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ABSTRACT 

In concert with the I/ITSEC ’01 theme, “Warfighting Readiness Through Innovative Training 
Technology”, this paper explores an innovative approach to enhancing the realism and hence the 
efficacy of training – developing the capacity for synthetic forces to act and respond emotionally.  
Emotions, along with moods and dispositions, have been shown to be important determiners of 
behaviors.  They influence how situations are interpreted, how attention is focused, which actions are 
considered, and how these actions are executed.  For example, individuals who are afraid will more 
readily interpret a situation as dangerous, have their focus of attention narrowed down to the source 
of their fear, and be biased toward actions that can reduce their level of fear.  Similarly, individuals 
who are angry will more readily interpret others as being hostile, have their focus of attention 
narrowed down to the source of their anger, and be biased toward aggressive and/or retaliatory 
actions.  Understanding and modeling variations in emotions will be crucial for producing realistic 
human-like behavior in synthetic forces.  The Army has recognized this potential and is now 
emphasizing the need for such human behavioral characteristics as being vitally important to training.  
This paper discusses fundamental principles of emotions research and then applies these principles 
to the development of a computational, emotional framework for synthetic forces. 
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INTRODUCTION 

 
CGF/SAF/IFOR Background 
Currently, distributed battlefield simulations use 
computerized behavioral models of combatants to 
serve as opponents and friendly forces.  These 
computer-controlled combatants are known as 
Computer Generated Forces (CGFs) and usually 
generate multiple battlefield entities (e.g., tanks, 
aircraft or infantry) using computer algorithms 
rather than a human crew to control the actions of 
those entities.  For CGFs to be effective, the 
controlling software ought to be flexible enough to 
react to what is happening in the simulated battle 
and robust enough to produce intelligent and 
realistic actions. The behavior of the CGF may be 
generated by a human operator assisted by 
software, in which case the class of CGF is 
referred to as a semi-automated force (SAF), or it 
may be generated completely by software, in which 
case we use the terms autonomous force (AF) or 
intelligent force (IFOR).  At a minimum, the 
behavior generated by CGFs should be feasible 
and doctrinally correct.  For example, CGF 
behaviors should be able to emulate the use of 
formations in orders, identify and occupy a variety 
of tactical positions (e.g., fighting positions, hull 
down positions, turret down positions, etc.), and 
plan reasonable routes. 
 
Historically, SAF behaviors have most often been 
implemented in procedural languages (e.g., Ada or 
C) and organized around state transition constructs 
such as finite state machines (FSMs) or Petri Nets 
(Cisneros et al., 1996; Gugel & Pratt, 2001; 
Henninger et al., 2000; Smith and Petty, 1992).  
For example, a SAF behavior such as “Occupy a 
Battle Position” might be constructed around states 
such as:  “Start FSM”, “Travel”, “Calculate 
Position”, “Move Into Position”, and “End FSM”.   
Any one of these states, in turn, could be (1) an 
embedded FSM, (2) a simple function call 
representing some low-level primitive action, or (3) 
any combination of the two.  This type of 
organization provides a useful means for 

structuring and communicating the intricacies of 
the behavior. 
 
An alternative to SAFs, IFOR models are based on 
a general architecture for human cognition, Soar.  
The Soar1 software architecture has been under 
continuous development for over 18 years as a 
model of natural intelligence (Rosenbloom, et al, 
1993; Newell, 1990).  It combines the abilities to 
react immediately to situations, use knowledge in 
deliberative decision making, step back from the 
immediate situation to perform various forms of 
problem solving and planning, and learn from 
experience.  As an indicator of the maturity and 
utility of Soar-based IFOR entities, the system has 
been used successfully as the production model in 
a number of large-scale military exercises (Hill et 
al., 1997; Jones et al., 1999; Nielsen et al., 2000).  
 
Emotions in CGFs, SAFs, and IFORs 
A recent panel report sponsored by the National 
Research Council has called for the use of 
personality factors, behavior moderators and 
emotions to develop more realistic CGFs (Pew and 
Mavor, 1998).  These recommendations have 
spawned a number of studies incorporating fatigue 
representations (French, 2001; Jones et al., 1997), 
defeat mechanisms (Heeringa & Cohen, 2000), 
personality paradigms (Hudlicka & Billingsley, 
1999; McKenzie et al., 2001), and emotion models 
(Fransechini et al., 2001; Gratch & Marsella, 2001; 
Hudlicka & Billingsley, 1999) in prominent CGF 
systems.  While we currently know of no studies 
that have investigated whether military training is 
improved by the use of CGFs with these 
capabilities, Army instructional courseware 
designers have recognized the significance of 
emotions in learning and training (Abell, 2000).  

 
 

                                                           
1 The Soar architecture is in the public domain, with source 
code available at:  http://ai.eecs.umich.edu/soar/ 
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EMOTIONS LITERATURE 
History 
The study of emotion has had a fickle history in 
psychology, which appears to be correlated to 
prominent psychological theories of the day 
(Schultz, 1981).  Over the last two decades, rapid 
growth in our understanding of brain function and 
in how it relates to behavior has renewed interest 
in emotion as a research area.  Also, exciting 
progress in experimental neurobiology paralleled 
by explosive development of connectionist models 
has contributed to the resurgence of emotions 
research.  The term “connectionist”, coined by 
psychologists, is used to convey the fact that many 
psychological constructs are better explained in 
terms of distributed, parallel networks of adaptive 
units as opposed to terms of serial symbolic 
processing units.  Practically speaking, a 
connectionist system can be thought of as the 
application of neural networks to high-level 
cognition (Barnden, 1995).  A variety of neural 
network studies have already begun to address a 
wide range of issues (e.g., motivation, emotion, 
and goal direction) in cognition and behavior  (see 
Levine, 1992).  Interestingly, many of the concepts 
of connectionist psychology are strongly related to 
work in behaviorism, where the former provides a 
stronger “internal structure” using simple units with 
explicit learning rules rather than simple stimulus-
response probabilities.   
 
Because the field of emotion is a complex, 
immature discipline, it constantly changes as new 
knowledge is acquired.  There is currently no 
universally accepted, comprehensive theory of 
emotions.  Instead, there exist a host of “mini-
theories” that emphasize cognitive, motivational, 
physiological, and behavioral dimensions of 
emotion.  Thus, formal attempts to define emotion 
have been like the proverbial blind men who were 
asked to place their hands on an elephant and 
articulate what “an elephant looks like” – i.e., the 
description is specific to the individual’s 
experience.  For example, cognitive theorists tend 
to focus on thoughts and evaluations when 
defining emotions, physiologists tend to focus on 
physiological reactions, behaviorists on emotional 
behavior, and so on.  For instance, one camp of 
researchers will treat the term emotion as it applies 
to a particular set of feelings (Schwarz and Clore, 
1983).  That is, a person feels anger if someone is 
offensive to him, pleasure if he receives a gift, or 
fear if a fierce animal is about to attack him.  On 
the other hand, Behaviorists consider this to be an 
unscientific language and instead view an emotion 
as a response (Lindsay and Norman, 1977).  

“Response” in this case can either be interpreted 
as an overt behavior (cognitive response), or an 
internal process (physiological response) that 
occurs as a result of a particular stimulus.   
 
Other researchers view emotions in terms of 
motivation (Ferguson, 1982).  That is, emotions 
correspond to strong motives, and an organism will 
proceed to eliminate the motive.  In the 
psychological literature this is called “drive 
reduction.”   For example, researchers have shown 
that rats learn new responses in order to remove 
themselves from an environment in which they had 
been shocked.  The anxiety that motivated them to 
learn the avoidance-response can be considered 
as both an emotion and a motive.   In this view, 
emotions can activate and direct behavior in the 
same way biological or psychological motives can, 
they can simply accompany motivated behavior, or 
they can simply be considered a goal. 
 
Common Emotional Constructs 
While individual camps exist, there is now a 
growing list of researchers (Lazarus, 1984; Ortony, 
1988; Levine and Leven, 1992) which generally 
support the notion that emotional states can be 
manipulated by a combination of different factors.  
At a minimum, these factors seem to include 
cognitive processes (expectations) and 
physiological states (usually interpreted as 
arousal).  Other factors have included: 
environmental influences and behavioral 
expressions.  These notions have lead some 
psychologists, such as Lazarus (1984), to argue 
that emotion is multifaceted, and that all facets 
must be present in order to label something as an 
emotional state.   

A second concept that is common to many emotion 
theories is the existence of a central evaluative 
mechanism that determines whether a given 
situation is potentially harmful or beneficial to the 
individual.  For example, LeDoux and Fellous 
(1995) have discovered neural circuitry that 
processes stimuli according to whether they 
threaten or enhance the survival of the organism or 
its species.  Also, a related discovery of an 
emotional memory system that works in concert 
with this circuitry has further added to the recent 
thrust of emotion research.  Emotional memory has 
been associated with the amygdala and appears to 
add an “emotional flavor” to a declarative memory, 
which is thought to primarily originate in the 
hippocampus.  This theory, exercised at its most 
primitive level, suggests that emotions are strong, 
“hard-wired” responses to stimuli that have a 



 
 
 

positive or negative survival value.  The 
accompanying work on emotional memory 
suggests that these responses are mostly learned 
through classical conditioning (LeDoux, 1992) and 
performed as unconscious processes (Damasio, 
1995).   
 
 

EMOTIONAL IFOR FRAMEWORK 

Clearly, the models of emotions proposed in the 
psychological community are not only complex, but 
still in their formative stages.  This gives rise to a 
system that is difficult to express in computational 
terms.  After all, the integration of an emotion 
model in a computer agent ultimately requires the 
expression of that model in a formal and 
executable language, and making the translation 
from an imprecise model to a formal language is 
an onerous task.  However, there are some 
consistencies among the theories, and it is our 
strategy to use these generally accepted common 
themes to the extent possible.  In those cases 
where no one theme prevails, we adopt a more 
functional, physiologically based approach as it 
tends to be more readily expressed in 
computational terms. 
 
Our model adopts the position that emotions are 
correlated to survival value.  The model extends 
Kaplan et al.’s (1991) work by building on the 
premise that primitive emotional responses 
enhance survival and that more complex emotions 
(e.g., those based on cognition) should then serve 
the same purpose.  In this instance, a primitive 
emotional response such as “fearing a bear” is 
treated the same way as a cognitive emotional 
response such as “fearing a gun”.  In both cases 
fear is an appropriate response, useful for avoiding 
potentially dangerous situations.  
 
Our model of emotion and its interactions with 
cognition is based on a symbolic-connectionist 
hybrid architecture.  A number of researchers have 
investigated and advocate the use of this type of 
architecture for a variety of cognitive modeling 
tasks (Frasconi et al., 1995; Shavlik et al., 1991; 
Sun & Alexander, 1997; Tan, 1997). In our system, 
cognition is represented within Soar, a symbolic 
cognitive architecture, and emotional intensity is 
represented within a connectionist model (Chown, 
1993).  In using this approach, our work explicitly 
distinguishes the subconscious processes (in a 
connectionist implementation) and the decision 
making that is subject to emotional influences (in a 

symbolic cognitive architecture).  It is the 
combination of these two systems that we refer to 
as our “emotions model” or “emotions 
architecture”.   
 
Once an emotions model has been established, 
we need some organizing framework within which 
to exercise it.  After all, different people have 
different reactions to the same situations.  Thus, 
emotions and emotional responses are unique to 
individuals and most meaningfully expressed in 
terms of individual differences.  Such differences 
can be thought of as an “emotional style” or 
temperament.  Adopting such a framework allows 
us to distinguish between the characteristic way a 
person experiences emotions (emotional style) and 
the way those emotions are realized (emotional 
content).  In this framework, for example, referring 
to someone as frightened or angry would involve 
referring to the content of a person’s emotional 
experience.  On the other hand, referring to 
someone as hot headed or stoic would involve 
referring to the style with which a person may be 
inclined to experience emotions.    
   
The following two sections on Cognition and 
Emotional Intensity review the two major 
components of the emotions model, the symbolic 
component and the connectionist component, 
respectively.  The third section, Temperament, 
reviews personality-related literature and presents 
a preliminary temperament framework within which 
the emotion model will be exercised and 
evaluated. 
 
Cognition – Symbolic Model 
As illustrated in Figure 1, both the Decision Making 
and the Emotional Appraisal component of the 
emotions model occur within Soar, the cognitive 
model.  Specifically, these two components reside 
in long-term memory where they are represented 
in the form of productions.  Although decision 
making is not a new component to Soar-based 
IFORs, modeling the influence of emotions on 
decision making is new.  Thus, in the following two 
sub-sections, we explain both how the Emotional 
Appraisal system works as well as how the 
Decision Making process is influenced by the 
resulting emotions. 
 
Emotional Appraisal.  Following Gratch (1999, 
2000a,b), appraisal in our system is based around 
goals.  The most straightforward types of appraisal 
require monitoring whether goals have been 
achieved, have become likely or unlikely to be

 



 
 
 

 
 

Figure 1.  Block Diagram of CGF Emotion Framework 
 

achieved, or have been deemed unachievable.  
The determination of the status of these goals 
comes from the cognitive system’s assessment of 
situational awareness information, which is, in turn, 
provided by the Perceptual Analysis module in the 
Soar-ModSAF Interface, together with long-term 
situation-interpretation knowledge.  Each of these 
types of appraisals results in signals to the 
"pleasure/pain" and “clarity/confusion” centers of 
the Emotions Interface.  Again, since this form of 
appraisal is centered around the goals in the 
agent's current plan, only certain types of 
situational information are relevant for particular 
types of goals.  The system will only be 
"concerned" about whether it is clear or confused 
about inputs when those inputs are germane to the 
current set of goals.  For example, to satisfy the 
goal of destroying an enemy tank, the agent must 
be able to detect the location of that tank.  If the 
agent could not detect the location, it would 
experience an increase in confusion.  On the other 
hand, if the agent’s planner had not established 
the goal of destroying a particular tank, then 

lacking contact with that tank is of no concern to 
the planning system2.  
 
Decision Making.  The primary input from the 
emotions interface into the planning agent is a 
signal representing a level of arousal.  One of the 
primary effects of a high level of arousal is to 
narrow the focus of attention.  In the planning 
agent, we represent a narrowed focus of attention 
by restricting the knowledge that will be brought to 
bear on the plan monitoring, execution, and re-
planning processes.  One aspect of the narrowing 
of focus is that, when highly aroused, an agent will 
neglect to apply knowledge that is not well 
rehearsed.  This will cause the agent to migrate its 
behavior toward its "core personality" or expertise 
during episodes of heightened arousal.  For 
example, if an agent has a strong tendency toward 
risky behavior incorporated into its knowledge 
                                                           
2 Since the goal to attack doesn’t exist, the agent would not 
experience an increase in confusion as a result of being unable 
to locate the enemy tank’s position.  Lack of contact with enemy 
tank may, however, affect confusion as it relates toward other 
types of goals (e.g., avoiding enemy contact). 
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base, but it has been briefed with a low-risk 
mission, an increase in arousal will cause the 
agent to ignore the low-arousal knowledge (from 
the mission briefing) and revert to well-rehearsed, 
ingrained high-risk behavior.  We accomplish this 
in the emotional planner by tagging agent rules 
with arousal thresholds.  Only those rules with a 
threshold exceeding the current level of arousal 
are allowed to fire.  The side effect of this approach 
is to allow much more thoughtful and deliberative 
reasoning under conditions of low arousal. 
 
Other input from the emotions system includes 
current levels of pleasure and pain.  These inputs 
may influence the preferences and evaluations that 
the agent uses when comparing alternative 
courses of action during re-planning or alternative 
interpretations during situation assessment.  The 
combination of processing arousal, pleasure, and 
pain will likely lead to non-linear interactions 
between the narrowed focus of attention (reducing 
the knowledge brought to bear on reasoning) and 
the alteration of preferences (changing the 
selection of proposed courses of action).  One of 
the benefits of this approach is that it is not 
necessary to posit specific mechanisms for 
differing emotions, as has been done in several 
other synthetic emotional systems (Gadanho & 
Hallam, 1998; Velasquez, 1997, 1998). 
 
While other researchers opt to specifically assign 
symbolic labels (Gratch, 1999; Ortony, Clore, and 
Collins, 1988), our emotion model does not make 
such high-level explicit assignments (e.g., fear, 
anger, happiness, sadness, etc).  However, 
emotional states in this model could be viewed as 
arising from a combination of pleasure/pain, 
arousal, attention and temporal components.  A 
simple example of how two of the factors, arousal 
and affect (pleasure/pain) might interact can be 
seen in Figure 2. In this figure, “fear” is associated 
with high levels of arousal stemming from the 
anticipation of pain.  Because our system 
ultimately has four dimensions, many combinations 
for different emotional labels exist.  For example, if 
the arousal trigger is a past event instead of an 
anticipated event, the emotional interpretation of 
“fear” might change to “remorse” (if the attentional 
dimension is directed at something other than the 
source of the pain) or “anger” (if the attentional 
dimension is directed at the source of the pain).   
 
Emotional Intensity  – Connectionist Model 
Once the appraisal system has derived values for 
the clarity/confusion input and the pleasure/pain 
input, the connectionist model uses this information 
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Figure 2.  Example of Interaction Between Arousal 
Level and Pain/Pleasure Continuum 
 
 
to derive a change in the agent’s level of arousal.    
The connectionist model, illustrated in Figure 1 as 
residing in the Emotions Interface, consists of 
several components: 
 
1) An arousal level system 
2) A pleasure/pain system  
3) A clarity/confusion mechanism 
 
Whereas pleasure/pain and confusion/clarity all 
work to detect events of importance to an agent, 
the arousal system functions to determine the 
intensity of the response to these events.  The 
following three sub-sections review the arousal 
mechanism, pleasure/pain module, and 
clarity/confusion module, respectively. 
 
Arousal.  Increased arousal has a number of well-
studied effects on cognitive factors such as 
memory and attention (D’Ydewalle, et al., 1985; 
Hebb, 1972; Milner, 1991).  An extremely high 
level of arousal, however, can impair performance 
in situations that are more complex tasks (e.g., 
requiring discrimination among multiple cues).  
Expressed graphically in Figure 3, the relationship 
between level of arousal and performance is an 
inverted U-shape.  This rise in the graph 
represents an improvement in performance as 
alertness, interest, and positive emotion are 
increased.  After performance reaches the 
optimum level, however, there is an increase in 
anxiety and emotional disturbances as arousal 
level becomes greater, and a subsequent decline 
in performance.  Theoretically, there is an optimal 
level of arousal in terms of internal and external 
stimuli.  Conditions that depart too severely from 



 
 
 

Figure 3.  Generalized Effects of Arousal on 
Performance 
 
this optimal state in either direction incite the 
organism to act to restore the equilibrium.     
 
To model increases in arousal, we use a model like 
that offered in Kaplan et al (1991): 
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and to represent the subsequent recovery of 
arousal to its equilibrium, we use 
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In this case, positive factors would include 
stimulation of factors such as:  pleasure and pain, 
affectively coded cognition (e.g. anticipation of 
pleasure or pain), and stimuli that carry inherently 
arousing or calming properties.  Because of the 
domain, the focus of our efforts will be on the 
second factor, affectively coded cognition such as 
the anticipation of pleasure or pain.  In a combat 

domain, for example, this deals with threat 
assessment, anticipation of victory, etc.  
Sometimes this could occur through direct 
perception (e.g., “a missile is coming at me”), other 
times it would be more of a cognitive assessment 
(e.g., “the enemy is about to retake an important 
hill”).   
 
The sensitivity to arousal variable in equation (1) is 
calculated according to equation (3): 
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In this equation, the Arousal term is squared to 
more highly differentiate high levels of arousal from 
lower levels of arousal and then it is multiplied by 
the susceptibility to arousal constant.  It is this 
parameter that distinguishes an individual’s 
general sensitivity to become aroused.  For 
example, as reviewed in the future section on 
Temperament, personality literature has long 
theorized that the critical factor that distinguishes 
introverts and extroverts is the relative 
susceptibility to becoming aroused  (D’Ydewalle, et 
al., 1985; Eysenck & Eysenck, 1985).  Thus, we 
can distinguish between these temperaments by 
adjusting λA, the susceptibility to arousal constant. 
 
Affect (Pleasure/Pain).  The pleasure/pain 
continuum system is designed to interpret the level 
to which a stimulus represents a threat or 
enhancement to the survival of the species.  In 
other words, stimuli that impede one’s chances of 
survival would be tagged as painful and stimuli that 
would help one survive or reproduce would be 
tagged as pleasurable.  As shown in the coupling 
of equations (1) and (4), instances of pain and 
pleasure combine to stimulate arousal.  
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Perception (Clarity/Confusion).  The clarity and 
confusion constructs represent the cognitive 
dimension of pleasure/pain.  Accordingly, the 
pleasure/pain inputs in equation (4) can be 
interpreted as either physical or cognitive.  Kaplan 
(1991) considers cognitive pleasure and cognitive 
pain as important correlates of pleasure and pain 
in forms of higher intelligence, because they 
facilitate the survival of the individual and the 
species.  For example, because humans are not 
particularly fast, fierce, or camouflaged, we rely on 
our ability to organize, store, and use information 
to enhance our survival.  As a result, confusion is a 
potentially dangerous attribute and clarity is a 
desirable attribute, since an organism that is 
confused is less likely to respond in accord with its 
best interests.  In this sense, clarity and confusion 
incorporate the influence of information quality and 
perceptual accuracy on the level of arousal.  That 
is, the confusion/clarity mechanism becomes a 
measure that evaluates the relationship between 
the world and the person’s knowledge of the world. 
 
Temperament 
Using the framework presented in the previous 
section, we will consider the effects of individual 
differences in temperament by changing the 
constant parameters in the emotional intensity 
subsystem.  So, just as we can adjust λA, the 
susceptibility to arousal constant, to distinguish 
between introverts and extraverts, we can adjust 
other parameters in our emotions model to 
distinguish between other temperament classes.  
This approach allows us to model an individual’s 
emotional style such that it can lead to distinct 
decision making profiles in a variety of emotionally 
charged scenarios.   
 
A wealth of literature exists on personality typing in 
humanistic psychology (Keirsey & Bates, 1984; 
Myers & McCaulley, 1985) to scientific psychology 
(Eysenck, 1991; Digman, 1989).  Humanistic 
approaches tend to be based on the work of Carl 
Jung, while Experimental approaches tend to rely 
on data analysis techniques using factor analyses.  
Interestingly, some work has been done to 
correlate the two approaches (McCrae & Costa, 
1989; Saggino & Klein, 1996).   
 
One of the primary factor models used in the 
personality-related research is the three factor 
PEN model (Eysenck, 1981).  This model 
maintains that three super traits (i.e., psychoticism, 
extraversion, neuroticism) are sufficient to describe 
the organization of personality.  Another prominent  
 

personality model, the "“Big Five Theory" or “Five 
Factor Model”  (Costa and McCrae, 1995; Digman, 
1990) also contains the factors of extraversion and 
neuroticism (alternatively known as surgency and 
emotional stability), but these five factor models 
claim that an additional two higher-order terms are 
required to adequately represent personality.  As 
indicated in Table 1, many of these factors are 
presumed to represent the same dimension, but 
are assigned different names by different 
researchers. 
 

 Eysenck 
(PEN) 

Costa & McCrae 
(Big 5) 

Digman 
(FFM) 

1 Extraversion Extraversion Extraversion 
2 Agreeableness Friendly Compliance 
3 

Psychoticism 
Conscientiousness Will to Achieve 

4 Neuroticism Neuroticism Emotional Stability 
5 Intellect* Openness Intellect 

* not included in Eysenck’s domain of “temperament” traits 
 
Table 1.  Comparison of 3-Factor and 5-Factor 
Models 
 
Despite the lack of agreement on the number of 
basic traits, some overlap does occur (Eysenck, 
1991).  Two dimensions common in most factor-
analytic studies of personality are Extraversion (vs. 
Introversion) and Stability (vs. Instability).  The 
extraversion dimension refers to the degree to 
which one’s basic orientation is turned inward 
towards the self or outward toward the external 
world.  It is essentially the same distinction made 
by Jung, although Jung used the terms to refer to a 
personality type rather than positions along a 
scale.  Stability-instability is a dimension of 
emotionality, with calm, well-adjusted, reliable 
individuals at the stable end and moody, anxious, 
temperamental, and unreliable individuals at the 
other. 
 
The relationships of some these personality 
dimensions and emotions have been analyzed 
thoroughly (Costa & McCrae, 1980; Meyer & 
Shack, 1989; Rusting & Larsen, 1996; Williams, 
1989).  The results of these studies show that 
extraversion is linked mainly with average levels of 
positive affect, and neuroticism and psychoticism 
are linked with average levels of negative affect.  
For example, when subjects were exposed to 
positive, negative or neutral guided imagery 
scenarios, it was found that extraversion correlated 
with positive mood following the positive imagery 
task, but not with negative mood following the 
negative imagery task.  Neuroticism, on the other 
hand, correlated with negative mood following the 
negative imagery task, but not with positive mood 



 
 
 

following the positive imagery task.  These 
relationships have been replicated repeatedly 
using various measurement scales, time scales, 
and report types.  This suggests that extraversion 
represents an increased susceptibility to positive 
affect, and that neuroticism predisposes greater 
susceptibility to negative affect.  Thus, by adjusting 
the parameters λ(+) and λ(-), we are able to 
distinguish between an individual’s predisposition 
toward pleasure and pain, respectively. 
 
The review of literature on how temperament 
influences emotional experiences is ongoing, but 
findings such as these provide some confidence 
that we can develop a coherent mapping between 
temperament and emotion that is rooted in 
empirical research results.  
 
 

RELATED RESEARCH 

As indicated in the introduction to this paper, other 
researchers in the military simulation and training 
community are investigating approaches to 
incorporate emotions in CGF systems.  As the 
framework for our system has now been defined, 
this section attempts to distinguish it from the 
models developed by other researchers in this 
community. 
 
Our work most closely resembles the work of 
Gratch and Marsella (2001).  In large part, this is 
due to the fact that both systems make use of the 
Soar architecture for decision making.  Thus, 
similar constructs for relating an agent’s emotions 
to the agent’s decisions are required.  However, 
differences in the systems do exist.  For example, 
the model of emotional intensity presented in this 
paper is influenced by more factors.  Also, this 
model can be influenced by individual differences 
in temperament. 
 
Hudlicka and Billingsley (1999) also make the 
connection between emotional content and 
leadership style by representing the effects of 
temperament in their framework.  However,  
emphasis appears to be placed on the influence of 
emotions on decision making, with little focus 
placed on the complexity or variability of the 
emotional intensity model. 
 
Alternatively, Fransechini et al (2001) place a 
much greater emphasis on deriving emotional 
intensity through a highly biologically based, 
neurophysiological approach.  The model is based 
on two dimensions including arousal and distress, 

but its precise form is not discernible from current 
publications. 
 
Given the immaturity of the research in this area, 
we are not able to conclusively state that one 
approach is better than another, only that 
differences exist.  Moreover, as indicated in the 
Introduction, we know of no research that studies 
whether emotional CGFs will even improve 
training.  But, we expect that the models 
developed from this generation of research will be 
useful in assessing whether military training is 
indeed improved through the integration of 
emotional models into synthetic forces.  Also, given 
that military communities consistently demand 
greater realism from their simulations, this 
research will be useful in providing the groundwork 
for meeting this demand and improving future 
models of cognitive-emotive behaviors. 
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