminary information about the domain and
types of students is entered, the system selects the
most appropriate default instructional techniques for
each type of student and principle. A Subject Matter
Expert is able to generate an ITS by just specifying
domain-specific knowledge (principles, scenarios,
pre-test and post-test scenarios), and using default
specifications for pedagogical knowledge.

ORIGINATING APPLICATIONS

IITSAT was designed and implemented based on the
experience of developing several tactical decision-
making ITSs. Each included certain methods and
techniques which contributed to IITSAT. These are
described below. The TAO ITS is described in more
detail, since, as described at the end, the newest fleet
version is being converted to IITSAT.

Tactical Action Officer (TAO) ITS

= =] 3

ol 0w smeaoiia
e cr ca | -

ows 1 ooer | ou |
GUN MisS |HARP|TDRP /G
Launcher SR
Fiing Key Swich

Key: INSERTED
Tum © On C 0f

Untstet | 78
i ENGAGE
sreENGAGE
coven
LUMaTE

oA |P3 HELD |

sk s [0 0
i [ros7iE
= o
2 Deg o[1573
& o
ACK | REPORT | [bia 265 3Ana/a073 | Map Scde: 61]| | Speed (6000 Kis

Atiue [F500 Feet | icrrackariiorane Aliude: (230000 1t

3“|7

Figure 3. TAO ITS Simulation.

SHAI designed and built for the Surface Warfare
Officers School (SWOS) a low-cost simulation-based
intelligent tutoring system (ITS) for use on standard
PCs as part of SWOS's Tactical Action Officer
(TAO) training program to train Navy officers in
high-level tactical skills in early 1999. The TAO ITS
Simulation interface is shown in (Figure 3). A key
objective of the software is to increase the active
training that officers receive to improve their ability
to apply their conceptual knowledge of tactics. The
intelligent tutoring system presents selected scenarios
for the student to practice different tactical concepts.
The software adaptively selects scenarios for
individual students that practice concepts he or she
hasn't yet practiced or has recently failed. As well as
the intrinsic feedback that free-play simulations
naturally provide a student, the TAO ITS provides
detailed, useful extrinsic feedback to the student once
a scenario is finished, which reviews the student's
decisions along with the related concepts and whether
they were passed or failed (as shown in Figure 4). At
this point, the student can review multimedia material
about any concept, or see a replay of the scenario to
review errors.

Evaluation Summary []

Time: Desciiption:

@ 00:01:10: TAD successtully issued Level 1 query and IFF challenge. ;I
@ 00:01:52 : TAD appropriately sent a helicopter to classify Track 1103,
@ 00:02:53 : The TAD failed to issue 2 Launch/Recaver repart within 1 minuts

of launching or recovering a helo.

eport within 1 minute

@ 00:03:02 : TAD failed to issue a Level Z intentions report before issuing a
Level 2 waming,

(@ 00:09:13: Track 1108 comes from a hostile origin and has militany IFF
rEsponse.

(@ 00:09:15 : Track 1108 has a miltary IFF response.

(@ 00:09:17 : Track 1108 has na Level 1 responze.

@ 00:03:18 : TAD successiully issued Level 2 warning, Level 1 query, and IFF
challenge., hd

Principles:

Principles Passed
i Nane
Principles Failed
Bl Reports
Reparts Text

Feedback on this scenario:

|
Replay From Start | Replay Fram Selscted T\mel Done I Help... |

Figure 4. TAO ITS Debriefing.

TAO ITS follows a scenario-debrief instructional
cycle. That is, it selects a scenario that it believes
would be beneficial for the student, has him perform
tactical decision-making in that simulated scenario,
then debriefs him on the correctness of his actions. It
also provides information on the concepts that it feels
he is deficient in, based on the mistakes he just made.
IITSAT was designed to include this type of
instructional method in its ITSs. But as we
transitioned the TAO ITS for use in the fleet, we
found that other instructional cycles would be
required for refresher training with less
knowledgeable students. Therefore, IITSAT also
allows for the specification of different instructional
methods for different types of students and these
include introduction of new material and presentation
of examples, before the student is forced to perform
in a simulated scenario. TAO ITS communicated to
its simulation through an event log file, which was
analyzed using Finite State Machines (FSMs)
definable by instructors. TAO ITS was designed this
way, since early in the project interfacing to as-yet
unspecified simulations was deemed important and a
log file interface make this very simple.

Furthermore, the restriction of feedback to the
student occurring only after the end of the scenario
was not considered important since the debrief, or
After Action Review (AAR), was considered to be
the primary feedback mechanism. The FSM
evaluations proved so successful that TAO ITS's
FSM code was incorporated, with only minor
modifications into IITSAT.

Other ITSs

An Intelligent Tutoring System was developed to
teach the principles and processes of sonar image
analysis. The ITS complements the existing
interactive courseware by providing practice in
simulated acoustic analysis scenarios, with an
automatic debriefing capability. The ITS models the

student's knowledge and abilities and selects the most
appropriate practice scenarios for each student. The
scenarios are created though an annotation authoring
process by expert acoustic analysis instructors. This
ITS contributed its Principle Hierarchy editor to
IITSAT as well as the concept that the scenario-
player may not always be a tactical simulation. Its
scenario player is an annotation editor which allows
the student to annotate an image, choose different
processing options (which are like different "views"
of the same data,) and which only provides access to
the data that would have arrived at the particular
point in time.

An ITS was developed for the Army's Military
Intelligence Training Distance Learning Office at
Fort Huachuca which uses a constructivist approach
to teach principles of intelligence analysis for
countering terrorism. This project contributed the
concepts of the importance of hinting and coaching
during scenario play; the need to specify specific
scenarios for specific parts of the course; the fact that
the number of scenarios may be very small in
number; and the requirements of pre and post testing.

APPLICATIONS CREATED WITH
IITSAT

FBCB2/Tactical Decision-Making ITS

The FBCB2/Tactical Decision-Making ITS teaches
the tactical use of FBCB2, an Army C41 system, and
tactical decision-making to Armor and mechanized
Infantry company commanders. When a new student
logs on he is first asked some questions about his
background, experience, and last FBCB2
training/use. These questions include level of
education achieved, rank, highest unit commanded,
types of units served in, computer familiarity, BCB2
familiarity/comfort, and general perceptions as to its
usefulness. The ITS uses this information to make
initial estimates as to the student’s mastery of various
principles, including both tactical knowledge and the
use of FBCB2. It is also used to select scenarios,
other exercises, types of hints, and other forms of
instruction. Mastery categories are Beginner,
Novice, Intermediate, and Expert. The Beginner
category for a principle occurs when a student
performs successfully with it less than 20% of the
time. (Novice — 20 to 50%, Intermediate — 50 t075%,
Expert > 75%). Students at the expert or intermediate
level for a principle are never given hints.

If the ITS estimates that the student’s mastery of
FBCB2 principles is low, then before doing
simulated exercises, the student is first put through
FBCB2-only refresher exercises. An introductory
lesson explains with detailed steps how to create an
overlay and find and place the most relevant symbols.

After the FBCB2 refresher exercises (if they were
needed), the ITS begins tutoring the student on

general tactical principles. If it estimates his mastery
is relatively high it proceeds immediately to tactical
decision games presented and answered as FBCB2
overlays. If not, it first presents general tactical
principle courseware. For each tactical decision
game (TDG), the ITS analyzes the student’s plan
(given as an FBCB2 overlay) and automatically
creates a debriefing describing what parts of his plan
are right, what parts are wrong, and gives an expert’s
rationale for the best options. For poor decisions, the
ITS lowers its estimate of the mastery of principles
related to those decisions, and provides remedial
materials on those principles, before presenting
anymore TDGs. The student’s overlay is evaluated
by comparing it to overlays input by an instructor for
that particular TDG. These typically represent a few
possible right answers and a few common mistakes.
The instructor will also have annotated the overlays
with information for use by the ITS in assembling the
debrief and determining which principles the student
is weak in. A sample of the course hierarchy in
IITSAT is shown in (Figure 5).

A InterDverlayDone.its - Intemnet ITS

File Edit %iew Help

— Course Outline
[+-m FBCBZ Software Use Proficiency

- General Tactical Frinciples
Fix and Flank Enemy Section
Enemy Surface and Gaps Section
Bigger Picture and Commander's Intent
Reinforce Success. Mot Failure
Understand the Enemy
Audacity, Boldness, Simplicity, and Surpr
Initiative and Opportunity

Flexibility

Tactical Objectives
m Additional Tactical Principles
m (Offensive Operations

v Sec Flanning Conzideration
m Sec 2 Tactical Movement

.. Sen 3 Manewver A
| | :

Send something |

[—

=

Feady

Figure 5. IITSAT's Student Interface.

For the TDGs and the 3-D dynamic scenarios, the
ITS initially selects exercises based on the need to
test untested principles, following each by a
debriefing and detailed information on the principles
missed. The ITS then begins to also retrieve
scenarios that exercise the principles in which the
student’s mastery is weakest. Furthermore, for any
scenario using principles that the ITS believes the
student is weak in, it provides him hints for the
scenario, if they are available. These are generally
questions designed to get him to think about the most
important tactical principles required in the scenario.

After the student has demonstrated (or learned) his
mastery of general tactical principles in the TDGs, he
proceeds to that portion of the course that requires
him to show that he can apply these same principles

in a 3-D virtual reality dynamic tactical simulation
(For this phase we used Mak Technology's Spearhead
II, shown in Figure 6). Additionally, more
operations-oriented principles (such as knowing
when and how to use a company wedge formation)
are also tested. In the current prototype, the student
is given a short situation description and then
proceeds to execute the mission in Spearhead II.
After the scenario ends, the event log is analyzed by
the ITS to automatically determine which actions
were correct, incorrect, or omitted, and the
underlying principles that were understood and
applied or not.

R = —

24T W
0 KPH

Figure 6. Mak Technology's Spearhead II.

In some scenarios, we have subordinates that do not
follow orders, plans, and proper tactics. Normally
the commander would correct these problems with
voice commands. In this prototype we do no speech
understanding. But these corrections should be
manifested by the motions and actions of the
commander’s company’s tanks, of which he has
direct control. The ITS assesses these motions and
actions (captured from Variable Message Format
(VMF) messages). For example the commander’s
OPORD may have had the lead platoon in a wedge
formation but it is proceeding in a column. If he
orders them into the correct formation, an evaluation
machine detects the correction and he gets credit for
recognizing the wrong formation, and recognizing the
need to correct it. If they continue to move as a
column, he fails these principles.

Some scenarios in particular test his use of FBCB2 to
maintain situational awareness. For example, in one
scenario the enemy is approaching from an
unexpected direction, which is trivial if the
commander is watching the FBCB2 map display.
Another test we use is to have friendlies show up
suddenly at an expected enemy location.

In the scenario, unplanned actions occur, such as
unexpected contact with the enemy. His tanks begin
to react and he also issues particular orders, verbally
in the real world, with mouse clicks in the simulation.
Again the correctness of his decisions is evaluated
from the movements and actions of his company’s

tanks. For example, one scenario involves the lead
platoon spotting a road block at a choke point. That
platoon should deploy in a support by fire position
and the commander should order his infantry to
protect each flank. He should then order dismounted
assaults up each flank and around the road block to
secure the far side. He should Call For Fire at
appropriate locations and times during the scenario as
well. Evaluation finite state machines check each of
these actions and debrief the student at the end of the
scenario as well as infer the state of his tactical
knowledge. A test for the combat principle of
audacity is to have the commander unexpectedly
come across a much larger force in a totally
unprepared situation, such as refueling, without
security.

After the scenario, the commander is debriefed with
an After Action Review. All the things he did right
and wrong are reviewed and he is told about the
relevant principles. For the failed principles he is
given detailed information and one example for each.
The mastery level estimates for all principles
involved are updated. Based on these, a new scenario
is retrieved. Scenarios are selected that test untested
principles and test recently failed principles. The
prototype has different instructional methods for
students with little mastery or experience compared
to students with a lot of mastery and experience.

Process/Benefits of using IITSAT

To develop an ITS in IITSAT, first requires
determining the content and target students. Any
important information that the ITS should ask each
student about his background is first defined.
IITSAT organizes content in a book metaphor with a
course consisting of chapters and these in turn
consisting of sections, which is the main instructional
unit. Sections are assumed to teach a set of
principles. Each section has detailed and summary
multimedia files associated with it, along with
scenarios to use as examples. A section's principles
have detailed and summary descriptions to be used
during remediation (when the ITS determines that a
student failed to apply a principle in a scenario). The
ITS author must organize the content into principles,
sections, and chapters.

The default for IITSAT ITSs is for new students to be
in only 1 chapter at a time. (The ITS must estimate
their mastery to be at least to a specified degree
before it progresses them to the next chapter). For
the FBCB2 ITS this corresponded to our needs
exactly. The first chapter consisted of sections for
creating and editing FBCB2 overlays and finding and
placing common symbols. This was a needed
prerequisite for the second chapter, since the student's
answers to scenarios in that chapter would be input as
FBCB2 overlays. This second chapter consisted of
general tactical principles, which would be illustrated
by their answers to (static) tactical decision games.
The TDG scenarios all only referenced principles in
Chapter 2 and since only TDG scenarios followed
this convention, only TDG scenarios would be

retrieved to practice and test mastery of chapter 2
principles.

Chapter 3 was intended to consist of the 3-D dynamic
simulation scenarios and more operational principles
(such as when and how to perform a bounding
overwatch). Thus chapter 3's section covered
operational principles. Its scenarios referenced both
chapter 3 principles and chapter 2 (general tactical)
principles. In this way, poor decisions that related to
chapter 2 principles could be correctly assessed, and
if the ITS assessed mastery of these principles was
low enough, the student would be sent back to that
part of chapter 2.

The ITS tracked each student's mastery of each
principle into author-defined categories. It was
decided that a "Beginner" category was needed for
those with no experience or knowledge whatsoever.
This category would always be presented with
detailed material and examples before having to
perform in any scenarios. This category would also
be forced to successfully perform enough Chapter 1
FBCB2 overlay scenarios to prove mastery before
continuing on. For some chapters, it was determined
that a very high level of expertise should be required
to "pass" them. Chapter 3 principles, for example,
would not be tested again and so it needed a high
standard to pass. This became the "Expert" level.
Other chapters, such as Chapter 2, had principles
which would continue to be practiced in later
chapters, so a lower mastery level is allowed for
passing. This became the "Intermediate" level.
Finally, a category was needed that was between
"Beginner" (knows nothing) and "Intermediate"
(allowable for passing some chapters) and this
became "Novice".

For the three chapters, scenarios were defined and
annotated. The annotations consisted of the
demonstrated principles, and the evaluation method.
For chapter 1 and 2 scenarios, the evaluation method
was comparison to stored correct and incorrect
tactical plans in the form of FBCB2 overlays.
Associated with each symbol was a list of the
principles required to be applied to understand that
that symbol should be at that location. Also the
rationale for that symbol's selection and placement
were stored in a text file. Code was written to
convert both the student's and the stored plans from
FBCB2's VMF format to a plain text format that was
easier to work with. We then wrote code that could
compare two symbols from two separate plans and
assess their similarities. This was then embedded in
the similarity assessment code that comes with
IITSAT. This uses the symbol assessment to first
determine the closest stored plan. It then uses that
closest plan to create a debriefing for the student. For
chapter 3, we used IITSAT's FSMs. We defined
FSMs that analyzed the log file from the 3-D
dynamic simulation and determined which actions
were correct (and which associated principles were
thus passed) and which actions were incorrect (and
which associated principles were thus failed).

The prototype was then up and running and could be
tested and refined while playing the roles of different
kinds of students.

The primary benefit of IITSAT was greatly reduced
development effort and time. Most of the ITS
functionality we needed already existed in IITSAT
and was readily accessible. IITSAT provided good
instructional and course progression functionality.
The scenario-based instructional paradigm was very
natural for this domain. By utilizing the IITSAT
feature of different instructional methods for different
types of students (assessed primarily by background
questions and mastery of principles), we were able to
show a high degree of intelligence in our ITS. The
two primary paradigms, which were matched both to
different students and different chapters were the
scenario-debrief and introduction-examples-scenario-
debrief loops. The fact that IITSAT communicated
with simulations (and other scenario players) through
log files made the interfacing work as straight-
forward as it could be. Similarly it required no effort
for IITSAT to communicate the need for hints to the
scenario player for beginners and novices. The hints
generally took the form of a question (such as what is
the enemy probably thinking?) or the advice to
consider a particular principle or aspect of the
scenario. The FSMs performed well in evaluating the
student's actions in the dynamic simulation.

Difficulties

There were several major challenges associated with
this ITS. Some were outside of IITSAT's intended
scope. Getting FBCB2 running on a desktop system
instead of in an actual vehicle was very difficult and
time-consuming. Getting the existing interface
running between FBCB2 and the commercial game
was very difficult and time-consuming, since we had
no budget for and therefore little cooperation from
the developers of those systems. We had originally
planned to interface with both the game (to get a log
of events in the 3-D simulation) and FBCB2 (to get
the overlays and message traffic) but we eventually
had to settle with just getting the FBCB2 overlays
and using the FBCB2 log of events. We had assumed
that reading the overlay files would be straight-
forward, but we had to acquire special decompression
software to decode the Variable Message Format
(VMF) in which the overlays were stored.

Although it assumes a scenario-based paradigm,
IITSAT provides no simulation on which to play
scenarios. Similarly it provides no scenario editor.
For Chapter 3 scenarios, we used a slightly altered
version of a commercial game. While this was
acceptable for a proof-of-concept prototype, the game
would be unacceptable for actual training use for
company commanders, our target student.
Additionally for the decision evaluation, we were
forced to write domain specific code to serve as
primitives in the FSMs and as primitives in the plan
comparison.

Because IITSAT communicates to simulations via
files, it pauses while the simulation is running
(waiting for the log file). This means, that although
IITSAT may determine that a hint is appropriate, it
can only signal that fact to the simulation when the
simulation is invoked and cannot execute a hinting
mechanism itself. Thus we had to write a hinting
mechanism into each scenario player. This turned
out to be straight-forward, however, since we decided
to display the hints at the beginning of the scenario.
But, it would have been impossible to dynamically
hint during the simulation run. This limitation will
be corrected in the next version which will also
include an HLA interface.

There were four other problems with IITSAT which
have since been corrected. During the FBCB2 ITS
development, IITSAT only allowed one executable to
be defined for all scenarios. But we had two different
applications (FBCB2 overlay editor for Chapter 1 and
2 scenarios and Spearhead II for Chapter 3
scenarios). For the prototype, we wrote a small
executable which was defined to IITSAT to be the
one and only scenario player. This application, when
called with a named scenario, simply determined the
correct scenario-player for the scenario from a text
file entered by the author, and called it. Another
quirk of that version of IITSAT was that it let the
author define the initial set of background questions
when the ITS was first created, but not change it.
The author had to make sure every question was
determined at the time the ITS was first created.
Needless to say, this did mean recreating the ITS a
number of times. Fortunately, this process is not
time-consuming since it only involves entering the
names of scenarios, principles and multimedia
descriptive files, not recreating them. Another
limitation of the background questions is that they
could only be used to assess an average mastery for
all principles, not a specific mastery for a specific
principle. Finally, the version of IITSAT that we
were using, instead of allowing the student to enter
the authored ITS with a single mouse click, required
the student to start up IITSAT, load the correct
course, load the student model that corresponded to
himself, and, when running the first scenario, select
the scenario-player executable (which IITSAT would
remember thereafter).

Because IITSAT is based on a scenario-based
instruction paradigm and because much of its
adaptability is manifested in an intelligent selection
of the best scenario for a specific student, it works
best if a lot of scenarios are defined. This can be
very inconvenient during the development of a
prototype ITS or the initial stages of an operational
ITS. During the course of developing the FBCB2
ITS, we made minor adjustments to IITSAT's
scenario retrieval algorithm to improve its use of a
limited number of scenarios. But it was still the case
that adding many more scenarios would improve its
adaptability.

Another IITSAT change made during this ITS
development greatly increased the efficiency of its
XML format storage of courses and student models.

The use of FSMs for student action evaluation
required that each FSM machine had to be tied to the
specific terrain in each scenario. Any transition in the
FSM that referred to a location had to specify that
location as Lat/Long coordinates. For example, in
the scenario where the company was proceeding
along a road and encounters a road block, the
transition that checks that a mechanized infantry
platoons is deployed to the left flank actually checks
that the location of one of them is at a particular
lat/long location, within a tolerance distance. This
limited the types of scenarios that could be
practically handled. Our next version will
dynamically calculate and use terrain features, such
as ridges, hills, valleys, and intervisibility lines.

The use of IITSAT was straight-forward when the
defaults were acceptable. But there was a steep
learning curve associated with taking advantage of
the more advanced features when the default
behavior was not desired. It took some time to
understand what IITSAT was doing and why after the
defaults were changed (though it always turned out to
be behaving correctly). For example IITSAT's
defaults specify that students should finish one
chapter before being able to select another. While
this makes sense for less capable students, it will tend
to frustrate more knowledgeable ones. IITSAT does
allow different instructional methods for different
types of situations, but when certain students are
allowed to select multiple chapters, there are other
more-subtle consequences. In general, working out
these types of control issues can cause unexpected
(but correct) behavior. The control issues relate to
how much freedom of choice the student has as to the
next instructional event compared to the control
exercised by the ITS to dynamically force specific
instructional events in a certain order, compared to
the author statically defining what that order should
be.

One last difficulty related to the fact that we were
developing a prototype ITS primarily for
demonstration. IITSAT was designed primarily to
develop actual operational ITSs. Making the same
choices in defining a demonstration prototype that
would have been made in developing the operational
ITS results in a prototype that requires a very long
demonstration. For example, typical scenarios in the
prototype require from 10 to 20 minutes. Five or six
are required to get though Chapter 1; from 4 to 6 to
get through Chapter 2, and several to at least
illustrate Chapter 3. More scenarios are required if
performance in the scenarios is poor. And to
illustrate the adaptability of an ITS for different
students, generally requiring viewing its decisions on
at least two different students. This requires about 8
hours of demonstration! A useful capability would
be to define a parallel, demonstration version of
many of IITSAT's parameters.

F/A-18 Air Tactics ITS

IITSAT was used to develop a prototype air tactical
intelligent tutoring system that provides pilots with
instructional feedback automatically, allowing the
pilot to identify and concentrate on perishable skills.
The prototype was based on a cognitive task analysis
for F/A-18 missions, completed with the assistance of
a subject matter expert. A complete system consists
of a simulator, evaluator, training system, and
mission planner. The prototype comprises the
evaluator and training system interfaced to a
commercial flight simulator. The use of IITSAT
made the development of the ITS prototype, within a
very limited budget, possible. The graphical
Principle Hierarchy editor allowed the domain
knowledge to be defined with very little effort and
was able to model the F/A-18 Air Tactics knowledge
adequately. IITSAT's student model definitions were
adequate for modeling pilots and required very little
time. Changes could be made easily. IITSAT's
instructional methods structure did allow the
intelligence to generate the needed sequence of
instructional events to be defined with little effort.
IITSAT provided the visual tools to aid the authoring
of “evaluation machines” that assess pilot
performance. Several machines work in concert by
taking a simulator log of events as input and
producing a debriefing report for the pilot and
tutoring system.

Past first
waypoint

Reached first wayh&i'r'\'t/
_— Radar mode toggled

— Reached target area
B
Start
Reached target area) Radar mode
—» Failed !
activated
Reached target area
Success |

Figure 7. An F/A Air Tactics Finite State Machine.

IITSAT's evaluation machine technology was
adequate for most purposes. It included visual tools
for creating a set of mission-related principles with
an associated twenty-five evaluation machines.
Visual tools greatly improved the efficiency of
authoring evaluation machines. (Figure 7) illustrates
such a machine. See that the only way for the
machine to reach the “Success” state is for the pilot
to reach the first waypoint, toggle radar modes, and
then reach the target area. Should the pilot forget to
toggle radar modes, miss the first waypoint, or toggle
radar modes before the first waypoint, the “Failed”
state will be reached. As a result, the pilot can expect
a debriefing associated with this type of evaluation.
Our evaluation machine technology proved to be
invaluable in producing a useful debriefing for the
pilot.

The subject matter expert guided the creation of
feedback output so as not to offend the pilot. Part of
the technology included visual tools for viewing
debriefings.

To analyze pilot performance on a mission, we first
needed a content vocabulary to serve as a touchstone
for basing debriefings as well as deciding the next
training exercise. The vocabulary is embodied in
what we refer to as the "principle hierarchy." Each
principle can be a perishable skill or competency
upon which we can evaluate the pilot.

Overall, the IITSAT evaluation software module
proved invaluable for authoring the logic to assess
performance. A time-consuming element of the
evaluation machines is in the definition of the
interface between the simulator and evaluation
machines, as each machine must “understand” the
syntax of the mission log.

Originally the development team had assumed that
many of the evaluation machines would be reusable
across scenarios. However, it became easier to
define many evaluations machines that were specific
to specific scenarios. In considering other types of
more complex evaluations, a ceiling was reached
because the evaluation machines are based on finite
state technology. Evaluations involving pattern
recognition are much harder than the simpler
conditional logic implicit in the structure of the
machines, although more complex pattern-matching
primitives could have been defined, programmed and
incorporated into the finite state machines. Certain
evaluations could not be achieved because of
limitations on our evaluation machine architecture.
For example, a pilot may decide to skip waypoint 2,
yet still achieve objectives by flying directly to
waypoint IP. The evaluation machine for the
principle, "Arrived at waypoint selected," will signal
an unmet objective. Further, the time of arrival at
waypoint IP will be earlier than expected—again an
unmet objective. These specific cases could be
handled by adding more links, to create paths that
correspond to all correct sequences, but these could
become very numerous. The full-scale, operational
ITS implementation would most likely require a more
powerful machine, capable of expressing more
complex types of evaluation so as not to overburden
the author.

Other types of evaluations are imaginable, but would
push the limitations of the technology. For example,
in air-to-air combat, two fighters may be scissoring,
causing a pilot to stall the plane. An evaluation
machine could notice the stall event happening, but
not recognize the preceding scissoring motions.
Either a more powerful evaluation machine is
necessary, or another module is needed which can
interpret the mission log and inject a high-level
“scissoring motion” event prior to evaluation.

Early on, we encountered problems attaining source
code or documents regarding any one F/A-18 flight
simulator. Companies were unwilling to furnish

source code, or had inadequate methods for
transmitting or storing mission data. The simulator
we eventually adopted is “ACM: air combat
simulation for Unix and Windows,” which is a low
fidelity F-16 simulator. Information on the simulator
can be found at http://www.websimulations.com.
The simulator comes with source code written in C
for the Windows NT platform. Having source code
freed us to modify the simulation. Even though the
simulator was for an F-16, it was possible to convert
the simulator to support F/A-18 look-and-feel. We
modified the simulator in four ways. First, the HUD
was rearranged to look more like an F/A-18 HUD.
Second, route information was added. The simulator
shows the pilot a bearing to the next waypoint, shows
the name of the waypoint, and notifies the pilot when
he reaches a waypoint . Third, we added air-to-
ground mode for ground attack, as well as master arm
mode. Fourth, the simulator produces a mission log
file so that the ITS-AIR system could determine what
had happened in the simulation, and therefore
evaluate pilot performance.

In summary, IITSAT's benefits for this application
were greatly reduced development time since it
provided a large majority of the needed functionality,
the simulator log file interface was to easy to work
with, and the finite state machines (FSMs) handled
most assessments well and provided good, easily
tailorable debriefings to pilots. The major difficulties
were finding a simulation that could be altered to
produce a log file, and that there were some
evaluations that could not be performed adequately
by the FSMs. In a full-scale system, these would
require C++ programming. Lastly, many of the
FSMs needed to be written to be scenario specific.

TAO ITS Fleet Transition

The TAO ITS in use at SWOS, as described earlier,
was funded to transition to fleet use [Stottler and
Harmon 2001] and it was determined that fleet
student TAO users were more diverse than SWOS
students in terms of their familiarity with the
knowledge required. Specifically TAO ITS
originally followed a scenario-debrief instructional
cycle which is appropriate when the students are
familiar with the majority of the knowledge needed
to perform reasonably well in the simulated
scenarios. This is to be expected in a schoolhouse
environment when the material will be fresh. But
many TAO students in the fleet would not have this
level of knowledge either because they had not taken
the SWOS TAO course or it had been too long since
they had. TAO ITS needed to incorporate different
instructional methods for different types of students
in this more diverse group. We are now in the
process of transitioning the TAO ITS implementation
to IITSAT to take advantage of IITSAT's ease of
defining and using different instructional methods
(IMs). In this new version of TAO ITS, the student is
asked a few background questions to assess his level
of expertise. If his expertise is low the instructional
method is highly structured. He is presented the

http://www.websimulations.com

specific principles and their descriptions in a
prescribed order and shown examples of previously
recorded simulated scenarios showing the TAO's
correct actions which illustrate the principles. The
IITSAT version of the TAO ITS then first gives this
type of student relatively easy scenarios to practice
with. After he has shown that his mastery has
reached an intermediate level, then he transitions into
the scenario-debrief instructional method and more
difficult scenarios. This contrasts with students who
are initially (and continue to be) assessed at the
intermediate or expert level. These students have
more freedom to choose scenarios and are not
presented with instruction before scenarios, only
debriefed and remediated about their mistakes after
the scenario is complete.

The transition of the TAO ITS encountered few
problems and took relatively little time partly because
it was one of the example applications on which
IITSAT's design was based and it contributed its
FSM code to IITSAT. Most importantly, the TAO
ITS simulator already created a log file of significant
events for evaluation purposes in the correct format.
Thus, it could be largely used, except has described
below, as-is. The major difficulty with the IITSAT
version of TAO ITS was based on the fact that for
novice TAO students, a hinting mechanism was
desired and IITSAT, while allowing the ITS author to
specify when hinting would be appropriate, offers no
capability to actually provide hints. Thus the hinting
mechanism had to be built into the simulator.
Additionally, IITSAT communicates the need for
hints and other routine information though a specific
file format that the simulator had to be altered to
read. IITSAT's Instructor Interface had to be
upgraded to reflect the capabilities that already
existed in the TAO ITS's Instructor Interface Tool
(IIT) which included managing students, reviewing
their progress, and replaying any of their scenario
performances.

GENERAL LESSONS LEARNED

After having applied IITSAT to several specific ITS
projects in different domains, there are a large
number of general lessons that we have learned
relating to using a general ITS authoring tool when
creating ITSs. IITSAT's scenario/simulation-based
ITS paradigm is good for tactical decision-making
(and many other) domains. An ITS authoring tool
can save the majority of the software development
effort, if the desired ITS is based on the same
instructional paradigm on which the authoring tool is
based. This will be especially true if there is some
flexibility in the desired ITS functionality. However
keep in mind two important factors. There will tend
to be a high learning curve to use the advanced
features/flexibility of the authoring tool. And, some
domain specific software will probably need to be
written, unless the authoring tool was developed
specifically for your domain (i.e. a surface warfare
tactical decision-making ITS authoring tool or a
mechanized infantry tactical decision-making

authoring tool). The most domain specific software
in a simulation-based ITS tends to be the simulation
and scenario editor. Additionally, some domain
specific code will probably need to be written for
action/decision correctness evaluation.

Finite state machines (FSMs) are often a good basis
for evaluation in dynamic free-play simulated
scenarios. They do have some limits. Often they
will need to have domain specific primitives written
for them, so it is important that the authoring tool
allow for this ability to extend itself. Be prepared to
write at least some scenario-specific FSMs for each
scenario. Furthermore, FSMs will not be able to
handle every type of evaluation requiring, again,
domain specific code. Especially in more static
scenarios (where either the problem doesn't change
(i.e. develop a tactical plan, but don't execute it) or
student actions do not greatly affect the outcome),
comparisons to correct and likely incorrect sets of
decisions/actions annotated with appropriate rationale
and principles are very helpful in determining
correctness. Again, the most detailed part of the
comparison will probably be based on primitives
using domain-specific code.

Using software not intended for training as the
simulator/scenario-player can be very difficult,
including just getting it and existing interfaces
running. For example, FBCB2 was developed to be a
C4I system running in actual vehicles, each equipped
with a GPS and connected to a radio network. It was
very difficult to get it running on a desktop, without a
GPS or radio network connection and to drive the
vehicle positions from simulated data. Furthermore it
used a highly specific compression scheme (to make
the most of the limited bandwidth of the radio
network). Similarly using a commercial game, even
one that at been interfaced to FBCB2 already, as a
basis for a training system had several shortcomings.
Foremost was the players access to unrealistic
information and the lack of realistic, intelligent
behaviors in both friendly and enemy vehicles and
units.

Using a file interface between the simulation and ITS
had several advantages. Foremost, such interfaces
are easier to develop and debug, especially if the
interface is a human readable text file. It requires the
least modification to an existing simulation, since the
simulation only needs to have code to output events
to a file added to it. Of course DIS and HLA are
potential interface methods, if the simulation already
supports them. However, the kind of information the
ITS needs may be more detailed that that provided
through the HLA or DIS interfaces, which are really
intended to provide the data needed to coordinate
distributed simulations. This information tends to be
just the behavior of the modeled platform that is
observable to the external world, such as movement
and the use of weapons and sensors. However, the
ITS might need to know decisions and actions that
the student is taking that are purely internal to his
platform. Examples are noting which sectors a tank

commander is scanning, plan overlays created in
FBCB?2, reporting a TAO is supposed to perform
during tactical situations, and a team leader
correcting mistakes of his subordinates.

An ITS authoring tool may provide more flexibility
when the target users or needed capabilities change.
That is, these changes may take substantially less
development time if the tool provides those
capabilities. However an authoring tool may provide
less flexibility to implement a new capability if these
new capabilities are not present in the authoring tool
or at least allowed for. Therefore, ITS authoring
tools need an interface to a general purpose language,
like C++, and ways to incorporate calculated results
back into the authored ITS. Similarly, it is helpful if
the authoring tool is under continued development
and if its functionality and capabilities can be
adjusted and improved for specific uses. Because of
the rapid development capabilities, authoring tools
are very real helpful for rapid prototyping.
Paradoxically, a scenario-based ITS, developed from
an operational perspective can be difficult to
demonstrate briefly. Different decisions in setting
the parameters in the authoring tool would be made if
creating a demonstration versus an operational
system. Consequently, a "Demo-Mode" would be
good addition to an authoring tool that would allow
parallel specification of a different set of parameters
for use only in demonstrations. These would include
the use of smaller, simpler, and fewer scenarios. A
more flexible and intelligent use of what scenarios
exist when they are few in number would also be
helpful. In general, a simulation-based ITS usually
demands many scenarios. You will always want
more scenarios than you have. Therefore, you should
allocate more scenario development time and more
scenarios than you think you will actually need.

FUTURE WORK

IITSAT development is continuing. The next version
will be completed late in the summer of 2001.
Currently an HLA interface is being developed for
IITSAT and the student interface is being revamped
to make it more intuitive. As more applications are
being developed with IITSAT extra features required
for them that are generally useful are added back into
IITSAT. SHAI has been awarded an additional ITS
contract to investigate ways to make ITSs even more
adaptive to individual student differences. IITSAT is
being used as a basis for this work. Additional
adaptive features are being added to it to allow their
usefulness to be tested. TAO ITS and the
FBCB2/Tactical Decision-Making ITS will be used
for this testing.

REFERENCES

Klein, Gary and Zsambok, Caroline E., A. eds.
(1997). Naturalistic Decision Making. Mahwah, New
Jersey: Lawrence Erlbaum Associates, Publishers.

Lussier, James W., Ph.D. (2000). Coaching
Techniques For Adaptive Thinking, /ITSEC 2000

Proceedings.

Stottler, Richard H., and Parekh, Sujay S.
(November, 1996). Al Techniques for Reusable
Tactics Expert Systems. Stottler Henke and
Associates, Inc., 107-Tactics FR.

Stottler, R. H., and Vinkavich, M. (2000). Tactical
Action Officer Intelligent Tutoring System (TAO ITS).

I/ITSEC 2000 Proceedings.

Stottler, R. H., and Harmon, N. (2001). Transitioning
an ITS Developed for Schoolhouse Use to the Fleet:
TAO ITS, A Case Study. I/ITSEC 2001 Proceedings.

