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ABSTRACT 
 
Over the last several years, there has been a major push to develop large-scale interoperable 
simulators and simulations that cover the depth and breadth of military operations.  While these 
systems provide an ability to do end-to-end mission emulation, they tend to require elaborate 
software development efforts.  The requirements base for these systems is quite large and can 
contain a variety of requirements at a number of different levels.  Oftentimes, the harmonization of 
these competing, and sometimes conflicting, requirements results in compromises in the system that 
can have a negative impact on system performance, program cost and program schedule.  The 
ultimate effect is a negative impact on readiness, by delaying or depriving the training audience of its 
tools.  Consequently, even though these systems are able to provide training in the coordination 
aspects of warfare, it is, to some extent, at the expense of functionality in individual training tasks.  
That is, as “Swiss Army knife” systems, these trainers are able to provide useful and convenient 
training tools, however, for any given individual task, the single, monolithic, meta-system does not 
perform as well as a system developed solely for that task.  This forms the basis of our argument: that 
we should augment the large scale M&S system, with families of task specific Micro-Training devices.  
As task-specific devices, they are smaller, less expensive and better suited to a given, specific task 
than a larger system built on a series of compromises. 
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INTRODUCTION 

 
Over the last several years, there has been a 
major push to develop large-scale interoperable 
simulator and simulations that cover the depth and 
breadth of military operations.  This paper 
presents another approach – Micro Trainers, 
which could be used to complement existing 
systems.  After providing a definition of a Micro 
Trainer and motivating the need for Micro 
Trainers, this paper focuses on three major areas:  
System Development and Maintenance Costs, 
Training Effectiveness, and System Availability.  
Moreover, we examine the issue of 
interoperability, and consider how it affects design 
and implementation. 
 
Definition  
We define a Micro Trainer as one system that 
covers a training need related to a specific use 
case, where a use case is a description of user 
initiated events and user-system interactions  
(Jacobson, 1992).  In the training and simulation 
community, for instance, one example of a Micro 
Trainer would be a part task trainer (e.g., trainers 
for tactical and acoustic displays, radar, electro 
optics, flight/avionic management, etc.).  
According to MIL HDBK 1379-4, a part task trainer 
is “a device that permits selected aspects of a task 
to be practiced independently of other elements of 
the task”.  Thus, one of the pedagogical 
advantages of part task trainers is that they can 
break down a physical task into easily understood 
pieces of information and allow for repeated 
practice of that task in a low stress environment.  
Typically, the physical configuration of part task 
trainers consists of workstations under the control 
of an instructor facility and these trainers 
specifically support individual training.   
 
Investigators have demonstrated the benefits of 
using part task trainers in military training 
(Chatham and Braddock, 2001).  In our model, 
these benefits would also apply generally to the 
notion of a Micro Trainer.  But, while the training 
and simulation community has formally adopted 
the concept of doing part task training (MIL HDBK 
1379-4) with part task trainers, there is really no 

counterpart for mission training.  That is, no 
construct exists to describe simulations designed 
to support specific mission threads or phases of a 
mission.  To describe such a construct, we coin 
the phrase “mission thread trainer”. 
 
In our taxonomy, mission thread trainers are 
characterized by attributes such as their:  
 

1. ability to be deployed quickly  
2. disposable nature 
3. high amount of component reuse 
4. selective fidelity 

 
We liken a mission thread trainer to a part task 
trainer in that it is designed to support a specific 
use case, but distinguish it from a part-task trainer 
in that the use case it covers relates to a specific 
mission thread over time as opposed to a specific 
skill or task (e.g., gunnery or driver trainer).      
 
One example of a mission thread trainer is 
Microsoft Flight Simulation, used by the Navy and 
Air Force for pilot training.  As a training tool, this 
simulation has reduced level of fidelity for non-
essential aspects of mission.  For example, a high-
resolution terrain data base would not add value to 
this trainer, given the use case.  Another example 
of a mission thread trainer, Delta Force by 
Novalogic, was designed to take down a building 
and specifically intended for mission training as 
opposed to combined arms training.  In this case, 
while it would need a high-resolution terrain data 
base, it would not require a full-blown M-16 
ballistics model.  These examples illustrate one of 
the central characteristics of a mission thread 
trainer – the ability to reduce model complexity 
(i.e., fidelity, in these instance) according to use-
case specific applications.   
 
Figure 1 graphically illustrates the mission thread 
trainer concept. 
 
 
 
 

 
 



 
 
 

 
Figure 1.   Mission Thread Trainer Concept 

 
The mission thread trainers we explore in this 
paper exist in either the constructive domain or the 
virtual domain.  One could, however, also envision 
a mission thread trainer operating in the live 
domain.  For example, paintball used for tactics 
training could be considered an instance of “live” 
mission thread training.   
 
Joint Theater Level Simulation (JTLS) started out 
life as a simple model to exercise the staff of 
USREDCOM. Developed in roughly one year by a 
small team for a given task on a given platform, it 
clearly fits in the Mission Thread Trainer category. 
However, like most successful systems, it has 
been expanded and modififed so many times, it no 
longer fits into the micro-trainer realm (Roland 
2002). The same applies to the Janus system. 
 
TacOps is an electronic version of the traditional 
hex-based strategy board game.  It makes no 
pretense at having an accurate terrain or weapon 
effects model. Rather, it is designed to solely 
exercise the basics of tactics. Like TacOps, 
Armored Fist is a commercially available war 
game. As a tank platoon commander, the player 
must maneuver his tanks in series of 
engagements. In doing so, it simplifies the 
dynamics, weapons, terrain, logistics and tactics to 
provide a visually appealing environment. The 
idea here is to provide a popped hatch view of the 
world and be able to control forces in a movement 
to contact and during the engagement, not all the 
more mundane things (logistics, road march, air 
defense, dealing with mechanical failures, etc.) of 
being a tank platoon commander.  
 
On the pure virtual side, games such as MS Flight 
Simulator and Delta Force are very popular and 
provide great experiences in their limited domain. 

While Delta Force might provide a reasonable 
simulation of a building clearing, it does not 
provide the insertion and extraction and nation 
building missions associated with the SOF 
community.  
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Another classic example of a virtual micro-trainer 
is the PowerScene/TopScene system. This 
system provides pilots a view of photo draped 
gridded elevation terrain with some of the more 
military relevant objects placed on it.  It is 
designed solely for the purpose of familiarizing the 
pilots with the terrain they are about to fly over.  It 
does not have duplicates of the real aircraft’s 
controls, dynamics, or full mission capability. It 
was designed for a single purpose and performs 
effectively within those design specifications.    
  
Motivation 
The Department of Defense is actively pursuing 
advances in modeling and simulation technology 
to provide the ability to link live, virtual, and 
constructive simulations, and allow warfighters to 
train in a realistic, fully integrated environment that 
supports the entire spectrum of training  (Part II:  
Today’s Armed Forces Readiness, DoD Published 
Report).  That spectrum is vast and requires 
coverage ranging from the individual-level to 
campaign-level mission rehearsal.  As 
demonstrated in a DARPA/USSOCOM call for 
ideas on how to improve training, even just one 
specialized domain, Special Forces, for example, 
requires a host of different training platforms that 
are not routinely part of mainstream training.  As 
seen at http://safe.sysplan.com/scihelpamerica/index_.html : 
 

“Pilots in SOF units must have access to 
the latest in high fidelity, virtual reality 
mission rehearsal systems.  They must be 
able to fly profiles in real world databases 
not ordinarily found in common simulation.  
Maritime SOF must be able to accurately 
navigate small boats in up to Sea State 3, 
at night and in hazards and executing all 
of this at extremely high speeds (inducing 
a whole new set of shock mitigation 
problems).  This requires training far 
above that required of other navy 
coxswain/helmsmen.  Ground forces too… 
must be proficient in high altitude, 
high/low-opening parachuting.  This 
requires a unique training system that can 
train the soldier to navigate to a precise 
landing zone, at night, in zero-zero 
visibility.”   

 

http://safe.sysplan.com/scihelpamerica/index_.html


 
 
 

While not all of these tasks lend themselves to 
human-in-the-loop (HITL), virtual training, they do 
illustrate the vastness of the training domain.   
 
Moving from specialized task training to 
specialized mission training, McDonald et al 
(2001) recognized the need to support mission 
rehearsal training through design and 
implementation of a constructive CGF system for 
USAF security forces.  Critical to success of this 
system was the fact that it be affordable and be 
able to train decision makers on how to plan and 
execute air base defense missions, while still 
located at their home stations.  As such, it would 
allow decision makers to maintain team skills 
between training rotations at regional training 
centers once every three years.  To achieve this, 
McDonald designed a very specific set of 
behaviors for VR Forces, a COTS CGF system.  
This approach, contrary to other development 
approaches used in mainstream CGF systems, 
was very focused and specific to needs of 
individual program.  That is, instead of developing 
a large-scale system that encompasses a number 
of unneccessary requirements for this application, 
McDonald developed a smaller, less complicated, 
more specific system to better address the set of 
particular training requirements. 
 
This type of reductionist approach adopts a very 
basic engineering design principle, often applied to 
software development – “problem reduction” 
(Minsky, 1985), sometimes known as “divide and 
conquer”.  Very simply, the divide and conquer 
principle proposes that the way to write simple 
solutions to complex problems is to divide the 
complex problems into a number of simple 
problems. This can be accomplished by breaking 
a large program into several small programs that 
have well-defined interfaces.  The efficacy of this 
principle has been demonstrated by modeling 
experts in a variety of domains, including software 
development (Lekkos, 1976; Porvin et al, 1991; 
Smith, 1998), control theory (Murray-Smith and 
Johansen, 1997; Narendra, Balakrishnan, and 
Ciliz, 1995), pattern-recognition (Hampshire and 
Waibel, 1992), behavior-based robotics (Brooks, 
1986), and behaviors for computer generated 
forces (Henninger, et al, 2000).  Typically, its value 
is derived in terms of reducing model complexity 
and/or improving model performance. 
 
DEVELOPMENT AND MAINTENANCE COSTS 

Introduced by Barry W. Boehm (1981) to estimate 
the number of man months it will take to develop a 

software product, CoCoMo (COnstructive COst 
MOdel) comes in three forms:  basic, intermediate, 
and advanced, which range from a 
macroestimation model which treats the product 
as a whole, down to a microestimation model, 
which treats the product in detail.  The simplest 
model, Basic CoCoMo, is useful for quick, early, 
and rough order of magnitude estimates.   It 
computes software development effort and 
development time as a function of program size 
expressed in lines of code (LOC).  Second, 
Intermediate CoCoMo estimates software 
development effort as function of program size 
and a set of "cost drivers" that include subjective 
assessment of product, hardware, personnel, and 
project attributes.  Lastly, Advanced CoCoMo 
incorporates all of the characteristics of the 
intermediate version but adds a supplementary 
assessment of the cost driver's impact on each 
step of the software engineering process. 
 
CoCoMo may be applied to three classes of 
software projects: organic, semi-detached, and 
embedded.  Organic projects are relatively small, 
simple software projects in which small teams with 
good application experience work to a set of less 
than rigid requirements.   Semi-detached projects 
are intermediately complex software projects in 
which teams with mixed experience levels must 
meet a mix of rigid and less than rigid 
requirements.  Embedded projects are software 
projects that must be developed within a set of 
tight hardware, software, and operational 
constraints.  
 
Basic CoCoMo 
From Pressman (1997), the Basic CoCoMo 
equations take the form: 
 

bb
b )KLOC(aE =   

(1) 
bd

b )E(cD =   
(2) 

 
where  

E is the effort applied in person-months,  
D is the development time in chronological    
   months, and  
KLOC is the estimated number of 
delivered lines of code for the project 
(express in thousands).  
 

The coefficients ab, bb, cb and db are presented 
below in Table 1, according to class of software 
project.  
 



 
 
 

Software project   ab bb cb db 
Organic 2.4 1.05 2.5 0.38 
Semi-detached 3.0 1.12 2.5 0.35 
Embedded 3.6 1.20 2.5 0.32 

 
Table 1.  Basic CoCoMo Model Coefficients 

 
Intuitively, because bb is greater than 1, it is easy 
to recognize that as LOC increases, E increases 
at an exponential rate.  In other words, increasing 
LOC by an order of magnitude (e.g., 10) does not 
translate into an equivalent increase in order of 
magnitude for E, as the latter increases 
exponentially.  This concept and the log-linear 
form of CoCoMo is corroborated by a number of 
researchers (Briand et al, 1999; Kemerer, 1987) 
as well as by Brook’s (1995) in “The Mythical Man 
Month”, by demonstrating that a linear increase in 
program size does not translate into an 
equivalently linear increase in programming effort.  
Brooks likens the error in this thinking to assuming 
that the extrapolation of times for the hundred-yard 
dash shows that a man can run a mile in under 
three minutes.  Clearly, even a simple software 
estimation model such as Basic Cocomo, 
demonstrates the relevance of this concept to 
software development costs.   
  
Complexity 
With additional data gained from a growing and 
increasingly matured software market, Boehm has 
improved on his Basic CoCoMo model, with 
CoCoMo II (Boehm et al., 2000).  In contrast with 
Basic CocoMo, CoCoMo II is based on more 
contemporary programming efforts and is sensitive 
to more factors that affect development effort.  So, 
whereas Basic CoCoMo simply considers KLOC, 
CoCoMo II also accounts for factors such as:  
complexity, data base size, reusability 
requirements, etc., as well as KLOC.  As a means 
of demonstrating the economic advantages of the 
mission thread trainer concept, we developed a 
series of CoCoMo II models for a series of 
hypothetical software projects with.  That is, we 
estimated the development effort (E) as a function 
of kilo-lines of code, where LOC ranged from 
10000 to 1,000,000 for projects of increasing 
complexity.  Based on our software development 
experience, we deemed these settings 
representative of systems developed in defense 
modeling and simulation community.  The results 
generated from this CoCoMo II model 
configuration may be seen in the bar graph of 
Figure 2. 

Clearly, the bar graph in Figure 2 demonstrates 
the tradeoff between size and complexity of 
program and cost of the development effort.  This 
tradeoff is even more evident, when comparing the 
bar graph representing a CoCoMo II estimate, with 
the lower area plot representing an estimate 
based on linear extrapolation of 10 KLOC 
estimate.  For example, according to CoCoMo II 
model, a 10 KLOC program requires 37 man-
months to develop.  Extrapolating this estimate 
linearly, suggests that a 1000KLOC program 
would require 3700 man-months.  More correctly, 
however, the use of CoCoMo II model in the latter 
case reveals an estimate of over 13000 man-
months required to complete the software 
development effort.  
 
In the defense modeling and simulation 
community, one factor that contributes to 
development of large-scale, monolithic systems is 
the large number of requirements placed on these 
systems.  For example, JSIMs has requirements 
to model tasks for both the detailed Special Forces 
and aggregate theatre command.  Requirements 
such as these add a lot of complexity to the 
system; however, there is no mutual benefit to 
these models in being part of the same platform.  
Given the extra complexity required and the 
increased costs associated with the extra 
complexity, an alternative approach might be to 
separate those models into smaller (i.e., more 
“use-case” centric) systems.  Adopting this policy 
would encourage a reduction in fidelity where it is 
not essential to the specific use-case.  In terms of 
fidelity, for example, a Special Forces model 
would not require Corps level units and a theatre 
ballistic missile defense model would not require 
building interiors. 
 
In addition to real costs associated with increased 
systems complexity, one must also consider the 
cost of lost opportunities.  For example, spending 
a lot of time building/maintaining a large system 
preempts opportunities to build new and future 
systems that may contain new doctrine.  That is, if 
a system takes 5 years to develop versus 1 year 
to develop, there may be a loss in expressing 
doctrine changes in a timely manner.  Moreover, 
the cost of modifying large systems for new 
Tactics and Doctrine could actually exceed the 
cost of developing an entirely new system.  Again, 
Brooks addresses this concept and warns against 
the propensity to maintain and enhance existing 
systems as opposed to simply developing new 
ones. 
 



 
 
 

  
  
  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.  Software Development Costs Over Increasingly Complex Projects  
 
Interoperability 
One of the factors that can add to complexity of 
requirements and thus, increase the cost to 
develop simulations, is the requirement to build 
systems that are interoperable.  Complex 
interoperability requirements, at times, may only 
add limited value for trainers with specific mission 
functions.  For example, requirements such as 
making JSIMS concurrently interoperable with a 
virtual aircraft simulator and Theatre–level 
command and control systems can add a great 
deal of complexity to a system with respect to 
synchronization and resolution of models, platform 
constraints, fair fight issues, etc.  Inevitably, this 
increase in complexity comes at a price.  In the 
CoCoMo II model, for example, one of the factors 
representing added complexity is “Required 
Reuse”.  This factor accounts for the additional 
effort needed to construct components intended 

for reuse on the current or future projects (e.g., 
creating more generic design of software, more 
elaborate documentation, and more extensive 
testing to ensure components are ready for use in 
other applications). To estimate additional costs of 
interoperability requirements on software 
development, we increased the value of the reuse 
factor from nominal to extremely high.  The results 
of this configuration of CoCoMo II model are 
presented in the upper area plot in Figure 2.  As 
evidenced by comparison of this plot with the 
basic CoCoMo II plot, the additional costs of these 
types of requirements are not only high, but they 
too tend to increase the development costs at an 
increased rate.   
 
With respect to the mission thread trainer concept, 
the plots in Figure 2 suggest that it may be 
economically prudent to develop a larger number 



 
 
 

of systems that individually cover a subset of the 
requirements and collectively cover all of the 
requirements as opposed to developing a single, 
monolithic system that individually covers all of the 
requirements.  The following two sections on 
Training Effectiveness and Availability consider 
additional benefits of adopting the Micro Trainer 
approach. 
  

TRAINING EFFECTIVENESS 
 
Clearly, a system tailor made for a particular 
application can be made more suitable for that 
application than a general model.  This concept is 
evidenced in Chatham and Braddock’s (2001) 
review of the Interactive Multi Sensor Analysis 
Trainer (IMAT).  The Interactive Multi-Sensor 
Analysis Trainer (IMAT) is a PC-based tool that 
allows a sonar operator and a submarine’s 
tacticians to visualize a very complicated acoustic 
situation and determine how best to use their 
sensors.  According to Chatham and Braddock, 
IMAT is  “an example of a single training device 
that changes the behavior of sonar operators so 
that they achieve an order-of-magnitude increase 
in submarine search area”.  Their review continues 
by saying that “an investment of a few million 
dollars in this training research and development 
(R&D) project has demonstrated performance 
enhancements that far more expensive programs 
have not achieved.”   
 
Schneider (2001) reports on proof of concept tests 
of COTS PC flight simulators in undergraduate 
pilot training.  His results demonstrated the 
effectiveness of training with Micro Trainers by 
showing that students who used an air force-
enhanced version of Microsoft Microflight 
Simulator achieved individual “Time-to-Maneuver-
Item-File” sooner and more consistently than did 
students who did not train on Microflight.  Thus, 
not only can Micro-Trainers be developed at lower 
costs, but reseach into their training effectiveness 
is showing that even very low-cost trainers can be 
effective training tools. 

 
 

AVAILABILITY 
 

Aside from Microsoft Flight Sim, the training and 
simulation community has embraced use of other 
enhanced COTS products for training (e.g., Delta 
Force, Operation Flashpoint, being enhanced 
and/or used by US Army and Marine Corps). One 
of the reasons for increased use of COTS systems 
such as these is because of advatanges with 

respect to availability. Use of these systems does 
not require a major scheduling effort or a large 
support staff.  For example, the TacOPs 
simulation is available to run on PCs, whereas its 
large-scale counterpart, Corp Battle Simulation 
(CBS), only runs on VAX stations.  Until recently, 
even the Closed Combat Tactics Trainer (CCTT)-
SAF was only available on AIX workstations.  It 
has recently been ported to Linux (Burch et al, 
2000).  Examples such as these demonstrate that, 
from the perspective of availability, micro-trainers 
have an obvious advantage over the larger, 
monolithic simulations. 
 
 

DISCUSSION 
 
Throughout this paper, we have focused on one 
key thread, the more diverse the requirements, the 
bigger the system. What flows out from this is the 
larger the system, the longer it takes to build, and 
the more expensive it is.  As the system grows, 
the less likely it is to provide optimal benefit for 
any specific application.  
 
As members of the M&S community, we have 
seen a large number of users advocate the use of 
off the shelf computer games as viable training 
solutions. What are they really saying? They want 
systems that are inexpensive, easy to use, 
available to them, compelling, and above all, they 
want them now. In doing so, they are accepting, 
sometimes unknowingly, the fact that the systems 
might not fully meet their needs. There is a trade 
space in which we can operate to deliver systems  
faster and at a lower cost; but in doing so, there 
has to be some relief from some of the 
requirements placed upon the systems.  
 
There is an old saying: “Perfection is the enemy of 
good enough.” Clearly, this applies to the case of 
micro-trainers. They are not designed to be “THE” 
solution, only part of the solution. The challenge is 
finding out what is “good enough”. But, that is a 
topic of another paper.  
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