SYNTHETIC URBAN ENVIRONMENTS USING QUAKE Il ENGINE

Benito Graniela, Jaime Cisneros, Dr. Douglas Reece
Science Applications International Corporation
Orlando, FL

Abstract

Game technology, and in particular first person shooter (FPS) games, such as Quake II, Quake Il
and Unreal Tournament, provide attractive capabilities for some of the traditional modeling,
training and simulation (M&S) applications. A PC game-based simulation would be most useful if
it operated with existing military simulations using their existing terrain databases (TDBS).
However, PC games use different formats from the ones traditionally used by military simulations.

This paper will describe the necessary steps to import the traditional M&S TDBs into the format
used by several common FPS games, in particular Quake Il MAP format. A brief overview of the
MAP format will be provided and compared to the traditional polygonal format used in the
modeling and simulation community. Details of the conversion process of an OpenFlight Military
Operations on Urban Terrain (MOUT) database to a Quake Il level will be presented, as well as
the conversion of a Quake level to a semi-automated forces (SAF) system’s terrain database
(TDB) format. A brief overview of a prototype’s DIS engine added to Quake Il will be provided,
along with some lessons learned. Finally, comments will be presented as to the suitability of the
Quake Il game engine environment format and runtime engine for M&S applications.

BENITO GRANIELA is software engineer at SAIC, where he works on visual and computer
generated forces representation for urban synthetic environments. Prior to SAIC he did research
at the Institute for Simulation and Training in interoperability of visual distributed environments
and as a result developed a deep understanding of the basic elements of networked distributed
simulation. Mr. Graniela earned a B.S.E in Electrical Engineering from the University of Puerto
Rico in 1995 and a M.S.E in Computer Engineering from the University of Central Florida in 1992.

JAIME CISNEROS is a Senior Software Engineer at SAIC, where he works on behavior modeling
in DISAF, research in cognitive architectures and the application of game technology to Modeling
and Simulation. Mr. Cisneros holds a Master’'s and Bachelor’'s degree in Computer Science from
the University of Central Florida. His previous experience includes the development of DIS and
HLA testing tools, the integration of heterogeneous simulations, research in reactive behavior,
obstacle avoidance, and targeting algorithms. His research interests are in the areas of artificial
intelligence, real-time simulation, and game technology.

DR. DOUGLAS REECE is a Senior Scientist at SAIC in Orlando. He has been developing
physical and behavioral models for individual combatant CGFs for the past six years. He is
currently the software architect for DISAF projects; previously, he was the principal investigator
for Computer Controlled Hostiles for the Marine Corps’ Team Target Engagement Simulator. He
received his Ph.D. in Computer Science from Carnegie Mellon University in 1992

mailto:granielab@saic.com
mailto:cisnerosj@saic.com
mailto:reeced@saic.com

INTRODUCTION

Over the last several vyears, the
entertainment industry has been driving
advances in the development of 3D graphics
on low cost general purpose processing
platforms. The results of these advances
are games such as Quake Il, Quake IIl, and
Unreal Tournament. These games use very
realistic looking environments due to
excellent levels of detail and features, such
as lighting and smoke effects, as well as,
particle and character animations. The
realism of the game environments allows for
player immersion in the 3D environment,
which is one of the most important aspects
that the M&S Community desires in order to
enhance the training experience.

For traditional M&S applications to be able
to interoperate with FPS games such as
Quake I, it will be necessary to have
consistent environment representations,
similar simulation models and compatible
communication protocols. Although having
correlation in the environment and
communications protocols does not
guarantee interoperability between or
among simulations, it is a prerequisite.

The purpose of this paper is:

« To highlight those game
environment features in Quake I,
which might be useful for M&S
applications.

« To present a process for importing
traditional M&S environments
(terrain databases) into Quake II.

e To present a process for exporting
Quake Il environments.

« To describe a prototype
interoperable with the Dismounted
Semi-Automated Forces (DISAF)
system that uses a known urban
Quake Il level, and one imported
from a DISAF terrain database.

e To expose some of the limitations
and advantages of the use of game
technology in M&S.

QUAKE Il GAME
ENVIRONMENT FEATURES

The features of the Quake Il game engine
that are of interest for this paper are those
which are directly tied to the game
environment rendering at run time. Quake Il
obtains the best rendering performance
possible by using optimized scene
management techniques. Thus, in Quake
I, levels are compiled into a runtime format,
which divides the world into a Binary Space
Partitioning (BSP) tree. The compilation
process also generates two databases,
which contain visibility and lighting
information.

P1
roomA room B
| aifly
| | | | | |
| I | I
—| Bl
P2
room C room D

Figure 1 - The two arrows represent
planes, P1 and P2, which separate the
lower right room D from the other three
rooms. The room D geometry and
everything in it will be contained in a BSP
leaf node. PVS for this mode will include
the hallway and a reference to room B,
which can be seen through the door of
room D.

The BSP tree-building goal is to partition the
environment into convex volumes by using
structural planes, which are called brushes.
For example, a simple room with four walls
is a convex volume bounded by six planes.
Convex volumes are important for visibility,
as it is simple and fast to determine whether
two convex volumes can see each other. In
Quake Il convex volumes are stored as leaf
nodes in the BSP tree. The BSP tree is then
primarily used to divide the map into
regions, and to quickly determine which
region the camera or player is in. The BSP
is constructed through recursion on a
volume starting with the entire level as a
single volume. The volumes are split along
the face of structural brushes, continuing
with the first child volume, and repeating the
operation until no more structural brushes
are found. At that point, a leaf node is
created for the volume (see Figure 1). Solid
structural brushes block visibility between or
among the content of leaf nodes. Windows
and doors or portals allow visibility from one
BSP leaf node to another. When the player
viewpoint is anywhere in a leaf node which
contains portals to other nodes, other leaf
nodes need to be taken into consideration
when rendering the volume. The more leaf
nodes visible from a specific leaf node that
contains the view point, the more objects
that will need to be drawn. Leaf nodes are
grouped together with neighboring leaves to
form clusters. This technique allows for non-
convex regions in a room to be grouped
together as a cluster. For each cluster, a list
of all of the other clusters, which are
potentially visible, is stored. This is referred
to as the potentially visible set (PVS).

To render a Quake Il map, the BSP tree is
traversed to determine which leaf the
camera is located in. Once it is known which
leaf the camera is in, the cluster that it's in is
also known (remember that each leaf is
contained in exactly one cluster). The PVS
for the cluster is then decompressed giving

a list of all the potentially visible
clusters from the camera location. Leaves
also store a bounding box, which is used to
quickly cull out leaves that are not
within the viewing frustum. Using this
information, the rendering engine generates
a display list. A recursive method that uses
the PVS information, viewpoint and portals
is used to generate a display list, which
contains all the geometry that is visible from
the current viewpoint. This technique
improves rendering performance by
reducing depth complexity.

The BSP Tree algorithm in Quake Il has
been optimized for indoor scenarios by
taking advantage of its characteristics, which
among other things include a small humber
of portals. These same optimizations do not
work well in large open spaces, because
outdoors scenes contain a large amount of
visible leaf nodes. However BSP Tree and
PVS work very well on highly occluded
environments like those seen on urban
areas, buildings and ship interiors. The M&S
community is seeing an increased need for
the use of highly occluded environments and
will greatly benefit from using BSP like
scene management techniques.

CONVERSION OF
OPENFLIGHT TO QUAKE I
LEVEL

As an exploratory investigation, SAIC
converted a section of the McKenna MOUT
terrain database into a Quake Il level format.
The task was divided into terrain skin
geometry conversion, texture format
conversion and culture conversion, which
included one building and several trees.
The entire McKenna MOUT terrain database
was not converted because the primary
purpose of the conversion process was to
investigate the possibility and potential of
game engine use.

i ———

Figure 2 - Triangles are converted to
brushes by extruding along the normal.

In order for the terrain skin to be converted
to a Quake Il level, the terrain triangles were
converted into brushes. For this purpose, a
computer program was developed, which
could generate a five-plane brush for each
terrain triangle. The end result was
equivalent to extruding each terrain triangle
along its normal (see), and adding texture-
mapping information. Since each one of the
terrain triangles in the terrain tin could
potentially become a leaf node in the BSP
tree, a large BSP could be generated. Large
BSP tree are inefficient, as each one of the
leaf nodes has a large PVS node list.

As part of the terrain skin conversion, it was
then necessary to limit the extent of the
database and to convert the floating-point
vertex information to integers. At the time of
the conversion, it was believed that one
integer unit in a Quake Il level was
equivalent to an inch in the real world. It
turned out that a limiting factor in the
conversion process was the editable extents
that the level-editing tool could process. The
tool used for visualization of the brush data
limited level extents to 4096 x 4096 units. If
each unit was equivalent to an inch this
allowed for a 104.04 x 104.04 meter section
of the database to be manipulated by the
tool. Therefore, it was decided that a 100 x
100 meter section at the center of the
McKenna MOUT terrain database was to be
extracted and converted (see Figure 3).

At this point in the conversion process, the
terrain skin geometry had already been
converted from a triangle representation to a
brush representation called a MAP. A MAP
is an ASCII file, which contains brush and
entity data for a Quake Il level. Every Quake
Il level needs to be completely contained
within a volume (defined by six brushes).
Failure to do so results in BSP compilation
errors and runtime visual anomalies. The
other element needed by every Quake II
level is what is known as an entity spawn
point. The spawn point tells the Quake I
engine where to initially start the player and

Figure 3 - Top view of the 100x100 M
McKenna terrain skin

computer controlled entities. Levels may
contain multiple spawn locations, but at least
one is needed. This technique provides the
game engine with location for starting
entities, and eliminates the need for keeping
extents and origin information in the terrain
database.

To complete the terrain skin conversion
process, it was necessary to convert the
original terrain database textures to the
Quake Il WAL format. The original terrain
database contained textures in OpenFlight
RGB, RGBA and INT formats. Two methods
were tested in the conversion process. The
initial method used Adobe PhotoShop WAL
and RGB plug-ins to perform the operation.
The initial conversion process did not yield
satisfactory results, so an alternate solution

was investigated. Textures converted by this
process were either too bright or had the
incorrect color mappings. A special purpose
shareware tool called WALLY was used for
the texture conversion process in order to
generate the correct texture. Since the tool
could not directly process RGB textures, it
was necessary to convert the textures to
PCX format before the conversion process
could take place. RGB textures were loaded
into PhotoShop and converted from RGB to
index mode and saved as PCX. The PCX
images were then loaded into WALLY and
converted to WAL format. This still provided
textures that were too bright when rendered
by the Quake Il engine. After further
investigation, it was discovered that the
mapping of RGB colors into the Quake Il
texture palette was the cause of the color
conversion anomalies. RGB texture colors
that are too similar were mapped into the
same color in the WAL textures. The best
results were achieved by spreading the
distribution of colors on the original RGB
image before the conversion to index mode.
This yielded a wider range of Quake I
palette colors. Nevertheless, it still required
further processing of the textures, which
involved darkening and sometimes
increasing the contrast on the image.

In addition to the terrain skin, several tree
models were placed in the terrain, not as
billboard trees, but instead as equivalent
volumetric pine trees.

The conversion of buildings with interiors
was also explored. The same program used
to convert the terrain skin was used to
generate a MAP file of one of the McKenna
MOUT buildings. Although the basic building
geometry was generated, extra geometry
was also produced, which caused display
anomalies. Again, the net effect of the
conversion process was to extrude the
building triangles to generate brushes, which
yielded extra amounts of brushes inside
walls, widows and doors. Some of them
contained coplanar planes, while others
contained planes which were not visible or
were unnecessary. Since the development
of a conversion tool was not the main
purpose of the investigation, it was decided
to edit the model, instead of enhancing the
tool to handle buildings. Extensive model
editing was necessary to remove the extra

geometry before it could be incorporated
into the rest of the database. When an
acceptable model was obtained, it was
pasted into the MAP file, which contained
the terrain skin. This file containing the
combination of terrain, buildings and trees
was converted to the Quake Il runtime
format.

Although the functional Quake Il level was
generated successfully, it was not as
attractive as typical Quake Il levels. The
reason is that the textures did not translate
well into the WAL format, and the geometry
for the terrain skin resulted in a lot of BSP
leaf nodes.

Figure 4- Top view of the Urban Quake
II'level

CONVERSION OF QUAKE Il
LEVEL TO CTDB

The Human Simulation (HSIM) team at
SAIC has done extensive work with the
Modular Semi-Automated Forces (ModSAF)
Compact Terrain Database (CTDB), which
among other things, includes the addition of
Multi-Elevation Structures (MES) [1]. As part
of an Internal Research and Development
(IRAD) project, the HSIM team investigated
the possibility of generating a CTDB for an
existing Quake Il level. After all, some
training applications could benefit from using
geo-typical databases, in particular those
applications that require building interiors.

The Urban level (see Figure 4) was selected
due to its popularity among the Quake II
level community and for its urban
characteristics, which included streets,
parking garage, buildings with interiors,
alleys, and rooftops. Since the brush file for
the urban level was not available, it was
necessary to manually extract vertex
information using a level-modeling tool.

The urban BSP level was loaded into
another 3D editing tool, called QUArkS5 [2] *
MERGEFORMAT , and selective building
vertex information was extracted. Since it
was the initial development process, rough
measurements were made at the time, with
hopes to perform more refined
measurements later on. Using the extracted
3D coordinates, a 3D model was developed.
The first step was to use the recorded
building outline coordinates to develop a 2D
outline for each building volume. After this
step, each building was extruded to its
corresponding elevation. This process is
analogous to the way buildings are

Figure 5 - 3D polygonal model of the
Quake Il Urban level

represented in CTDB.

The 3D model of the Urban Level (see
Figure 5) was then converted to meters by
scaling it to 1/39.37 of its original size. The
building outline information was then
converted into ModSAF recompile
modification files. These volumes were
finally added to a CTDB using the ModSAF
recompile tool.

Although a CTDB was generated (see Figure
6), its correlation to the original urban
database was poor. Thus, a prototype tool
that could convert brushes or plane data to
triangles was developed. The prototype
takes the Quake Il brushes, and converts
them to triangles, by clipping each one of
the planes by the other n-1 planes and
triangulating the result. Unfortunately, the
algorithm was not flexible enough to
handle brushes composed of more than six
planes. Furthermore, separation of the level
geometry into terrain skin, features, fixed
models, such as building, trees and
bridges, and linears (roads and rivers) will
be needed so that the correct components
of the CTDB can generated.

Figure 6 - Urban CTDB loaded in DISAF

QUAKE II DIS MOD

In M&S applications, the terrain database is
only one of the components, which allows
for interoperable systems. As part of our
investigation, a DIS interface was added to
Quake 1l to allow it to interact with DISAF.
The goal of adding the DISAF interface was
to test the interoperability of the
environments described earlier.

Quake Il is divided into two components: an
executable and a game Dynamic Link
Library (DLL). The game DLL is responsible
for the behaviors of the computer-controlled
entities, weapons and the physical models
(see Figure 7).

i
1 1
i
: Bot Damage Player
1 Control Assessment Control
: Callback Callback Callback
i Function Function Function
i A A
' Quakell.exe
i
i L | Bot Tick Function Player Tick Function
'
'
' Weapons Effect Function | <———
‘]
Output
3-D Rendering K;gg;d
2-D Drawing Mouse
Sound Joystick

Figure 7 - Quake Il Software Architecture

The server and its networking code reside in
the game executable portion of Quake II.
The server is the authority over the game
state, and by being the authority, it
determines how actions take place in the
game world. In the public version of Quake
Il, the game executable is not available in
source code form, which prevented the
modification of the server and its networking
code. Hence, the DIS interface was added
to the game DLL to circumvent this issue.
This solution is not the most adequate
because the server is the owner of the state
of the world, which the DIS interface cannot
have access to. This will become apparent,
as results of using the prototype will show.

The DIS interface added to the game DLL,
then, turned Quake Il into a distributed
application on the DIS network

By adding the DIS interface, Quake Il was
able to:

1. Receive Entity State PDUs to
represent external entities. External
entities are treated as computer-
controlled entities.

2. Receive Fire and Detonation PDUs
to show the firing and detonation
action, as well as, the possible
damage to the player if it is being
fired upon.

3. Send Entity State PDUs to describe
the player's location, orientation,
velocity, appearance, etc.

4. Send Fire and Detonation PDUs in
response to firing events originated
from the player.

Figure 8 shows the new Quake Il game DLL
and executable software architecture. Input
interactions are based on data received from
the DIS network and player inputs. The
Quake Il state is transmitted to network as
DIS Entity, Fire and Detonate PDUs.

l DIS Network

GameDLL with DIS Interface
A
l DIS Interface l
Handle Handle Build Entity State,
ESPDUs Fire & Detonation PDUs Fire & Detonation PDUs
... . ..
. i : ~£ . T
. Bot Damage Player
i Control Assessment Control
i | Callback Callback Callback
Function Function Function
Y A
DISQuakell.exe
E Bot Tick Function Player Tick Function
'
ot Weapons Effect Function | ——
v]
Output
3-D Rendering K(Ia;sg;rd
2-D Drawing Mouse
Sound Joystick

Figure 8 - Quake Il Game DLL and
Quake Executable Interactions

The new Quake Il communicated effectively
with DISAF over the DIS network. However,
some issues were found after interactions
took place between the Quake Il player and
DISAF entities. The first issue had to do
with controlling the external entities in the
game. It was found that accurately
controlling a computer-controlled entity’s
position was not possible because entities in
Quake 1l are controlled by providing a
velocity and a direction of movement for a
period of time. This is the result of the
Quake Il server control over the entire game
state, and the inability to modify the server.
The location provided in the Entity State
PDUs needed to be converted to velocity
and movement direction over a period of

frames. This means that the Quake Il server
code was in charge of moving the computer-
controlled entities while maintaining a
reasonable frame rate and a synchronized
world state. This resulted on location
differences between the DISAF entity
location and the Quake Il visual
representation. The most significant issue
found, nevertheless, had to do with
correlation between DISAF's and Quake II's
elevation data. The height of the terrain at a
given place in Quake Il never coincided with
the height at the same spot in DISAF. This
caused anomalies in weapon aiming and
munition impact points. Therefore,
interoperability was not fully achieved.
Solutions have been analyzed and provided,
but have not been tried in time to provide
results in this paper.

LESSONS LEARNED / PRO
AND CONS OF QUAKE I
ENGINE UTILIZATION

One of the main advantages of using the
Quake Il engine is that it provides a
complete environment over which a
simulation could be built. Other advantages
include the availability of a wide variety of
shareware tools, which allow for the quick
development of geo-typical environments.
Quake 1l levels include dynamic and special
effects, such as breaking glass, explosions,
and the ability to open doors, move
elevators and trigger actions by the use of
buttons or volumes. Shareware tools are
also available for the development of 3D
models or computer-controlled entities.
These tools allow for the development of
new animations, new skins, and textures for
Quake Il entities.

In addition to game level modification, game
logic modifications are also possible with a
small amount of work. Prototype code for a
computer-controlled entity can be
incorporated into the game, leveraging the
nice and fast visuals provided. The Quake Il
environment provides a complete
environment with computer-controlled entity
behaviors, which a developer can use to test
new entity controls and sensing algorithms.
Nevertheless, one of the negative aspects is
that licensing fees for the Quake Il Engine
are high, making it prohibitive to use this

game engine for the traditional commercial
development of visual M&S applications.

Indoor representations on Quake Il employ
BSP tree techniques in conjunction with
techniques that determine portal visibility.
This optimized representation allows for fast
rendering of indoor environments, which
include a high degree of occlusion. Although
polygonal terrain skins can be converted
with no loss in correlation to the game
format, the encoding of this data into BSP
trees does not benefit from the same spatial
benefits that indoor environment provide.
The Unreal game engine seems to provide
an alternative to this limitation. In fact, Epic
Games is using a hybrid model, which
combines the use of BSP for indoor scenes
and other techniques for outdoors scenes in
their new Unreal Tournament Game Engine.

Terrain representation of vertex information
in Quake Il is in integers vs. the traditional
floating-point representations. This requires
transformation of floating point numbers to
integers using some sort of fixed-point basis.
Scale changes and runtime compilation
tools limit the extents to around 100 x 100
meters play box. Most likely the size of the
play box have been limited to obtain the best
rendering performance on typical game
machines.

Tree representation in the Quake Il engine
needs to be volumetric. The Quake Il format
does not provide for billboard or
interpenetrated polygon representations of
trees.

At this time it does not look as if BSP trees
allow for dynamic geometry modifications,
other than the one provided through
breakable brushes. However, considering
that not too many simulations today can
dynamically modify the environment, this
does not seem like a big limitation.

CONCLUSIONS

The very same characteristic, which makes
BSP practical for indoor representation,
makes it impractical for outdoor use.
Moreover, although binary partition
techniques have been used in the M&S
community before for outdoor scene

representations, it is most likely that today’s
scene graph representations will still be
used for outdoor environments. It is worth
mentioning, that indoor environments are
becoming more and more important as we
build trainers and simulations for individual
humans.

Another characteristic that will greatly
benefit the indoor environments for M&S
applications is the use of a combined visual
and SAF database. Feature metadata, as
well as visual data, should all be combined
into the same environment because this
feature information comes with a standard
set of functions, which can be attached to
structural elements. Environment modelers
can use the set of standard functions to add
or include built-in dynamic behaviors into the
indoor environments. Possible functions
include those used to open doors and
windows, as well as those used to trigger
buttons to turn lights on and to set alarm
systems off by motions detectors. As the
complexity of M&S environment increases
due to higher detail in outdoor, indoor, and
urban environments, the need to start
building this functionality into environments
becomes a necessity. This type of
functionality will not only help
interoperability, but it will also bring about
richer environments.

REFERENCES

[1] Pigora M.A., & Graniela B., & Reece D.
(2001) “Urban Human Simulation
Environments in CTDB”, Proceedings of the
Spring 2001 Simulation Interoperability
Workshop

[2] Planet Quake (2001), The Official QUArK
Homepage (online),
http://www.planetquake.com/quark/ (2001)

http://www.planetquake.com/quark/

	1:

