REVERSE ENGINEERING TO SUPPORT MODIFICATION OF JSAF
Michael Echevarria
VisiTech, Ltd.
Alexandria, Virginia

Stephen Kasputis, PhD
VisiTech, Ltd.
Alexandria, Virginia

ABSTRACT

The Joint Semi-Automated Forces (JSAF) simulation is a large program that has been modified across many
developers. A complete and concise software architecture map of it has not previously existed. Such a map would
assist new developers in understanding JSAF and speed development by allowing developers to quickly see
relationships without having to conduct time-consuming searches of the documentation of several libraries. It also
supports design of efficient regression tests of modifications by highlighting specific interactions that needed to be
tested. JSAF was reversed engineered and organized with the assistance of software tools into a model.
Requirements were then entered into the model and graphically traced down to the software. This end result
provides a clear, graphical picture of the JSAF architecture. In addition to the benefits previously stated, this model
helps document the connection between the software and requirements. This paper details the process of reverse
engineering JSAF and the advantages of using a software model to implement development.

ABOUT THE AUTHORS

Michael Echevarria is a scientist/engineer with VisiTech, Ltd., in Alexandria, VA. He has worked as an intern and
employee Digital Systems Resources and Planning Systems Incorporated. At those positions he conducted JSAF
testing and debugging along with Rational Rose re-design and implementation of large legacy systems into modern
object-oriented systems. He is currently a JSAF program developer for a prototype Marine Corps training system,
and Rational Rose designer/analyst of the overall system. He has a BS in computer science from the University of
Virginia/George Mason University and a minor in mathematical science from George Mason University.

Stephen Kasputis is the Chief Scientist of VisiTech, Ltd., in Alexandria, VA. He had held numerous positions in the
Undersea Surveillance Program Office including Technical Director of the Fixed Distributed System. He has been
the systems engineer for numerous simulation efforts. He is currently the systems engineer for the modification of
JSAF for a prototype Marine Corps training system and directing development of advanced validation techniques.
He has a BS in physics from Penn State, an MS in engineering acoustics from The Naval Postgraduate School, and a
doctorate in acoustics from The Catholic University of America.

REVERSE ENGINEERING TO SUPPORT MODIFICATION OF JSAF

Michael Echevarria
VisiTech, Ltd.
Alexandria, Virginia

Stephen Kasputis, PhD
VisiTech, Ltd.
Alexandria, Virginia

IPROLOGUE

Software development involving legacy systems differs
from the general process of software development.
When working with legacy systems, the software
design phase of development first requires recreation or
reverse engineered. A good example of this is our work
with the Joint Semi-Automated Forces (JSAF)
simulation. We needed to modify this simulation for its
role in the Distributed Virtual Training Environment
(DVTE), a prototype Marine Corps training system.

JSAF is a large-scale legacy system that has been
developed and modified across many software
developers from many companies. These developers
did not work in unison nor did they adhere to a uniform
documentation standard. The end result is that it is
difficult to develop a programming level understanding
of the code from the documentation. Using a hands-on
process of modifying the code is typically the best was

Fotiation 1

to become familiar with it. To become truly adept at
modifying JSAF requires several months of continually
working with it because of intricacies of a system that
contains 915 libraries. To bring new programmers up to
speed on the system faster as well as to improve the
effectiveness and efficiency of our testing of
modifications, we sought development of a software
architecture model that shows the class interaction
between the many libraries of JSAF.

IT INTRODUCTION

The software development process is generally
described by two models. The first, the waterfall model
(figure A), is a linear process. The second, the spiral
model (figure B), is similar to the waterfall model, but
is cyclic. Analysis of these models shows that software
development models can be generalized into the
following steps: requirements analysis, analysis, design,
programming, and testing.

_Aralysis
& yplication Description
&
¥
Design
Feguire rnents Specification
[

¥

Dupolew evatetivma
Systern Design

[

¥
’_’ Produet
Cperationn ddpwgemerd —

Fignre &: The Waterfall Ilodel

Determire objec tives
abernatives ard
colk traints

REVIEW

Erabhake altematnees
dentfy, resclve rsks

Requrements plan
Lifs-cyek plan

Intezrabon

Planext phase and test plan

rext-level product

Figure B: The Spiral Model

Briefly, in the context of object oriented programming,
the phases of software development can be described as
follows. The requirements analysis phase defines what
the user expects from the system. The analysis phase is
concerned with the primary abstractions (i.e. classes
and objects) and mechanisms that are present in the
problem domain. The classes that model these are
identified, along with their relationships to each other.
In the analysis, only classes that are in the problem
domain (real-world concepts) are identified. What is not
identified at this level are technical classes that define
details and solutions in the software system (i.e. classes
for user interfaces, databases, etc.). In the design phase,
the result of the analysis is expanded into a technical
solution. New classes are added to provide the technical
infrastructure, for example: the user interface, database
handling to store objects in a database, communication
with other systems, or interfacing to devices in the
systems. The domain problem classes from the analysis
are embedded into this technical infrastructure. The
design results in detailed specifications for the
programming phase. In the programming phase, the
classes from the design phase are converted to actual
code in an object-oriented programming language. The
testing phase consists of unit tests, integration tests,
system tests, and acceptance tests. The unit tests are of
individual classes or a group of classes, and are
performed by the programmer. The integration test
integrates components and classes in order to verify that
they cooperate as specified. The system test views the

system as a ‘black box’ and validates that the system
has the end functionality expected by an end user. The
acceptance test are conducted by the customer to verify
that the system satisfies his requirements in a typical
operational context.

IIT RESEARCH FOCUS

The difficulties encountered with modifying legacy
systems come in the analysis, design and testing phases.
The analysis phase is difficult with JSAF because the
documentation of library interactions is often outdated
and incomplete. Compounding this is that fact that
redundant instances of classes may appear in different
libraries. The design phase is then affected by the lack
of clarity from the analysis phase. Identifying the
effects of modifying or adding classes and objects is
very tedious and complex. Finally, the testing phase is
convoluted by the lack of knowledge preceding it. End
user tests can be performed to check for overall results,
but class interactive tests are difficult to evaluate
because it is not known how many or which classes are
affected by the changes made.

The solution to problems created in the software
development process by legacy systems such as JSAF
has been to reverse engineer the system to aid in the
analysis, design and testing phases. Our goal of the
reverse-engineering process was to provide a clear
understanding of the software architecture.

This was difficult for a system as large as JSAF.
Complicating things further is the fact that JSAF is
system comprised of several languages. Libraries in
JSAF are written in C, C++, JAVA, and MYSQL. The
reverse engineering of JSAF, therefore, required the aid
of software tools. These tools facilitated checking each
of the 915 libraries for references among the others.
Additionally, selection of a common representation
language for showing the linkage among the libraries of
JSAF was essential. The Unified Modeling Language
(UML) was chosen to represent the architecture of
JSAF. Rational Rose, as an application of UML, was
chosen to perform the process tasks for the reverse
engineering.

IV IMPLEMENTATION DESCRIPTION

A software model of JSAF is an organized depiction of
its interactions and classes. Rational Rose Enterprise
Edition’s functionality provides the data structure/class
relationships in terms of UML and the framework for
the user to create the system organization. We then
provided organization and analysis of the resulting data.
The creation the JSAF software model required us to
organize the 915 software libraries into components,
process the data of the components, and develop a use-
case model explaining the overall functionality of the
system.

VIMPLEMENTATION

The JSAF library documentation does have a system for
organizing the libraries. The libraries are categorized
into a three levels, each level becoming more specific.
For example, the library DamEdit, a GUI for viewing
and modifying component and subcomponent damage,
is categorized as a GUI COMMAND SERVICE (see
figure C). The documentation shows a three-tier
architecture with a total of 300 categorizations. Looking
through the actual library documentation shows that
only 61 of the 300 categorizations are used. Also, some
libraries are labeled with categorizations that are not in
the overall hierarchy. An example of this is in the
library EnvDust (library for modeling vehicle dust),
which is labeled as SIM ENVIRONMENT SERVICE.
The organization documentation does not contain a
subcategory labeled ‘environment’. Due to these
discrepancies, we created an organization that more
accurately reflected the JSAF system. The hierarchy
keeps the original organization of a three level
categorization, but excludes unused categories. The
hierarchy was slightly reorganized to reflect the actual
categorization of the JSAF libraries. The library
hierarchies we developed for the software model of
JSAF are show in Figures C through F.

(=}

2 Ohject

}
i

%
g
g

2 Ohject

|

2 Ohject

i
2]] el

Mlariazearn et

=]
£
8

Figure C: GUI libraries

5
g
g

Anabeeic

2 Object

|

9) o) 5 L I

b

Datahoase

i

Mlatvazen et

Figure D: Metwork Libraries

SAF Ohject

2 Object

Comamand

Shared

Dratal ase

Dlatagzeam et

Physical

Figure E: Shared Libraries

SAF Ohiject

Bloi

2 Object

:

| e |
SAF Ohject

il

C2 Object
Tdividual SAF Ohbject
Service
Il gemm erd

;

5
g

ject

11

Phyysical

@

Figure F: Sirmmulation Libraries

Once the components had been created within Rational
Rose Enterprise under the ‘component view’ section,
data to be modeled had to be provided for those
components. The necessary data is the header files from
the various classes within each library. For JSAF there
are a total of 5863 header files corresponding to classes.
Entering each library’s header files into the component
structure by hand would have been tedious. Rational
Rose Enterprise does provide a ‘batch load’ option. To
exercise this option, a text file with a list of the full

paths of all the files was needed. To provide a listing of
all the header files within JSAF, a JAVA program was
written to capture the paths of all the header files and
place the output into a text file. This large file was then
parsed into smaller files that mapped to components
within the software model. Figure G shows the Rational
Rose screen for the batch load operation. The
NETWORK ARCHITECTURE SERVICE component
is shown with the full paths of the batch load files
shown in the open text file.

Folders * || Name ¢ | Size | Tvpe |
B batch_load ;I nietwork_architecture_cZobij.bxt 1 KB Text Document
E|{:I qui niebwiork_architecture_safobj. bt ZKB Text Document
{27 analysis nietwork_architecture_service.bxt SKE Text Document
{77 architecture niebwiork_architeckure_akility, txk 4 KB Text Document
{23 command
oo atabase network_architecture_service.txt - Motepac - =10 x
{3 datab & d 10 x|
{1 management File Edit Format Help
=0 network cihntest_casenDvTESstowhincludey TibincyIibecn. b -
{7 analysis Civtest_casesDvTeEs libhsrch 1ibecny1ibecn_scribe. h —
-4=3] architecture cihwtest_casesDvTEN]ibsroy]ibecny]ibecn_local. h
Cintest_casesDvTES 1Thsrcy1ihecny1ibecn_interaction:
L 4 *,) “ibsrcy 1ibecn™y11ihb i i
QAT civtest_casesovTES libsray1ibecny1ibecn_btree. h
{1 database Cihtest_casenDvTEN]libhsrch1ihecny1ihecn. h
-] individual cihtest_caserDvTEN] Tbsrch1ihecny]ibdra_types. h
e Civtest_casesDvTESbui TdyincTudes1ibincy1ibecn. h
d civtest_casenwDvTENbul Tdhincludedlibincy 1 ibpktvalve.
=2 éﬂ_larec' civtest_casedDVvTENibsroy1ibpktvalveslibpktvalve. b
-{_] architecture cintest_caseMDwTENlibsrchlibpktwalwed libpv_local.h
- cammand cihtest_caserwDvTENsTowi includerTibingy] iopktwalve.t
Cihtest_casesDvTERsTow incTudes 1ibincy 11 bED. h
-] database Cihvtest_cases\DVTENstows 1 ihsrci 1 1bpoip_po.
{7 management cintest_casenwDWTENsTowh 1ibsrch1ibpoipo_const.h
{27 physical cihvtest_casesDVTEN]ibsrahlibpohtest_xsw. h
st c:b‘test_case‘\"\\DWE‘le]ESFC‘Q]IW_EpD‘QpD_E] %e. h i
civtest_casenDvTES 11bsrcy 1ibpospo_file_structs.
=7 sim Cihtest_casesDvTEN 1ibsray 11 bgu\po_ﬁ le_size.h
{77 analysis cintest_casespvTEN]ibsrcy]ibpoy]ibpo_Tocal.h
2 ardhited: civtest_casenDvTES libsrah1ibpos 1ibpo.h
A CHLERLHRE civtest_casesDwTEMNui 1dhTibsrcy1ibpoypo_canst. h
e % collective c :;\‘test_cas e"\-\DWE‘\\:Euj :II 3;\‘1 i b_slr‘é\ljl ?E?\piﬁl%h §
d Cihtest_casen\DVTESbui includesIibincy 1ibpo.
5 ;ZT:;ZZE CihtesT_casenDVTEY] '| bsray] '| boueuet,] '| bgueue. h
Civtest_casesDvTEs 1ibsrcy 11 baueue\'l Thqueue_local.h —
{1 debug civtest_caser\DVTENstowhincludet 1ibhincy libgueue. h
{7 environment civtast_casenDvTErbul Tdvincluder]ibincy] ibgueue. b
21 g Cihvtest_cases\DvTESbui Tdyincluded1ibincy 1ibsema. h
e CihTest_casehDvTEy 1ibsrcy1ibsemath1ibsema. b
1:| individual Civtest_casesDwTEs 11hsrch 1ibhsemat1ibsema_Tocal.h
{1 management Cihntest_cases\DVTESstowhincludesTibincyTibsema. h
- retiork cihrest_caserdovTENbud Ty incTudenTibinchTibshmif. b
1 —_ Civtest_casenDvTEN T Thsr oy T ihshmifyTibshmif. h Ll

Figure < Batch load files

Next, the interactions for each component were
processed. Again each component was processed
individually. Rational Rose Enterprise was used to
check for dependencies, associations and other
interactions among the classes within the model.
Because of the way in which Rose processes data, this
check was a two-pass operation. That is, once all the
components were checked for dependencies, they check
was run again. This was necessary because when the
first component is reverse-engineered it takes each class
and check for associations against all the other classes
listed in the component (loaded from the batch file) and
also checks for association against any other classes
listed in the ‘logical view’ of Rational Rose Enterprise.
Since none of the other components have yet to be
reverse-engineered and have not placed the output in
the ‘logical view’ of Rational Rose Enterprise, there are
no other classes for the selected component to check
against. In other words, when the first component is
reverse-engineered, it is not aware of the classes within
the other 60 components. Next, when the second

component is reverse-engineered, that component is
aware of the classes within one of the components, but
is not aware of the other 59 components. The second
time the components are reverse-engineered, the first
component can now check against the other 60
components since their output is now in the ‘logical
view’ section of Rational Rose Enterprise.

At this point, the reverse engineering and the software
model of JSAF were complete. Rational Rose
Enterprise provided for various graphical
representations of the model. One such view, of the
interactions of the GUI COMMAND SERVICE
component, is shown in Figure H. The actual model
elements are contained in the left window. The large
window on the right is a viewing window and only
displays the classes dragged into it by the user or by the
system when the ‘expand selected elements’ function is
called. The viewing plane shows some of the GUI
classes, their associations, and class data structures in
terms of UML

File Edit Wiew Formab Browse Report Query Tools Add-Ins Window Help

DeE s ER0mEaRE | FEe R dE

ks B-orC|783 7 4 A‘

) dvte_built s

3 Use Case View
3 Logical View
-7 qui_analysiz_cZobj

<astructs >
pwd_default_features
(from gui_analysiz_safobj)

<estructs»
pud_gui_vars
(from gui_analysiz_safobj)

3 qui_analysis_safobj

3 qui_analysis_service gecales " [1]

gdatabase_name : char

= @map_widget : Widget
gmap_erase_ge: GC
geoale_togales - Widget [25]

£3 ui_architecture_c2obj

gfeatures : [TACTMAP_LAST_CLASS]

3 qui_architecture_service
+ 3 gui_command_cZobj %
E|E:| qui_command_service

----- B <<typedef>> ASSIGN_EDITOR [gui_cor
----- B <<typedefss A5SIGN_EXIT_FUNCTION
----- B <<typedef>> ASSIGN_REINIT_FUNCTIO
----- B <<typedefss DAMEDIT_COMPOMENT £
----- B <<typedefs> DAMEDIT_EDITOR [gui_cc
----- B <<typedefs> DAMEDIT_EDT_STRUCT [
----- B <<typedefs> DAMEDIT_KILLTYPE_STR
----- B <<typedefss EDT_ACTION_CONFIG [gu
----- B <<typedef>> EDT_ALTITUDE_CONFIG [
----- B <<typedefss EDT_ALTITUDE_UNIT [gu
----- B <<typedef>> EDT_ANGLE_COMFIG | gui
----- B <<typedefss EDT_ANGLE_UNIT [gui_cc
----- B <<typedefy> EDT_AngleCallbackStruct [
----- B <<typedefss EDT_AngleClassPart [gui_c
----- B <<typedef>» EDT_AngleClassRec [guic

+initial_scale

+num_scales_plus_5

Gehow_as_wehicle_pictures : Wfidget
gehow_as_vehicle_icons : Widget
gforce_menu :Widget [PVD_MAX_FORCE_ID]
ofilter_menu : Widget [PVD_FILTER_MENU_MAX_ITEMS]
@blip_filter_name : char [32]
gotrack_filter_name : char [32]
¢rblack_geo: GC

ganhite_go: GC

grbug_go: GC

@force_go: GC [totalForcellcount]
¢rhit_ge: GC

genear_ge: GC

gpmiss_go: GC

gindf_go: GC

Gmine_ge: GO

grooll_ge: GC

@mf_geo: GC

gopmit_geo: GC

grlane_ge: GC

@miclic_ge: GC

grlaser_ge: GC

+default_featyres

+highest_tree

----- Bl <ctypedef:» EDT_AnglePart | gui_comms
----- B <«typedef>> EDT_angleRec [gui_comm.
----- Bl <ctypedef:» EDT_Anglewidaet | gui_cor

<<typedefs=
GEMERIC_INTEGER
from source_files_h)

@ehading_ge: GC [19]

gGunknawn_ge: GC

Gfootprint_ge: GC [SENSOR_MODE_hAx]
ghblip_ge: 6L [A]

----- B <«lypedefs> EDT_anglewidgetClass | gu

Gfont_struet : XFontStruct ™

olast_rec{ : XRectangle

@B <<typedefss EDT_CALLBACK_BUTTON

----- B <<typedef>> EDT_CALLBACK_DATA | g

----- B <<typedefs» EDT_CALLBACK_FUNCTIO

----- B <<typedef>> EDT_CHOOSE_COMFIG (g

----- B <ctypeder:> EDT_CLASS [qui_somman: +priv

----- B <<typedefs» EDTI_DATE_AF!F!DW [qui_* 'y
3

gEoom_go: GO
@undo_buffer : [UNDO_BUFFER_LENGTH]

Figure H: DVTE/JSAF Software Model

VI CASE STUDY

A utility case study was performed as a first check of
the validity and usefulness of the model by comparing
the method currently employed for a JSAF modification
with the method possible using the JSAF model.

The modification selected for this study was a change
in the GUI default preferences. These preferences
include how much control the user has over unit
creation (the ability to create friendly units only, enemy
units only, all units, or no units), which units are visible
to the user (friendly, enemy, neither), what map
features the user sees initially (trees, buildings, contour
lines, etc.), the values in which quantities are expressed
(gallons as apposed to liters, miles instead of
kilometers, feet instead of meters), and so on. The goal
was to have a standard default setting for the DVTE
program.

Initially the JSAF searches for a preferences file in the
user’s home directory. If that file does not exist, the
JSAF loads the default system preferences. In order to

minimize the changes to the DVTE version of JSAF
and not eliminate any of the user flexibility it currently
has, we did not want to change the default system
preferences nor eliminate the ability of a local user to
store his own preferences. Still, we needed the ability to
start the system with a standard DVTE GUI default
setting. We therefore needed to establish a DVTE
preference file with a precedence between the user
preference and standard system defaults.

To modify the preference file, one needs to understand
how JSAF references this file and where it is stored.
Without the aid of the software model, a first step for
someone without extensive JSAF experience would be
to conduct a key word search of the source file. Doing
this identifies instances of the GUI objects that
represented the initial values, but provides no indication
of what other classes changed the values, or what other
implications changing the system defaults within the
code would have. It is, therefore, necessary to find the
area of code where the user preferences are read. A
search for that area of the source was performed and the
code located. Additional code was added to this section

to search the system folder for the DVTE preference
file. Because of the location of the modification in the
code, this search would occur immediately after the
search for the user preference file in the home directory.
With the addition of this code, the creation and
distribution of a preference file in the system folder
achieved the desired results.

Using the JSAF software model, the process was much
different. First, a search through the documentation of
the JSAF libraries was done for a generic library. This
library, SAF_GUI, was organized as GUI COMMAND
SERVICE. This organization was mapped to the GUI
COMMAND SERVICE component in the JSAF
software model. The associations with the SAF_GUI
object were easily viewed with the Rational Rose tool.
The result was a picture of the associations among the
GUI objects that related to the SAF_GUI structure.
Among these objects was a pvd_gui_vars object (see
figure H). It contained the variables that needed to be
modified as defaults. Also, a default_features pointer is
the common object that communicates between the
pvd_gui_vars object and the pvd_default_features
object. This highlighted the specific area of code that
needed to be modified to insert the search for the DVTE
preferences file.

The final implemented solution is the same whether
using the model or not. However, use of the model
saved considerable time over not using it. In this
instance, for an inexperienced JSAF programmer, the
search time was reduced by more than a day. Addition
time was saved in the testing of the modification.
Because the model showed that the only association
between pvd_gui_vars and the pvd_default_features
object is the common parameter default_features object,
the programmer could be confident that his changes
were localized. The obviated the need for extensive
testing. Lastly, use of the model required skill in using
the associated software tool rather than familiarization
with the JSAF code itself. This skill is much more
transferable and likely to be of use on a wider range of
projects

VII USE OF THE MODEL

With the completion of the JSAF software model, it is
now available to improve the efficiency of the
modifications we will make to JSAF in support of the
DVTE program. The model will be used to support the
analysis, design, and testing of required modifications.
Analysis will be enhanced as there will be a clearer
vision of what specific libraries, components, and
objects need to be modified to implement any given
requirement. Senior JSAF programmers rely on
experience and familiarity with the code to identify

where changes need to be made. For them, the model
can be used to quickly validate their assessment. The
model will also provide junior programmers without
extensive JSAF experience the ability also reliably
identify where changes need to be made. This will
make a steep JSAF learning curve much shallower and
greatly lessen the time required for a programmer to
become confident in mapping JSAF requirements to
specific libraries and objects.

The design phase of JSAF modifications will be
improved since it will be known with greater certainty
what the ripple effects of any modifications will be.
Modifying JSAF currently has some trial and error
flavor to it. Changes are made and the software is tested
to see if any undesirable effects have been introduced.
Use of the model will better highlight what components
of the software will be affected by changes to given
components and allow for a more complete design. It
will also assist in ensuring that the design of
modifications preserves the current system architecture
as that architecture is captured by the model and
designs will be in the context of that model.

The procedures for the most effective use of the model
for analysis and design will need to evolve over time, as
the model itself is better understood. Perhaps the
greatest immediate benefit of the model, therefore, will
be in the area of testing. Having a map of all the
component interactions identifies what which of them
may have been affected by a modification to another.
Tests can therefore be constructed that ensure testing of
the aspects that might have been affected. Time need
not be spent testing aspects that the model shows will
not have been affected. Regression testing of
modifications should therefore be more efficient and
effective.

Lastly, use of the model will assist in the
documentation of modifications we have performed to
JSAF. Being aware of all the interactions of any
component of the code will assist in the bookkeeping of
documenting how those interactions are affected by any
given modification. Also, we are required as part of the
DVTE program, to deliver documentation on the
changes we have made to the baseline from which we
started. This deliverable will be organized according to
the library hierarchy as previously presented. Such an
organization will make the modifications easier to
understand for both the technical and non-technical
recipients of the document.

VIII CONCLUSION

A software model of JSAF was recently completed and
will be employed to assist in its modification. However,

ultimate validation of the model will only come with
time and use. The initial utility test of the model
demonstrated that it does have value and it undoubtedly
holds great promise. To fully exploit the model’s
potential will require adaptation of the current process
used to modify JSAF and, to some extent, the culture of
JSAF programmers. Once the skills of using the model
are mastered, however, they are can almost
immediately be applied to similar models of other
systems. Familiarity with the use of such models,
therefore, is a much more portable skill than is
familiarity with a specific application.

The process used to produce the model of JSAF can be
used for other legacy systems. Key to this process was
the use of software tools. These tools have their limits,
which may limit the utility of the reverse engineered
software model. For example, much of JSAF’s behavior
is determined by parameter files, not class structures.
The software tool we used to support the reverse
engineering process currently does not have the
capability to organize these files into a pictorial
hierarchy to aid development. Therefore, the model will
continue to evolve as the tools to support reverse
engineering increase in capability. It is apparent that the
software models produced through reverse engineering
have intrinsic value. They should be capable of
enhancing lifecycle management and reducing the

lifecycle cost of complex legacy software systems. It is
also apparent that more valuable models will be
produced as the capability of the support tools
improves.

REFERENCES

Eriksson, Hans-Erik & Penker, Magnus. (1998). UML
Toolkit. New York, NY: Wiley Computer Publishing.

Sommerville, Ian. (1998). Software Engineering.
Harlow, England. Addison Wesley.

ModSAF Programmer’s Reference Manual Index.

ACKNOWLEDGEMENTS

The authors wish to thank the program manager of the
DVTE, Mr. Donald Decker, and that program’s
technical director Dr. Michael Bailey. The modification
to JSAF required for their program provided the
motivation for the development of this model. The
authors also wish to thank Mr. Stanley Grigsby of
VisiTech, Ltd., Ms. Vicky Rowley of Sagacitech, and
Mr. Gerald Stueve of VisiTech, Ltd., for their extensive
guidance, counsel, and insight.

