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ABSTRACT

Over the last several years, there has been a major push to develop large-scale interoperable
simulators and simulations that cover the depth and breadth of military operations. While these
systems provide an ability to do end-to-end mission emulation, they tend to require elaborate
software development efforts. The requirements base for these systems is quite large and can
contain a variety of requirements at a number of different levels. Oftentimes, the harmonization of
these competing, and sometimes conflicting, requirements results in compromises in the system that
can have a negative impact on system performance, program cost and program schedule. The
ultimate effect is a negative impact on readiness, by delaying or depriving the training audience of its
tools. Consequently, even though these systems are able to provide training in the coordination
aspects of warfare, it is, to some extent, at the expense of functionality in individual training tasks.
That is, as “Swiss Army knife” systems, these trainers are able to provide useful and convenient
training tools, however, for any given individual task, the single, monolithic, meta-system does not
perform as well as a system developed solely for that task. This forms the basis of our argument: that
we should augment the large scale M&S system, with families of task specific Micro-Training devices.
As task-specific devices, they are smaller, less expensive and better suited to a given, specific task
than a larger system built on a series of compromises.
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INTRODUCTION

Over the last several years, there has been a
major push to develop large-scale interoperable
simulator and simulations that cover the depth and
breadth of military operations. This paper
presents another approach — Micro Trainers,
which could be used to complement existing
systems. After providing a definition of a Micro
Trainer and motivating the need for Micro
Trainers, this paper focuses on three major areas:
System Development and Maintenance Costs,
Training Effectiveness, and System Availability.
Moreover, we examine the issue of
interoperability, and consider how it affects design
and implementation.

Definition

We define a Micro Trainer as one system that
covers a training need related to a specific use
case, where a use case is a description of user
initiated events and user-system interactions
(Jacobson, 1992). In the training and simulation
community, for instance, one example of a Micro
Trainer would be a part task trainer (e.g., trainers
for tactical and acoustic displays, radar, electro
optics, flight/avionic management, etc.).
According to MIL HDBK 1379-4, a part task trainer
is “a device that permits selected aspects of a task
to be practiced independently of other elements of
the task”. Thus, one of the pedagogical
advantages of part task trainers is that they can
break down a physical task into easily understood
pieces of information and allow for repeated
practice of that task in a low stress environment.
Typically, the physical configuration of part task
trainers consists of workstations under the control
of an instructor facility and these trainers
specifically support individual training.

Investigators have demonstrated the benefits of
using part task trainers in military training
(Chatham and Braddock, 2001). In our model,
these benefits would also apply generally to the
notion of a Micro Trainer. But, while the training
and simulation community has formally adopted
the concept of doing part task training (MIL HDBK
1379-4) with part task trainers, there is really no
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counterpart for mission fraining. That is, no
construct exists to describe simulations designed
to support specific mission threads or phases of a
mission. To describe such a construct, we coin
the phrase “mission thread trainer”.

In our taxonomy, mission thread trainers are
characterized by attributes such as their:

1. ability to be deployed quickly

2. disposable nature

3. high amount of component reuse
4. selective fidelity

We liken a mission thread trainer to a part task
trainer in that it is designed to support a specific
use case, but distinguish it from a part-task trainer
in that the use case it covers relates to a specific
mission thread over time as opposed to a specific
skill or task (e.g., gunnery or driver trainer).

One example of a mission thread trainer is
Microsoft Flight Simulation, used by the Navy and
Air Force for pilot training. As a training tool, this
simulation has reduced level of fidelity for non-
essential aspects of mission. For example, a high-
resolution terrain data base would not add value to
this trainer, given the use case. Another example
of a mission thread trainer, Delta Force by
Novalogic, was designed to take down a building
and specifically intended for mission training as
opposed to combined arms training. In this case,
while it would need a high-resolution terrain data
base, it would not require a full-blown M-16
ballistics model. These examples illustrate one of
the central characteristics of a mission thread
trainer — the ability to reduce model complexity
(i.e., fidelity, in these instance) according to use-
case specific applications.

Figure 1 graphically illustrates the mission thread
trainer concept.
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Figure 1. Mission Thread Trainer Concept
The mission thread trainers we explore in this
paper exist in either the constructive domain or the
virtual domain. One could, however, also envision
a mission thread trainer operating in the live
domain. For example, paintball used for tactics
training could be considered an instance of “live”
mission thread training.

Joint Theater Level Simulation (JTLS) started out
life as a simple model to exercise the staff of
USREDCOM. Developed in roughly one year by a
small team for a given task on a given platform, it
clearly fits in the Mission Thread Trainer category.
However, like most successful systems, it has
been expanded and modififed so many times, it no
longer fits into the micro-trainer realm (Roland
2002). The same applies to the Janus system.

TacOps is an electronic version of the traditional
hex-based strategy board game. It makes no
pretense at having an accurate terrain or weapon
effects model. Rather, it is designed to solely
exercise the basics of tactics. Like TacOps,
Armored Fist is a commercially available war
game. As a tank platoon commander, the player
must maneuver his tanks in series of
engagements. In doing so, it simplifies the
dynamics, weapons, terrain, logistics and tactics to
provide a visually appealing environment. The
idea here is to provide a popped hatch view of the
world and be able to control forces in a movement
to contact and during the engagement, not all the
more mundane things (logistics, road march, air
defense, dealing with mechanical failures, etc.) of
being a tank platoon commander.

On the pure virtual side, games such as MS Flight
Simulator and Delta Force are very popular and
provide great experiences in their limited domain.

While Delta Force might provide a reasonable
simulation of a building clearing, it does not
provide the insertion and extraction and nation
building missions associated with the SOF
community.

Another classic example of a virtual micro-trainer
is the PowerScene/TopScene system. This
system provides pilots a view of photo draped
gridded elevation terrain with some of the more
military relevant objects placed on it. It is
designed solely for the purpose of familiarizing the
pilots with the terrain they are about to fly over. It
does not have duplicates of the real aircraft’'s
controls, dynamics, or full mission capability. It
was designed for a single purpose and performs
effectively within those design specifications.

Motivation

The Department of Defense is actively pursuing
advances in modeling and simulation technology
to provide the ability to link live, virtual, and
constructive simulations, and allow warfighters to
train in a realistic, fully integrated environment that
supports the entire spectrum of training (Part Il:
Today’s Armed Forces Readiness, DoD Published
Report). That spectrum is vast and requires
coverage ranging from the individual-level to
campaign-level  mission  rehearsal. As
demonstrated in a DARPA/USSOCOM call for
ideas on how to improve training, even just one
specialized domain, Special Forces, for example,
requires a host of different training platforms that
are not routinely part of mainstream training. As
seen at http:/safe.sysplan.com/scihelpamerica/index_.html :

“Pilots in SOF units must have access to
the latest in high fidelity, virtual reality
mission rehearsal systems. They must be
able to fly profiles in real world databases
not ordinarily found in common simulation.
Maritime SOF must be able to accurately
navigate small boats in up to Sea State 3,
at night and in hazards and executing all
of this at extremely high speeds (inducing
a whole new set of shock mitigation
problems). This requires training far
above that required of other navy
coxswain/helmsmen. Ground forces too...
must be proficient in high altitude,
high/low-opening  parachuting. This
requires a unique training system that can
train the soldier to navigate to a precise
landing zone, at night, in zero-zero
visibility.”


http://safe.sysplan.com/scihelpamerica/index_.html

While not all of these tasks lend themselves to
human-in-the-loop (HITL), virtual training, they do
illustrate the vastness of the training domain.

Moving from specialized task training to
specialized mission training, McDonald et al
(2001) recognized the need to support mission
rehearsal training through design and
implementation of a constructive CGF system for
USAF security forces. Critical to success of this
system was the fact that it be affordable and be
able to train decision makers on how to plan and
execute air base defense missions, while still
located at their home stations. As such, it would
allow decision makers to maintain team skills
between training rotations at regional training
centers once every three years. To achieve this,
McDonald designed a very specific set of
behaviors for VR Forces, a COTS CGF system.
This approach, contrary to other development
approaches used in mainstream CGF systems,
was very focused and specific to needs of
individual program. That is, instead of developing
a large-scale system that encompasses a number
of unneccessary requirements for this application,
McDonald developed a smaller, less complicated,
more specific system to better address the set of
particular training requirements.

This type of reductionist approach adopts a very
basic engineering design principle, often applied to
software development “problem reduction”
(Minsky, 1985), sometimes known as “divide and
conquer”. Very simply, the divide and conquer
principle proposes that the way to write simple
solutions to complex problems is to divide the
complex problems into a number of simple
problems. This can be accomplished by breaking
a large program into several small programs that
have well-defined interfaces. The efficacy of this
principle has been demonstrated by modeling
experts in a variety of domains, including software
development (Lekkos, 1976; Porvin et al, 1991;
Smith, 1998), control theory (Murray-Smith and
Johansen, 1997; Narendra, Balakrishnan, and
Ciliz, 1995), pattern-recognition (Hampshire and
Waibel, 1992), behavior-based robotics (Brooks,
1986), and behaviors for computer generated
forces (Henninger, et al, 2000). Typically, its value
is derived in terms of reducing model complexity
and/or improving model performance.

DEVELOPMENT AND MAINTENANCE COSTS

Introduced by Barry W. Boehm (1981) to estimate
the number of man months it will take to develop a

software product, CoCoMo (COnstructive COst
MOdel) comes in three forms: basic, intermediate,
and advanced, which range from a
macroestimation model which treats the product
as a whole, down to a microestimation model,
which treats the product in detail. The simplest
model, Basic CoCoMo, is useful for quick, early,
and rough order of magnitude estimates. It
computes software development effort and
development time as a function of program size
expressed in lines of code (LOC). Second,
Intermediate n CoCoMo  estimates  software
development effort as function of program size
and a set of "cost drivers" that include subjective
assessment of product, hardware, personnel, and
project attributes. Lastly, Advanced CoCoMo
incorporates all of the characteristics of the
intermediate version but adds a supplementary
assessment of the cost driver's impact on each
step of the software engineering process.

CoCoMo may be applied to three classes of
software projects: organic, semi-detached, and
embedded. Organic projects are relatively small,
simple software projects in which small teams with
good application experience work to a set of less
than rigid requirements. Semi-detached projects
are intermediately complex software projects in
which teams with mixed experience levels must
meet a mix of rigid and less than rigid
requirements. Embedded projects are software
projects that must be developed within a set of
tight hardware, software, and operational
constraints.

Basic CoCoMo
From Pressman (1997),
equations take the form:

the Basic CoCoMo

E=a,(KLOC )"
D=c,(E)"

(1)
()

where
E is the effort applied in person-months,
D is the development time in chronological
months, and
KLOC is the estimated number of
delivered lines of code for the project
(express in thousands).

The coefficients ap, by, ¢, and d, are presented
below in Table 1, according to class of software
project.



Software project | a, by Cp dp

Organic 241 1.05 25| 038
Semi-detached 3.0 1.12 | 2.5 | 0.35
Embedded 36| 120 25| 0.32

Table 1. Basic CoCoMo Model Coefficients

Intuitively, because b, is greater than 1, it is easy
to recognize that as LOC increases, E increases
at an exponential rate. In other words, increasing
LOC by an order of magnitude (e.g., 10) does not
translate into an equivalent increase in order of
magnitude for E, as the latter increases
exponentially. This concept and the log-linear
form of CoCoMo is corroborated by a number of
researchers (Briand et al, 1999; Kemerer, 1987)
as well as by Brook’s (1995) in “The Mythical Man
Month”, by demonstrating that a linear increase in
program size does not translate into an
equivalently linear increase in programming effort.
Brooks likens the error in this thinking to assuming
that the extrapolation of times for the hundred-yard
dash shows that a man can run a mile in under
three minutes. Clearly, even a simple software
estimation model such as Basic Cocomo,
demonstrates the relevance of this concept to
software development costs.

Complexity

With additional data gained from a growing and
increasingly matured software market, Boehm has
improved on his Basic CoCoMo model, with
CoCoMo Il (Boehm et al., 2000). In contrast with
Basic CocoMo, CoCoMo Il is based on more
contemporary programming efforts and is sensitive
to more factors that affect development effort. So,
whereas Basic CoCoMo simply considers KLOC,
CoCoMo Il also accounts for factors such as:
complexity, data base size, reusability
requirements, etc., as well as KLOC. As a means
of demonstrating the economic advantages of the
mission thread trainer concept, we developed a
series of CoCoMo Il models for a series of
hypothetical software projects with. That is, we
estimated the development effort (E) as a function
of kilo-lines of code, where LOC ranged from
10000 to 1,000,000 for projects of increasing
complexity. Based on our software development
experience, we deemed these settings
representative of systems developed in defense
modeling and simulation community. The results
generated from this CoCoMo Il model
configuration may be seen in the bar graph of
Figure 2.

Clearly, the bar graph in Figure 2 demonstrates
the tradeoff between size and complexity of
program and cost of the development effort. This
tradeoff is even more evident, when comparing the
bar graph representing a CoCoMo Il estimate, with
the lower area plot representing an estimate
based on linear extrapolation of 10 KLOC
estimate. For example, according to CoCoMo I
model, a 10 KLOC program requires 37 man-
months to develop. Extrapolating this estimate
linearly, suggests that a 1000KLOC program
would require 3700 man-months. More correctly,
however, the use of CoCoMo Il model in the latter
case reveals an estimate of over 13000 man-
months required to complete the software
development effort.

In the defense modeling and simulation
community, one factor that contributes to
development of large-scale, monolithic systems is
the large number of requirements placed on these
systems. For example, JSIMs has requirements
to model tasks for both the detailed Special Forces
and aggregate theatre command. Requirements
such as these add a lot of complexity to the
system; however, there is no mutual benefit to
these models in being part of the same platform.
Given the extra complexity required and the
increased costs associated with the extra
complexity, an alternative approach might be to
separate those models into smaller (i.e., more
“use-case” centric) systems. Adopting this policy
would encourage a reduction in fidelity where it is
not essential to the specific use-case. In terms of
fidelity, for example, a Special Forces model
would not require Corps level units and a theatre
ballistic missile defense model would not require
building interiors.

In addition to real costs associated with increased
systems complexity, one must also consider the
cost of lost opportunities. For example, spending
a lot of time building/maintaining a large system
preempts opportunities to build new and future
systems that may contain new doctrine. That is, if
a system takes 5 years to develop versus 1 year
to develop, there may be a loss in expressing
doctrine changes in a timely manner. Moreover,
the cost of modifying large systems for new
Tactics and Doctrine could actually exceed the
cost of developing an entirely new system. Again,
Brooks addresses this concept and warns against
the propensity to maintain and enhance existing
systems as opposed to simply developing new
ones.
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Figure 2. Software Development Costs Over Increasingly Complex Projects

Interoperability

One of the factors that can add to complexity of
requirements and thus, increase the cost to
develop simulations, is the requirement to build
systems that are interoperable. Complex
interoperability requirements, at times, may only
add limited value for trainers with specific mission
functions. For example, requirements such as
making JSIMS concurrently interoperable with a
virtual aircraft simulator and Theatre—level
command and control systems can add a great
deal of complexity to a system with respect to
synchronization and resolution of models, platform
constraints, fair fight issues, etc. Inevitably, this
increase in complexity comes at a price. In the
CoCoMo Il model, for example, one of the factors
representing added complexity is “Required
Reuse”. This factor accounts for the additional
effort needed to construct components intended

for reuse on the current or future projects (e.g.,
creating more generic design of software, more
elaborate documentation, and more extensive
testing to ensure components are ready for use in
other applications). To estimate additional costs of
interoperability requirements  on software
development, we increased the value of the reuse
factor from nominal to extremely high. The results
of this configuration of CoCoMo II model are
presented in the upper area plot in Figure 2. As
evidenced by comparison of this plot with the
basic CoCoMo Il plot, the additional costs of these
types of requirements are not only high, but they
too tend to increase the development costs at an
increased rate.

With respect to the mission thread trainer concept,
the plots in Figure 2 suggest that it may be
economically prudent to develop a larger number



of systems that individually cover a subset of the
requirements and collectively cover all of the
requirements as opposed to developing a single,
monolithic system that individually covers all of the
requirements. The following two sections on
Training Effectiveness and Availability consider
additional benefits of adopting the Micro Trainer
approach.

TRAINING EFFECTIVENESS

Clearly, a system tailor made for a particular
application can be made more suitable for that
application than a general model. This concept is
evidenced in Chatham and Braddock’s (2001)
review of the Interactive Multi Sensor Analysis
Trainer (IMAT). The Interactive Multi-Sensor
Analysis Trainer (IMAT) is a PC-based tool that
allows a sonar operator and a submarine’s
tacticians to visualize a very complicated acoustic
situation and determine how best to use their
sensors. According to Chatham and Braddock,
IMAT is “an example of a single training device
that changes the behavior of sonar operators so
that they achieve an order-of-magnitude increase
in submarine search area”. Their review continues
by saying that “an investment of a few million
dollars in this training research and development
(R&D) project has demonstrated performance
enhancements that far more expensive programs
have not achieved.”

Schneider (2001) reports on proof of concept tests
of COTS PC flight simulators in undergraduate
pilot training. His results demonstrated the
effectiveness of training with Micro Trainers by
showing that students who used an air force-
enhanced version of Microsoft Microflight
Simulator achieved individual “Time-to-Maneuver-
Item-File” sooner and more consistently than did
students who did not train on Microflight. Thus,
not only can Micro-Trainers be developed at lower
costs, but reseach into their training effectiveness
is showing that even very low-cost trainers can be
effective training tools.

AVAILABILITY

Aside from Microsoft Flight Sim, the training and
simulation community has embraced use of other
enhanced COTS products for training (e.g., Delta
Force, Operation Flashpoint, being enhanced
and/or used by US Army and Marine Corps). One
of the reasons for increased use of COTS systems
such as these is because of advatanges with

respect to availability. Use of these systems does
not require a major scheduling effort or a large
support staff. For example, the TacOPs
simulation is available to run on PCs, whereas its
large-scale counterpart, Corp Battle Simulation
(CBS), only runs on VAX stations. Until recently,
even the Closed Combat Tactics Trainer (CCTT)-
SAF was only available on AIX workstations. It
has recently been ported to Linux (Burch et al,
2000). Examples such as these demonstrate that,
from the perspective of availability, micro-trainers
have an obvious advantage over the larger,
monolithic simulations.

DISCUSSION

Throughout this paper, we have focused on one
key thread, the more diverse the requirements, the
bigger the system. What flows out from this is the
larger the system, the longer it takes to build, and
the more expensive it is. As the system grows,
the less likely it is to provide optimal benefit for
any specific application.

As members of the M&S community, we have
seen a large number of users advocate the use of
off the shelf computer games as viable training
solutions. What are they really saying? They want
systems that are inexpensive, easy to use,
available to them, compelling, and above all, they
want them now. In doing so, they are accepting,
sometimes unknowingly, the fact that the systems
might not fully meet their needs. There is a trade
space in which we can operate to deliver systems
faster and at a lower cost; but in doing so, there
has to be some relief from some of the
requirements placed upon the systems.

There is an old saying: “Perfection is the enemy of
good enough.” Clearly, this applies to the case of
micro-trainers. They are not designed to be “THE”
solution, only part of the solution. The challenge is
finding out what is “good enough”. But, that is a
topic of another paper.
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