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ABSTRACT

In concert with the I/ITSEC ’01 theme, “Warfighting Readiness Through Innovative Training
Technology”, this paper explores an innovative approach to enhancing the realism and hence the
efficacy of training — developing the capacity for synthetic forces to act and respond emotionally.
Emotions, along with moods and dispositions, have been shown to be important determiners of
behaviors. They influence how situations are interpreted, how attention is focused, which actions are
considered, and how these actions are executed. For example, individuals who are afraid will more
readily interpret a situation as dangerous, have their focus of attention narrowed down to the source
of their fear, and be biased toward actions that can reduce their level of fear. Similarly, individuals
who are angry will more readily interpret others as being hostile, have their focus of attention
narrowed down to the source of their anger, and be biased toward aggressive and/or retaliatory
actions. Understanding and modeling variations in emotions will be crucial for producing realistic
human-like behavior in synthetic forces. The Army has recognized this potential and is now
emphasizing the need for such human behavioral characteristics as being vitally important to training.
This paper discusses fundamental principles of emotions research and then applies these principles
to the development of a computational, emotional framework for synthetic forces.
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INTRODUCTION

CGF/SAF/IFOR Background

Currently, distributed battlefield simulations use
computerized behavioral models of combatants to
serve as opponents and friendly forces. These
computer-controlled combatants are known as
Computer Generated Forces (CGFs) and usually
generate multiple battlefield entities (e.g., tanks,
aircraft or infantry) using computer algorithms
rather than a human crew to control the actions of
those entities. For CGFs to be effective, the
controlling software ought to be flexible enough to
react to what is happening in the simulated battle
and robust enough to produce intelligent and
realistic actions. The behavior of the CGF may be
generated by a human operator assisted by
software, in which case the class of CGF is
referred to as a semi-automated force (SAF), or it
may be generated completely by software, in which
case we use the terms autonomous force (AF) or
intelligent force (IFOR). At a minimum, the
behavior generated by CGFs should be feasible
and doctrinally correct. For example, CGF
behaviors should be able to emulate the use of
formations in orders, identify and occupy a variety
of tactical positions (e.g., fighting positions, hull
down positions, turret down positions, etc.), and
plan reasonable routes.

Historically, SAF behaviors have most often been
implemented in procedural languages (e.g., Ada or
C) and organized around state transition constructs
such as finite state machines (FSMs) or Petri Nets
(Cisneros et al., 1996; Gugel & Pratt, 2001;
Henninger et al., 2000; Smith and Petty, 1992).
For example, a SAF behavior such as “Occupy a
Battle Position” might be constructed around states
such as: “Start FSM”, “Travel”’, “Calculate
Position”, “Move Into Position”, and “End FSM”.
Any one of these states, in turn, could be (1) an
embedded FSM, (2) a simple function call
representing some low-level primitive action, or (3)
any combination of the two. This type of
organization provides a useful means for
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structuring and communicating the intricacies of
the behavior.

An alternative to SAFs, IFOR models are based on
a general architecture for human cognition, Soar.
The Soar' software architecture has been under
continuous development for over 18 years as a
model of natural intelligence (Rosenbloom, et al,
1993; Newell, 1990). It combines the abilities to
react immediately to situations, use knowledge in
deliberative decision making, step back from the
immediate situation to perform various forms of
problem solving and planning, and learn from
experience. As an indicator of the maturity and
utility of Soar-based IFOR entities, the system has
been used successfully as the production model in
a number of large-scale military exercises (Hill et
al., 1997; Jones et al., 1999; Nielsen et al., 2000).

Emotions in CGFs, SAFs, and IFORs

A recent panel report sponsored by the National
Research Council has called for the use of
personality factors, behavior moderators and
emotions to develop more realistic CGFs (Pew and
Mavor, 1998). These recommendations have
spawned a number of studies incorporating fatigue
representations (French, 2001; Jones et al., 1997),
defeat mechanisms (Heeringa & Cohen, 2000),
personality paradigms (Hudlicka & Billingsley,
1999; McKenzie et al., 2001), and emotion models
(Fransechini et al., 2001; Gratch & Marsella, 2001;
Hudlicka & Billingsley, 1999) in prominent CGF
systems. While we currently know of no studies
that have investigated whether military training is
improved by the use of CGFs with these
capabilities, Army instructional courseware
designers have recognized the significance of
emotions in learning and training (Abell, 2000).

' The Soar architecture is in the public domain, with source
code available at: http://ai.eecs.umich.edu/soar/
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EMOTIONS LITERATURE

History

The study of emotion has had a fickle history in
psychology, which appears to be correlated to
prominent psychological theories of the day
(Schultz, 1981). Over the last two decades, rapid
growth in our understanding of brain function and
in how it relates to behavior has renewed interest
in emotion as a research area. Also, exciting
progress in experimental neurobiology paralleled
by explosive development of connectionist models
has contributed to the resurgence of emotions
research. The term “connectionist’”, coined by
psychologists, is used to convey the fact that many
psychological constructs are better explained in
terms of distributed, parallel networks of adaptive
units as opposed to terms of serial symbolic
processing  units. Practically speaking, a
connectionist system can be thought of as the
application of neural networks to high-level
cognition (Barnden, 1995). A variety of neural
network studies have already begun to address a
wide range of issues (e.g., motivation, emotion,
and goal direction) in cognition and behavior (see
Levine, 1992). Interestingly, many of the concepts
of connectionist psychology are strongly related to
work in behaviorism, where the former provides a
stronger “internal structure” using simple units with
explicit learning rules rather than simple stimulus-
response probabilities.

Because the field of emotion is a complex,
immature discipline, it constantly changes as new
knowledge is acquired. There is currently no
universally accepted, comprehensive theory of
emotions. Instead, there exist a host of “mini-
theories” that emphasize cognitive, motivational,
physiological, and behavioral dimensions of
emotion. Thus, formal attempts to define emotion
have been like the proverbial blind men who were
asked to place their hands on an elephant and
articulate what “an elephant looks like” — i.e., the
description is specific to the individual’'s
experience. For example, cognitive theorists tend
to focus on thoughts and evaluations when
defining emotions, physiologists tend to focus on
physiological reactions, behaviorists on emotional
behavior, and so on. For instance, one camp of
researchers will treat the term emotion as it applies
to a particular set of feelings (Schwarz and Clore,
1983). That is, a person feels anger if someone is
offensive to him, pleasure if he receives a gift, or
fear if a fierce animal is about to attack him. On
the other hand, Behaviorists consider this to be an
unscientific language and instead view an emotion
as a response (Lindsay and Norman, 1977).

“Response” in this case can either be interpreted
as an overt behavior (cognitive response), or an
internal process (physiological response) that
occurs as a result of a particular stimulus.

Other researchers view emotions in terms of
motivation (Ferguson, 1982). That is, emotions
correspond to strong motives, and an organism will

proceed to eliminate the motive. In the
psychological literature this is called “drive
reduction.” For example, researchers have shown

that rats learn new responses in order to remove
themselves from an environment in which they had
been shocked. The anxiety that motivated them to
learn the avoidance-response can be considered
as both an emotion and a motive. In this view,
emotions can activate and direct behavior in the
same way biological or psychological motives can,
they can simply accompany motivated behavior, or
they can simply be considered a goal.

Common Emotional Constructs

While individual camps exist, there is now a
growing list of researchers (Lazarus, 1984; Ortony,
1988; Levine and Leven, 1992) which generally
support the notion that emotional states can be
manipulated by a combination of different factors.
At a minimum, these factors seem to include

cognitive processes (expectations) and
physiological states (usually interpreted as
arousal). Other factors have included:
environmental influences and behavioral

expressions. These notions have lead some
psychologists, such as Lazarus (1984), to argue
that emotion is multifaceted, and that all facets
must be present in order to label something as an
emotional state.

A second concept that is common to many emotion
theories is the existence of a central evaluative
mechanism that determines whether a given
situation is potentially harmful or beneficial to the
individual. For example, LeDoux and Fellous
(1995) have discovered neural circuitry that
processes stimuli according to whether they
threaten or enhance the survival of the organism or
its species. Also, a related discovery of an
emotional memory system that works in concert
with this circuitry has further added to the recent
thrust of emotion research. Emotional memory has
been associated with the amygdala and appears to
add an “emotional flavor” to a declarative memory,
which is thought to primarily originate in the
hippocampus. This theory, exercised at its most
primitive level, suggests that emotions are strong,
“hard-wired” responses to stimuli that have a



positive or negative survival value. The
accompanying work on emotional memory
suggests that these responses are mostly learned
through classical conditioning (LeDoux, 1992) and
performed as unconscious processes (Damasio,
1995).

EMOTIONAL IFOR FRAMEWORK

Clearly, the models of emotions proposed in the
psychological community are not only complex, but
still in their formative stages. This gives rise to a
system that is difficult to express in computational
terms. After all, the integration of an emotion
model in a computer agent ultimately requires the
expression of that model in a formal and
executable language, and making the translation
from an imprecise model to a formal language is
an onerous task. However, there are some
consistencies among the theories, and it is our
strategy to use these generally accepted common
themes to the extent possible. In those cases
where no one theme prevails, we adopt a more
functional, physiologically based approach as it
tends to be more readily expressed in
computational terms.

Our model adopts the position that emotions are
correlated to survival value. The model extends
Kaplan et al’s (1991) work by building on the
premise that primitive emotional responses
enhance survival and that more complex emotions
(e.g., those based on cognition) should then serve
the same purpose. In this instance, a primitive
emotional response such as “fearing a bear” is
treated the same way as a cognitive emotional
response such as “fearing a gun”. In both cases
fear is an appropriate response, useful for avoiding
potentially dangerous situations.

Our model of emotion and its interactions with
cognition is based on a symbolic-connectionist
hybrid architecture. A number of researchers have
investigated and advocate the use of this type of
architecture for a variety of cognitive modeling
tasks (Frasconi et al., 1995; Shavlik et al., 1991;
Sun & Alexander, 1997; Tan, 1997). In our system,
cognition is represented within Soar, a symbolic
cognitive architecture, and emotional intensity is
represented within a connectionist model (Chown,
1993). In using this approach, our work explicitly
distinguishes the subconscious processes (in a
connectionist implementation) and the decision
making that is subject to emotional influences (in a

symbolic cognitive architecture). It is the
combination of these two systems that we refer to
as our “emotions model” or “emotions
architecture”.

Once an emotions model has been established,
we need some organizing framework within which
to exercise it. After all, different people have
different reactions to the same situations. Thus,
emotions and emotional responses are unique to
individuals and most meaningfully expressed in
terms of individual differences. Such differences
can be thought of as an “emotional style” or
temperament. Adopting such a framework allows
us to distinguish between the characteristic way a
person experiences emotions (emotional style) and
the way those emotions are realized (emotional
content). In this framework, for example, referring
to someone as frightened or angry would involve
referring to the content of a person’s emotional
experience. On the other hand, referring to
someone as hot headed or stoic would involve
referring to the style with which a person may be
inclined to experience emotions.

The following two sections on Cognition and
Emotional Intensity review the two major
components of the emotions model, the symbolic
component and the connectionist component,
respectively. The third section, Temperament,
reviews personality-related literature and presents
a preliminary temperament framework within which
the emotion model will be exercised and
evaluated.

Cognition — Symbolic Model

As illustrated in Figure 1, both the Decision Making
and the Emotional Appraisal component of the
emotions model occur within Soar, the cognitive
model. Specifically, these two components reside
in long-term memory where they are represented
in the form of productions. Although decision
making is not a new component to Soar-based
IFORs, modeling the influence of emotions on
decision making is new. Thus, in the following two
sub-sections, we explain both how the Emotional
Appraisal system works as well as how the
Decision Making process is influenced by the
resulting emotions.

Emotional Appraisal. Following Gratch (1999,
2000a,b), appraisal in our system is based around
goals. The most straightforward types of appraisal
require monitoring whether goals have been
achieved, have become likely or unlikely to be
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Figure 1. Block Diagram of CGF Emotion Framework

achieved, or have been deemed unachievable.
The determination of the status of these goals
comes from the cognitive system’s assessment of
situational awareness information, which is, in turn,
provided by the Perceptual Analysis module in the
Soar-ModSAF Interface, together with long-term
situation-interpretation knowledge. Each of these
types of appraisals results in signals to the
"pleasure/pain" and “clarity/confusion” centers of
the Emotions Interface. Again, since this form of
appraisal is centered around the goals in the
agent's current plan, only certain types of
situational information are relevant for particular
types of goals. The system will only be
"concerned" about whether it is clear or confused
about inputs when those inputs are germane to the
current set of goals. For example, to satisfy the
goal of destroying an enemy tank, the agent must
be able to detect the location of that tank. If the
agent could not detect the location, it would
experience an increase in confusion. On the other
hand, if the agent’s planner had not established
the goal of destroying a particular tank, then

lacking contact with that tank is of no concern to
the planning systemz.

Decision Making. The primary input from the
emotions interface into the planning agent is a
signal representing a level of arousal. One of the
primary effects of a high level of arousal is to
narrow the focus of attention. In the planning
agent, we represent a narrowed focus of attention
by restricting the knowledge that will be brought to
bear on the plan monitoring, execution, and re-
planning processes. One aspect of the narrowing
of focus is that, when highly aroused, an agent will
neglect to apply knowledge that is not well
rehearsed. This will cause the agent to migrate its
behavior toward its "core personality" or expertise
during episodes of heightened arousal. For
example, if an agent has a strong tendency toward
risky behavior incorporated into its knowledge

2 Since the goal to attack doesn’t exist, the agent would not
experience an increase in confusion as a result of being unable
to locate the enemy tank’s position. Lack of contact with enemy
tank may, however, affect confusion as it relates toward other
types of goals (e.g., avoiding enemy contact).



base, but it has been briefed with a low-risk
mission, an increase in arousal will cause the
agent to ignore the low-arousal knowledge (from
the mission briefing) and revert to well-rehearsed,
ingrained high-risk behavior. We accomplish this
in the emotional planner by tagging agent rules
with arousal thresholds. Only those rules with a
threshold exceeding the current level of arousal
are allowed to fire. The side effect of this approach
is to allow much more thoughtful and deliberative
reasoning under conditions of low arousal.

Other input from the emotions system includes
current levels of pleasure and pain. These inputs
may influence the preferences and evaluations that
the agent uses when comparing alternative
courses of action during re-planning or alternative
interpretations during situation assessment. The
combination of processing arousal, pleasure, and
pain will likely lead to non-linear interactions
between the narrowed focus of attention (reducing
the knowledge brought to bear on reasoning) and
the alteration of preferences (changing the
selection of proposed courses of action). One of
the benefits of this approach is that it is not
necessary to posit specific mechanisms for
differing emotions, as has been done in several
other synthetic emotional systems (Gadanho &
Hallam, 1998; Velasquez, 1997, 1998).

While other researchers opt to specifically assign
symbolic labels (Gratch, 1999; Ortony, Clore, and
Collins, 1988), our emotion model does not make
such high-level explicit assignments (e.g., fear,
anger, happiness, sadness, etc). However,
emotional states in this model could be viewed as
arising from a combination of pleasure/pain,
arousal, attention and temporal components. A
simple example of how two of the factors, arousal
and affect (pleasure/pain) might interact can be
seen in Figure 2. In this figure, “fear” is associated
with high levels of arousal stemming from the
anticipation of pain. Because our system
ultimately has four dimensions, many combinations
for different emotional labels exist. For example, if
the arousal trigger is a past event instead of an
anticipated event, the emotional interpretation of
“fear” might change to “remorse” (if the attentional
dimension is directed at something other than the
source of the pain) or “anger” (if the attentional
dimension is directed at the source of the pain).

Emotional Intensity — Connectionist Model

Once the appraisal system has derived values for
the clarity/confusion input and the pleasure/pain
input, the connectionist model uses this information
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Figure 2. Example of Interaction Between Arousal
Level and Pain/Pleasure Continuum

to derive a change in the agent’s level of arousal.
The connectionist model, illustrated in Figure 1 as
residing in the Emotions Interface, consists of
several components:

1) An arousal level system
2) A pleasure/pain system
3) A clarity/confusion mechanism

Whereas pleasure/pain and confusion/clarity all
work to detect events of importance to an agent,
the arousal system functions to determine the
intensity of the response to these events. The
following three sub-sections review the arousal
mechanism, pleasure/pain module, and
clarity/confusion module, respectively.

Arousal. Increased arousal has a number of well-
studied effects on cognitive factors such as
memory and attention (D’Ydewalle, et al., 1985;
Hebb, 1972; Milner, 1991). An extremely high
level of arousal, however, can impair performance
in situations that are more complex tasks (e.g.,
requiring discrimination among multiple cues).
Expressed graphically in Figure 3, the relationship
between level of arousal and performance is an
inverted U-shape. This rise in the graph
represents an improvement in performance as
alertness, interest, and positive emotion are
increased. After performance reaches the
optimum level, however, there is an increase in
anxiety and emotional disturbances as arousal
level becomes greater, and a subsequent decline
in performance. Theoretically, there is an optimal
level of arousal in terms of internal and external
stimuli. Conditions that depart too severely from
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this optimal state in either direction incite the
organism to act to restore the equilibrium.

To model increases in arousal, we use a model like
that offered in Kaplan et al (1991):

At +1) = A(t) + AA (1)

where
AM=S,, (t+D){P

)
A = arousallevel

S, = sensitivity toarousal variable
P, = positive factors

P_, = negative factors

t+)—-P_ (1+1)}

and to represent the subsequent recovery of
arousal to its equilibrium, we use

A+ =(1-A0) +a, (2)

where
A, = arousaldecay
o, = arousalrecoveryrate

In this case, positive factors would include
stimulation of factors such as: pleasure and pain,
affectively coded cognition (e.g. anticipation of
pleasure or pain), and stimuli that carry inherently
arousing or calming properties. Because of the
domain, the focus of our efforts will be on the
second factor, affectively coded cognition such as
the anticipation of pleasure or pain. In a combat

domain, for example, this deals with threat
assessment, anticipation of victory, etc.
Sometimes this could occur through direct

perception (e.g., “a missile is coming at me”), other
times it would be more of a cognitive assessment
(e.g., “the enemy is about to retake an important
hill”).

The sensitivity to arousal variable in equation (1) is
calculated according to equation (3):

S, ,+)=S_ )+ A1) -4, 3)

)
where
A, = susceptibility to arousal constant

In this equation, the Arousal term is squared to
more highly differentiate high levels of arousal from
lower levels of arousal and then it is multiplied by
the susceptibility to arousal constant. It is this
parameter that distinguishes an individual's
general sensitivity to become aroused. For
example, as reviewed in the future section on
Temperament, personality literature has long
theorized that the critical factor that distinguishes
introverts and extroverts is the relative
susceptibility to becoming aroused (D’Ydewalle, et
al., 1985; Eysenck & Eysenck, 1985). Thus, we
can distinguish between these temperaments by
adjusting A, the susceptibility to arousal constant.

Affect (Pleasure/Pain). The pleasure/pain
continuum system is designed to interpret the level
to which a stimulus represents a threat or
enhancement to the survival of the species. In
other words, stimuli that impede one’s chances of
survival would be tagged as painful and stimuli that
would help one survive or reproduce would be
tagged as pleasurable. As shown in the coupling
of equations (1) and (4), instances of pain and
pleasure combine to stimulate arousal.

P, (t+D) =4, % P E+Dw, (4)
P (t+1)=4_ P, +Dw,
where

P, = pleasureinputs
P, = paininputs
A, = susceptibility to pleasure constant

A., = susceptibility to pain constant

w = weight for pleasure/pain input



Perception (Clarity/Confusion). The clarity and
confusion constructs represent the cognitive
dimension of pleasure/pain.  Accordingly, the
pleasure/pain inputs in equation (4) can be
interpreted as either physical or cognitive. Kaplan
(1991) considers cognitive pleasure and cognitive
pain as important correlates of pleasure and pain
in forms of higher intelligence, because they
facilitate the survival of the individual and the
species. For example, because humans are not
particularly fast, fierce, or camouflaged, we rely on
our ability to organize, store, and use information
to enhance our survival. As a result, confusion is a
potentially dangerous attribute and clarity is a
desirable attribute, since an organism that is
confused is less likely to respond in accord with its
best interests. In this sense, clarity and confusion
incorporate the influence of information quality and
perceptual accuracy on the level of arousal. That
is, the confusion/clarity mechanism becomes a
measure that evaluates the relationship between
the world and the person’s knowledge of the world.

Temperament

Using the framework presented in the previous
section, we will consider the effects of individual
differences in temperament by changing the
constant parameters in the emotional intensity
subsystem. So, just as we can adjust A,, the
susceptibility to arousal constant, to distinguish
between introverts and extraverts, we can adjust
other parameters in our emotions model to
distinguish between other temperament classes.
This approach allows us to model an individual's
emotional style such that it can lead to distinct
decision making profiles in a variety of emotionally
charged scenarios.

A wealth of literature exists on personality typing in
humanistic psychology (Keirsey & Bates, 1984;
Myers & McCaulley, 1985) to scientific psychology
(Eysenck, 1991; Digman, 1989). Humanistic
approaches tend to be based on the work of Carl
Jung, while Experimental approaches tend to rely
on data analysis techniques using factor analyses.
Interestingly, some work has been done to
correlate the two approaches (McCrae & Costa,
1989; Saggino & Klein, 1996).

One of the primary factor models used in the
personality-related research is the three factor
PEN model (Eysenck, 1981). This model
maintains that three super traits (i.e., psychoticism,
extraversion, neuroticism) are sufficient to describe
the organization of personality. Another prominent

personality model, the "“Big Five Theory" or “Five
Factor Model” (Costa and McCrae, 1995; Digman,
1990) also contains the factors of extraversion and
neuroticism (alternatively known as surgency and
emotional stability), but these five factor models
claim that an additional two higher-order terms are
required to adequately represent personality. As
indicated in Table 1, many of these factors are
presumed to represent the same dimension, but

are assigned different names by different
researchers.
Eysenck Costa & McCrae Digman
(PEN) (Big 5) (FEM)

1 Extraversion | Extraversion Extraversion

2 | Psychoticism | Agreeableness Friendly Compliance

3 Conscientiousness | Will to Achieve

4 | Neuroticism | Neuroticism Emotional Stability

5 | Intellect* Openness Intellect
* not included in Eysenck’s domain of “temperament” traits

Table 1. Comparison of 3-Factor and 5-Factor
Models

Despite the lack of agreement on the number of
basic traits, some overlap does occur (Eysenck,
1991). Two dimensions common in most factor-
analytic studies of personality are Extraversion (vs.
Introversion) and Stability (vs. Instability). The
extraversion dimension refers to the degree to
which one’s basic orientation is turned inward
towards the self or outward toward the external
world. It is essentially the same distinction made
by Jung, although Jung used the terms to refer to a
personality type rather than positions along a
scale. Stability-instability is a dimension of
emotionality, with calm, well-adjusted, reliable
individuals at the stable end and moody, anxious,
temperamental, and unreliable individuals at the
other.

The relationships of some these personality
dimensions and emotions have been analyzed
thoroughly (Costa & McCrae, 1980; Meyer &
Shack, 1989; Rusting & Larsen, 1996; Williams,
1989). The results of these studies show that
extraversion is linked mainly with average levels of
positive affect, and neuroticism and psychoticism
are linked with average levels of negative affect.
For example, when subjects were exposed to
positive, negative or neutral guided imagery
scenarios, it was found that extraversion correlated
with positive mood following the positive imagery
task, but not with negative mood following the
negative imagery task. Neuroticism, on the other
hand, correlated with negative mood following the
negative imagery task, but not with positive mood



following the positive imagery task. These
relationships have been replicated repeatedly
using various measurement scales, time scales,
and report types. This suggests that extraversion
represents an increased susceptibility to positive
affect, and that neuroticism predisposes greater
susceptibility to negative affect. Thus, by adjusting
the parameters A, and i, we are able to
distinguish between an individual’s predisposition
toward pleasure and pain, respectively.

The review of literature on how temperament
influences emotional experiences is ongoing, but
findings such as these provide some confidence
that we can develop a coherent mapping between
temperament and emotion that is rooted in
empirical research results.

RELATED RESEARCH

As indicated in the introduction to this paper, other
researchers in the military simulation and training
community are investigating approaches to
incorporate emotions in CGF systems. As the
framework for our system has now been defined,
this section attempts to distinguish it from the
models developed by other researchers in this
community.

Our work most closely resembles the work of
Gratch and Marsella (2001). In large part, this is
due to the fact that both systems make use of the
Soar architecture for decision making. Thus,
similar constructs for relating an agent’s emotions
to the agent’s decisions are required. However,
differences in the systems do exist. For example,
the model of emotional intensity presented in this
paper is influenced by more factors. Also, this
model can be influenced by individual differences
in temperament.

Hudlicka and Billingsley (1999) also make the
connection between emotional content and
leadership style by representing the effects of
temperament in their framework. However,
emphasis appears to be placed on the influence of
emotions on decision making, with little focus
placed on the complexity or variability of the
emotional intensity model.

Alternatively, Fransechini et al (2001) place a
much greater emphasis on deriving emotional
intensity through a highly biologically based,
neurophysiological approach. The model is based
on two dimensions including arousal and distress,

but its precise form is not discernible from current
publications.

Given the immaturity of the research in this area,
we are not able to conclusively state that one
approach is better than another, only that
differences exist. Moreover, as indicated in the
Introduction, we know of no research that studies
whether emotional CGFs will even improve
training. But, we expect that the models
developed from this generation of research will be
useful in assessing whether military training is
indeed improved through the integration of
emotional models into synthetic forces. Also, given
that military communities consistently demand
greater realism from their simulations, this
research will be useful in providing the groundwork
for meeting this demand and improving future
models of cognitive-emotive behaviors.
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