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Abstract

Advanced distributed simulations (ADS) along with computer generated forces (CGFs) are used to
provide troops with tactical combat training and to perform research. Current CGFs behave as perfectly
trained troops, their ability to perform missions to do not vary. This is an inaccurate portrayal of human
performance. If the military cannot model human factors, such as training and physiological stressors in
ADS, they cannot perform trade-off analyses. For the military to be able to use ADS and CGFs to answer
resource allocation and system design questions, the CGFs have to be affected by a human performance
model. Micro Analysis & Design, Inc. (MA&D) was awarded a Phase Il SBIR entitled “Improving Soldier
Factors in Prediction Models” by the Army Research Institute (ARI). The goal of this SBIR was to develop
a model that uses training and other performance shaping factors (PSFs) to affect the abilities of CGFs.
This performance effects model incorporates the benefits of different types of training, the effects of skill
decay, physiological stressors and aptitude. The final model will allow users to affect a wide range of
tasks. It is generalizable to both military and non-military applications. The military will be able to use it to
affect the performance of CGFs in ADS. Once the model is implemented, the military will be able to
conduct trade-off analyses. They will also be able to better prepare troops for combat by having them
train against opponents of different skill levels.
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INTRODUCTION

Advanced distributed simulations (ADS) with
computer generated forces (CGFs) and man-in-
the-loop simulators provide a cost-effective and
safe environment for tactical combat training.
These simulations are not only proving to be a
cost-effective way to train forces, but they are
proving to be powerful analysis tools. Militaries
are starting to use ADS and CGF to aid
decisions in areas such as resource allocation
and system design. Simulation is an excellent
environment for officials to test how different
command systems and weapons might influence
combat outcome. Because command systems
and weapons are key determinants of battlefield
success, it is crucial that the military understand
the exact implications of new purchases and
designs. ADS and CGFs makes this possible, by
allowing the military to test out new technology
and see how it might help in a battle.

Unfortunately, ADS and CGF only complete part
of the question that the military must answer
when it comes to acquiring and designing new
systems. Troop readiness and troop ability to
use new technology are also determinants of
battlefield success. If troops are unprepared for
battle, new command systems and weapons will
not provide them with an advantage over the
enemy. Trade-offs between technology and
maintaining force readiness are central issues
when it comes to resource allocation and system
design. In both situations, figuring out how
much training troops need to perform well in
combat is a major part of the problem. To
perform accurate simulation-research for
resource allocation and system design, military
officials need to be able to incorporate the
training aspect of their problems. Current ADS
do not allow users to vary the ability of CGFs.
There is no way for the military to determine the
correct balance of training and technology
(Biddle, Hinkle & Fischerkeller, 1999).

Current CGFs perform complex military tasks
based on algorithms that closely mimic standard
tactics and doctrine. Entity performance does
not vary in the same manner as real human
performance would (Gillis & Hursh, 1999). The
slight variations in performance that do occur
are usually the result of equipment models or
simplistic models of human performance.
Consequently, the value of ADS for performing
trade-off analysis is degraded by the absence of
these types of models.

If training models are not developed, our military
is at risk of making serious miscalculations
about the amount of training needed to prepare
forces for today’s battlefield (Biddle et al., 1999).
They are also at risk of designing and
purchasing systems that require more training
then we can provide troops. The military needs
models that link training and performance
shaping factors (PSFs) to combat performance
and combat support operations.

By allowing researchers to effect the
performance of CGFs with training and PSFs
models, they will be able to perform accurate
trade-off studies that involve training and system
design. These models will also provide the
military with the ability to train troops against
opponents of varying skill levels. This enhanced
realism will better prepare troops for the
uncertainties of combat.

TRAINING EFFECTS AND COMPUTER
GENERATED FORCES

Micro Analysis & Design, Inc. (MA&D) was
awarded a Phase Il SBIR entitled “Improving
Soldier Factors in Prediction Models” by the
Army Research Institute (ARI). The goal of the
Phase Il SBIR, in the effort described here, was
to develop a usable training and PSFs model for
CGF. This model should allow users to test how
different combinations of types and amounts of
training affect performance. It is essential to



capture the varying benefits of training, because
numerous studies have found that training
benefits are determined by the amount and type
of training an individual receives. By allowing
users to experiment with different training
schedules, it will be easy for them to perform
analyses where training cost versus training
effectiveness is an issue.

Additional elements of training that must be
included in the model are aptitude and
experience.  Skill acquisition theory and
research shows that people learn at different
rates and this difference is directly related to an
individual’s aptitude. A person with higher
aptitude reaps more benefits from training than a
person with less aptitude. Including aptitude as
a variable in the performance effects model, will
allow users to determine how much training
different troops will need based on aptitude.

When calculating an individual’s ability to
perform a task based on the amount of training
he has had, it is also important to take into
consideration how much time has passed since
the training occurred. This means that skill
decay must be included in the model for it to be
an accurate representation of human
performance.

The final model will not only reflect the direct
results of training, but it will also reflect some of
the indirect influences training has on combat
performance. How well an individual is trained
not only determines how he will perform under
ideal conditions, but it will also determine how
well he will perform under stress. Current theory
and research indicates that physiological
stressors have less effect on individuals that are
highly trained and more experienced. This
means that in addition to the training parameters
already discussed, the model must include the
effects of physiological stressors such as heat,
fatigue and noise.

Including these PSFs and various elements of
training into the model will make it robust
enough to provide users with the flexibility they
need to perform complex military and non-
military analyses.

This robust performance effects model will
influence CGF performance by effecting

e Task times

e Task accuracy

* Decisions/Course of actions

As mentioned earlier, current CGFs behave
according to doctrine and equipment models.
They behave as if they are perfectly trained.
With the performance effects model in place, the
CGF will have the potential to make errors.
Whether a CGF’s performance is degraded or
improved will depend on the results of the
model. For instance, if an entity is poorly
trained, it will take the entity longer to load his
gun and to track a target. On the other hand, a
highly trained entity will be more likely to identify
another entity correctly, as friend or foe. The
changes mean that CGF performance will more
closely mimic how a real human would perform
in combat. This increased realism will enhance
the value of ADS for both performing analyses
and for troop simulator training.

DEVELOPING A TRAINING MODEL

The training portion of the human performance
model has three main features. These features
contribute to the overall performance effects
model’'s ability to model human performance.
They are implemented in way that makes them
generalizable to numerous military and non-
military scenarios.

The first feature of the training model is that the
differences between different types of training
are captured. This was done by creating
mathematical models of learning — learning
curves. These learning curves are based on
current skill acquisition theory. They can be
used to reflect the training benefits for any
number of training types that a user might want
to model.

The second feature of the training portion is the
incorporation of skill decay. In particular, the
fact that different skills decay at different rates
was characterized by using a mathematical
model found in the literature. This model was
used to reflect the effects for a particular set of
skills, but it is general enough that it can easily
be apply to any set of skills a user might want to
use.

The last feature of the training portion of the
model is that both the learning and decay curves
were developed for skills opposed to being
developed for a specific set of tasks. By
creating the curves for skills instead of tasks, the
curves can be used to calculate the effects of
training and decay for large number of tasks.
This provides users the flexibility of being able to



apply the training portion of the model to a large
number of simulations and models where
training is an issue.

Skill Acquisition Theory

Before deciding on the mathematical models to
use for modeling training effects, an extensive
study of current skill acquisition theory was
conducted. It was found that there are four
basic learning curves, which are commonly
accepted within the skill acquisition community
(Lane, 1986; Lowry, Rappold & Copenhaver,
1992; Newell & Rosenbloom, 1981; Rickard,
1994). In a review of nearly 3,000 research
titles and abstracts, Lowry, Rappold and
Copenhaver (1992) identified these curves as
the power law, the exponential curve, the
hyperbolic curve, and the logistic curve.

The hyperbolic curve is a special case of the
power law and it tends to fit empirical data
almost as well as the power law does (Lane,
1986). The logistic curve produces S-shaped or
sigmoid curves. This shape is usually found
when the empirical data are performance ratings
provided by instructors (Lane, 1986). Since the
hyperbolic curve is a special case of the power
law and the logistic curve does not fit most
empirical data, we decided against using them in
the performance effects model. This leaves us
with the most commonly used curves, which are
the power curve (see Figure 1) and the
exponential curve (see Figure 2).
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Figure 1. Power law curve
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Figure 2. Exponential curve

The power curve was initially associated with
only perceptual-motor skills, but it is now found
to apply to a wide range of skills, such as
cognitive and motor skills (Newell &
Rosenbloom, 1981; Lowery et al., 1992). This
curve is an increasing function with negative
acceleration, which takes the form:

Y=A-(A-P)T+ETR (1)

Where the major parameters are

time spent training
proficiency level after training
rate of learning

asymptotic proficiency

innate proficiency

prior experience
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Some of these parameters are self-explanatory,
such as time spent training (T) and proficiency
level after training (Y). These are input and
output of the function, respectively. The rest of
the parameters define how quickly a person can
learn from the training and the maximum amount
of benefit a person can attain from his training.

Learning rate (R) defines the slope of the power
curve, which directly reflects how quickly an
individual’'s ability improves during training. The
maximum benefit of training is determined by
innate proficiency (P,) and asymptotic
proficiency (A). Innate proficiency is the level at
which an individual can perform when he first
attempts to use a skill or do a task; this is often
referred to as his worst-case performance. The
opposite of innate proficiency is the asymptotic
proficiency. This proficiency is the highest level
of proficiency that an individual can reach with a
particular type of training. The last of the
parameters in the power function is prior
experience (E). This parameter indicates how
much time an individual has spent performing or
learning a skill before training occurred. This
parameter is often set to zero.

The exponential curve is similar to the power
curve, except that it does not have as many
parameters and it has a constant acceleration.
This constant acceleration results in a much
steeper curve than what the power curve
produces (Lowery et al., 1992). The exponential
curve takes the form:

Y=A-(A-Py) e )



The definitions for the parameters of this
equation are the same as the definitions for the
power function’s parameters.

When data are fitted with both power and
exponential curves, it is often difficult to
distinguish which curve is the “better” fit by
conducting a simple examination of the curves
(Lane, 1986). Generally, an extensive statistical
analysis is required to determine which function
more accurately models the data. Because both
of these curves were found to be adequate
representations of learning, it was decided that
training algorithms would be developed for each
curve.

Skill Decay Theory

Another important factor in determining the
effects of training on performance is the amount
of time that has passed since the training was
received. Decay, or the rate at which skills are
forgotten or lost, is often characterized as a
negatively accelerating function based on time
since training. Unlike the literature on skill
acquisition (learning), no general curves on
decay (retention) are widely accepted. Decay
data reported in the literature vary widely in
terms of the time span over which they occur;
measured in terms of seconds, minutes, hours,
days, weeks, months, and years.

Some researchers agree that decay can be
represented as a power function similar to the
ones used to estimate the rate of learning, and
they have attempted to quantify this function
(Rose, Czarnolewski, Gragg, Austin, Ford,
Doyle, & Hagman, 1984). For this reason, we
decided to model decay mathematically by using
a decreasing power function with negative
acceleration (see Figure 3).
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Figure 3. Decay curve

The decay curve has a very similar form to the
power curve used for learning

Y =P, - (P, — A)(T + E)® (3)

The parameters for this function are similar in
nature to the learning curve parameters

time since training
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The main difference is how innate proficiency is
used. Earlier, innate proficiency was defined as
worst-case performance. It would be illogical for
an individual to decay past this point. This is
why innate proficiency is used as the lowest
point to which an individual can decay.

Skill Sets vs. Tasks

If these learning and decay curves were
developed for a specific set of tasks the resulting
training model would only be useful to a limited
audience. As mentioned earlier we decided
against limiting the potential of our model by
developing task-level models. The final set of
skills used in the training portion of the model
was decided upon based on subject matter
expert (SME) recommendation. This taxonomy
was primarily developed with the military in
mind, but most of the taxons are general enough
that they can be applied to non-military tasks.
The taxons in the training model’s taxonomy are

e Planning
Communication
Command and control
Technical proficiency with equipment
Tactics and doctrine

Algorithms Used in the Training Model

Once the general forms of the learning and
decay curves were decided upon, the algorithms
for the training model had to be finalized. This
finalization was performed in three steps. The
first step was to determine exact situations of
learning and decay that needed to be modeled
to give the model flexibility. After this,
modifications were made to each curve so they
met the training models exact needs. Lastly,
exact algorithms were laid out for calculating
taxon proficiencies.

Learning Curve Algorithm
It was decided that to properly model training, a
learning curve must be created for every



combination of taxon and training type in our
model. This was decided upon, because
research indicates that not all training types
provide the same degree of benefit and that
different skills have different learning rates. The
training model that was developed has three
training types: classroom, simulator and field
training. With these three training types and the
five taxons mentioned earlier, there are fifteen
learning curves in the training model.

These learning curves can be either power or
exponential curves. The type of curves picked
for the final training model were dependent on
how well each type of curve fit the data that
were used to calculate the curve parameters.
Before either curve could be fitted to the data, a
few modifications had to be made to the curves.
The first of these modifications was made just to
the power curve.

In the power curve there is a parameter referred
to as “prior experience” (E). This value
represents the amount of time an individual has
spent training on the task or skill before official
training was started. In a majority of the
research reviewed, this parameter is set to zero,
indicating that the individuals in the study had no
prior experience on the task studied. When this
parameter is set to zero the power curve has the
form

Y=A-(A-P)TF (4)

This function is undefined at time zero (T = 0),
which causes a problem in the training effects
algorithm. If a user entered in zero hours of
training for any one of the training types the
entire algorithm would no longer work. This
problem resulted in a search for a value of E
(prior experience) that would make sense from a
theoretical stance and that would cause the
function to be defined at time zero. It was
determined that at time zero, a person’s
proficiency is his innate proficiency. If the output
of the power function should be innate
proficiency at time zero then it turns out that
prior experience (E) should be equal to one.
Once this modification is made to the general
power curve (Eqgn. 1), it has the form

Y=A-(A-P)T+1)F (5)

One more modification was made that applied to
both the power curve and the exponential curve.

This modification was made to deal with
situation when a user wants to create a training
schedule for an individual that is already at a
certain level of proficiency that is higher than his
innate proficiency. The higher proficiency level
is an indication that he has had prior training, but
the user might not know the exact amount of
previous training the individual he is modeling
has had. To deal with this problem a new
parameter was introduced. The new parameter
is called starting proficiency, Py. It is defined as
the proficiency that an individual is at when he
starts a particular training session. It is used to
help calculate the amount of prior experience an
individual has had. The newly modified power

curve is
-R
P, - A -1/R
T+ (6)
P, -A

Y=A-(A-P,)
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When an individual’s starting proficiency is his
innate proficiency then the function simplifies to
Egn. 5. The modified exponential curve is

Y=A-(A-Pp) e 7)

The final algorithm used in the performance
effects model can use either of these modified
curves to calculate a taxon proficiency. One of
the user inputs used by this algorithm is a taxon
training schedule, which provides the number
hours spent in each training type and the order
in which the training occurred. Another input
provided by the user is a starting proficiency
(Py). The algorithm for calculating taxon
proficiency is

1. Calculate proficiency Y4, using P, and T,
(time for first training type).

2. Calculate proficiency Y;, using Y, as
starting proficiency and T, (time for
second training type).

3. Calculate final proficiency Y3, using Y,
as starting proficiency and T; (time for
third training type).

This simple algorithm can also be used to
calculate a taxon proficiency using a training
schedule that has more than three training
types, as long as there are learning curves
defined for each training type.

Decay Curve Algorithm

It is has also been found that different skills
decline at different rates. Some skills fall sharply
during the time immediately following acquisition
and decline more slowly as additional time



passes, other skills do not begin to show decay
until several months after acquisition. For
example, perceptual-motor skills (e.g., driving,
flight control, and sports skills), decay slowly. In
contrast, procedural skills, which require a
sequence of steps, such as how to use a text
processor or how to run through a checklist for
turning on a piece of equipment, tend to be
quickly forgotten (Rose, 1989). This research
lead us to developing decay curves for each
taxon, instead of having one curve to calculate
decay for all the taxons.

Once it was decided that a decay curve had to
be developed for each training taxon, it was time
to alter the basic decay curve (Egn. 3) in a
similar fashion to the learning curves. The
primary difference is that the roles of asymptotic
proficiency and innate proficiency have
switched. The basic decay model assumes that
an individual starts out at his asymptotic
proficiency and then decays. In most cases, this
will not be true. Normally an individual will be at
another proficiency level, lower on the curve, Py,

The decay curve was modified, so that an
individual would not have to be at asymptotic
proficiency before a user could decay his ability.
This modification was done by interpreting the
parameter in the basic decay curve (Eqgn. 3) as
“prior decay”. Then innate proficiency,
asymptotic proficiency, and starting proficiency
were all used to calculate the amount of time
that was spent “decaying” before time T. The
new decay curve has the form

b _p R R

b "o
T+(A 5 ] ] (8)
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Y =P, (P, - A)

There are two input parameters for this function.
The user provides one of these parameters, time
since training (T). The other parameter, Py, is
the output from the learning algorithm. This
means that an individual’s taxon proficiencies
are initially calculated using the training
schedules. Once these calculations are
complete these taxon proficiencies are lowered
using the taxon decay curves, if the user has
indicated that time has passed since training
occurred. This algorithm is simple and easy to
generalize, since there is only one decay curve
per taxon and decay only occurs if no training
has occurred.

Calculating Curve Parameters

The final step in developing the training portion
of the performance effects model was
calculating parameters for the learning and
decay curves based on data. Initially, it was
intended that SME data and empirical data
would be used to determine these parameters.
Unfortunately, there is limited empirical training
data available. An even smaller percentage of
the available empirical data sets have the inputs
and outputs necessary for calculating taxon
curve parameters.

Since there was a lack of empirical data, the
learning and decay curves were only fitted to
SME data. Data were collected from armor tank
platoon leaders and platoon sergeants on the
training they had received on 38 top level tasks
from the ARTEP 17-237-10 Mission Training
Plans (MTP) for Tank Platoons. We were able
to use these data to come up with taxon learning
and decay data, which could be used to
calculate the needed curve parameters. Both
exponential and power learning curve
parameters were calculated. The power
learning curve parameters turned out to be more
reasonable than the exponential learning curve
parameters. These values will be used in the
performance effects model until more accurate
empirical data is found or if the user has his own
training parameters that he would like to use.

DEVELOPING EXPERIENCE, APTITUDE AND
STRESSOR MODELS

In addition to the learning and decay models,
there are several PSFs that are included in the
performance effects model. These different
PSFs are

* Aptitude

* Experience and

* Physiological stressors
Each of these factors has a direct influence on
human performance. Aptitude and stressors
have direct interactions with training and an
individual’s proficiency level. Experience is
included because of its relationship with
stressors. These different relationships have
been documented in various psychological and
military studies.

Aptitude
During the literature review conducted for the

development of the performance effects model,
evidence was found that correlates general



aptitude to the rate at which skills are learned.
For example, a 1969 study done for the US
Army found that individuals in the bottom 20% of
the ability distribution required up to five times
as much instruction and practice to attain
minimal proficiency in basic military tasks such
as rifle assembly (Gottfredson, 1997; Sticht,
Armstrong, Hickey, & Caylor, 1987). This
indicates that people with higher aptitudes reach
high levels of skill proficiency with the same
amount of training than people with less
aptitude.

One of the studies that was reviewed was the
Army Selection and Classification Project
(Project A), which was conducted in the 1980s
to improve the recruitment and training process.
Project A found that general mental abilities
were highly correlated with technical proficiency
and soldiering proficiency (Mchenry, Hough,
Toquam, Hanson, & Ashworth, 1990). Since
Project A is one of the few studies that has
extensive training data relating to aptitude, it
was decided that the performance effects model
would use algorithms based on these data to
calculate the effects of aptitude.

Stressors and Experience

Performance on a task or mission under ideal
conditions may differ drastically from
performance on the same task or mission under
stressful conditions. The environment in which
military operations (tasks and missions) are
conducted can be very stressful. This is why
physical stressors were included in the
performance effects model. Incorporating
stressors into the model allows users to estimate
mission performance under “worst case”
conditions.

A review of the relevant literature has produced
performance degradation factors for the
following stressors: heat, cold, noise, fatigue,
circadian rhythm, Mission Oriented Protective
Posture (MOPP gear), and altitude (Bradley &
Robertson, 1998; Micro Analysis and Design
Incorporated [MAAD] & Dynamics Research
Corporation, 1999; Walters & French, 2000).
Some of these degradation factors have been
correlated to affect a specific set of taxons (e.g.,
visual, numerical, and cognitive skills). These
taxons can be applied to wide variety of tasks. It
is these algorithms and taxons that are used in
the performance effects model to incorporate
physical stressors.

Empirical and theoretical research has also
been examined on the combined effects of
multiple stressors and how to model them.
Although an abundant amount of empirical data
has been collected on the separate effects of
stressors on performance, there has only been a
small amount of work done on the combined
effects of some stressors. Therefore, difficulties
occur when equations are developed that try to
generalize the interactive effects of multiple
stressors. Two different human performance
modeling tools were identified that contain
equations that address the combined effects of
stressors: the Integrated Performance Modeling
Environment (MAAD, 1999) and the Improved
Performance Research Integration Tool. Both of
these equations are reasonable for modeling
many interactions amongst stressors.

It was decided that the following equation would
be used (Harris, 1985) to combine the effects of
multiple stressors in the performance effects
model:

DFr=11i=1, nVDF, (9)

Where:
DF+ = Total degradation factor
DF;, = The i ordered degradation factor
n = Number of degradation factors

Using this equation, when two or more stressors
are combined, the overall degradation is less
than the sum of the individual degradations. The
most severe stressor will have a full effect on
performance. As additional stressors are added,
they will have less and less impact on
performance.

Lastly, many researchers have investigated the
relationship between experience on a task and
environmental stressors over time. Some of the
findings are summarized in Hancock (1986).
Mackworth (1950) found that less experienced
workers suffered more disruption by increasing
heat stress, and this was manifested earlier than
for experienced workers. Similar results were
found for several different types of tasks: Morse
code message transmission, Naval lookout duty,
and physical exercise. Blockley and Lyman
(1951) found the same pattern of results for
flight performance under heat stress. These
findings, along with others that were reviewed,
resulted in experience being added as the final
PSF in the performance effects model.



FINAL PERFORMACE EFFECTS MODEL

Once aptitude, physiological stressors and
experience are integrated with the training
model the performance effects model is
complete. It is this completed model that can be
used to effect CGF behavior. The model has
four high-level four steps that must be performed
to calculate a new task time or accuracy. These
steps are
1. Apply aptitude
2. Apply the training model
learning and decay algorithms)
3. Apply stressors
4. Apply experience (i.e. decrease the
effects of stressors if modeling a highly
experienced person, increase the
effects of stressors if modeling a less
experienced person)

(i.e. the

The output of the model will be used to effect
CGF entity behavior. Simulation entities will
behave as it they have received training and as
if they are effected by physiological stressors.

CONCLUSION

The immediate benefit of the performance
effects model will be the ability to create more
realistic CGF behaviors in ADS. This increased
realism will be beneficial for simulator-based
training and research.

When it comes to simulator training, troops will
be able to train against CGF entities of varying
ability. Troops will no longer be able to predict
the behaviors of their computer generated
opponents. Currently, soldiers can distinguish
which entities are manned simulators and which
ones are computer generated. Because soldiers
can make this distinction and they know how the
computer generated entities will react, they alter
their reactions to fit with the CGF actions.

At some point the performance effects model will
effect enough of the CGF entity behaviors that
soldiers will no longer be able to determine
which entities are real people and which are
computer driven. If soldiers cannot make this
distinction, they will not be able to predicate the
entities’ actions. This is a more realistic portrayal
of what troops will encounter in combat.

When the performance effects model becomes
available for simulation-research the military will
be able to conduct trade-off analyses between

technology and training. As mentioned earlier,
this is important for areas such as resource
allocation and system design. Decisions that
are concerned with balancing technology and
training will be better informed. Overall, the
increased realism and flexibility will result in the
increased probability of combat success.

The benefits of the performance effects model
will not only be felt by the military community,
but non-military users will find it useful as well.
The model is general enough that non-military
users can use it to conduct modeling and
simulation research that needs training effects.
In particular, users will be able to conduct a wide
variety of analyses that involve training,
stressors, aptitude and experience.
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