BUILDING SASO WARGAMING SIMULATIONS WITHOUT

PROGRAMMERS

Alexander Davis & Ryan Houlette
Stottler Henke Associates, Inc.
San Mateo, California

ABSTRACT

We have designed and prototyped a new software tool that will permit military planners to rapidly create wargaming
systems customized for specific SASO missions without the assistance of a programmer. This tool (KAGES)
possesses two major components: the authoring tool and the knowledge representation engine.

The authoring component provides an intelligent, intuitive graphical user interface that can guide the user through
the knowledge acquisition (KA) and simulation authoring process. By manipulating a palette of objects on a
“mission canvas,” the user specifies the entities and domain knowledge necessary to fully describe a mission.
KAGES is not simply a visual authoring tool, however. It collaborates with the user during authoring, drawing upon
its built-in knowledge engineering expertise to extract the relevant information from the user and encode it. To help
the user leverage the experience of past planners, KAGES also maintains a database of previously encoded domain
knowledge from which it can dynamically retrieve and adapt elements to fit the current situational context. Of
course, the system also allows advanced users to deactivate the intelligent assistance features and directly author
missions in the underlying representation for maximum flexibility.

In order to handle the complex data produced by the user interface, KAGES has at its core a knowledge
representation engine designed for the codification of SASO domain knowledge. It is capable of managing all of the
rules, facts, constraints, entities, and other elements that are pertinent to a particular mission, starting with METT-TP
(Mission, Enemy, Troops, Terrain, Time, and Politics) and ranging all the way to social and cultural factors. The
engine includes a compiler that can automatically generate wargaming scenarios from its internal knowledge
structures, so that once a mission has been specified in KAGES, it can immediately be run as a simulation.

ABOUT THE AUTHORS

Mr. Houlette is a project manager and lead software engineer in the San Mateo, CA office of Stottler Henke
Associates. He holds an M.S. in Computer Science (Artificial Intelligence) from Stanford University. His primary
interests lie in the areas of intelligent interfaces, autonomous agents, and automated generation of simulations and
interactive worlds. During his stay at SHAI he has participated in the development of a wide range of Al systems.
He is currently the co-lead software engineer on a project for the Air Force to develop an Al engine and visual
authoring tool that will allow non-programmers to specify the behavior of entities within an arbitrary simulation.
Mr. Houlette is also currently leading a project to develop a mixed-initiative scheduling system that will include as a
core component a rich capacity for human interaction and collaboration. Previous work includes a prototype of an
intelligent agent system for distributed simulation and a prototype graphical decision support system for the
placement of acoustic ground sensors.

Mr. Davis is a project manager and software engineer in SHAI’s San Mateo, California office and has extensive
experience in the application of case-based reasoning and other artificial intelligence technologies to the domain of
military simulation. He has an M.S. from the University of New York at Buffalo. Mr. Davis was the project
manager for the Automated Flight Test Engineering System (AFTES) project. AFTES involved the extraction of
knowledge from structured text documents, allowing new flight test plans and reports to be generated based on the
new situation input by the flight test engineer. He was also lead knowledge engineer and lead software engineer on
the SH-60R OA/OMIES project. This project involved the creation of an adaptive, intelligent user interface system
that enhances sensor employment and target classification by assessing the effective expertise of an operator,
including dynamic cognitive capabilities such as situation awareness and information overload, and intelligently
enhances the operator-machine interface accordingly. The system addresses the operator’s training level, individual
cognitive style, and particularly past performance under particular sets of operating conditions.

BUILDING SASO WARGAMING SIMULATIONS WITHOUT

PROGRAMMERS

Alexander Davis & Ryan Houlette
Stottler Henke Associates, Inc.
San Mateo, California

INTRODUCTION

The changing face of modern military action has
engendered an evolution of terms: Low Intensity
Conflict became Operations Other Than War, which
became Stability and Support Operations (SASO). The
sequence marks a migration of the nature of operations
away from purely traditional warfare, and into broad
and heterogeneous domains such as peacekeeping,
counterterrorism, arms monitoring, and a host of other
activities with only intermittent resemblance to outright
war. The outcomes of these modern operations are no
less crucial, however, and the armed forces involved in
SASO will continue to rely heavily on training and
course of action analysis through computer simulation.
Subsequently such simulations must now consider as
significant behavioral factors a far wider field of
knowledge than for mere force-on-force: cultural
differences among populations, shifting goals and
allegiances, unconventional groups of combatants and
noncombatants. The terrorist threat is a prime example:
its constituents can arise from any sector of society, its
motivations draw from such disparate sources as the
religious and psychosocial, its goals may be completely
free of familiar tactical considerations, and its methods
can be grossly asymmetric in devoting very few agents
to bringing about massive damage and casualty.

The technical challenges of developing simulations
sensitive to the breadth of SASO considerations are
formidable. Relevant entities range from federations of
countries to individuals, including organizations,
populations, forces, factions, and leaders. They must
serve a variety of roles, which may shift over time, as
parts of different aggregates. Relations between entities,
and the characterization of their simulated environment,
must include among other factors the psychological,
social, political, historical, and economic. Furthermore,
any such attribute may be probabilistic and uncertain.
All of this new knowledge is ultimately significant only
to the extent that the behavior of simulated entities is
meaningfully sensitive to it, producing outcomes as
widely productive and finely constrained as real life
situations, with some useful resolution; the expression
of behavior must also include such tasks as monitoring
and interdiction, and noncombatant activities that may
or may not be threatening. And last, but possibly

foremost, is the problem of knowledge acquisition.
Substantive knowledge in SASO operations may arise
only in the field, and its form may be less easily
anticipated by knowledge engineers than in current
systems. This requires a flexible acquisition,
representation, and execution framework.

THE KAGES SYSTEM

Approaching the problem as one of knowledge
acquisition (KA) with users who are experts in subject
matter but not in computer or knowledge engineering,
and then considering the subsequent implications for
knowledge representation and scenario simulation, has
proven useful. We share this ambitious objective with a
variety of researchers, including the Defense Advanced
Research Project Agency’s extensive Rapid Knowledge
Formation (RKF) project. Our effort differs in
immediacy, designed to arrive at a fieldable system in
the short term, partly by acceptance of domain
dependency but with promise for expansion into an
extensive system. The solution amounts to an
automated collaborator in the KA process: an intelligent
system that employs its knowledge of the SASO
domain, KA, and representational requirements for
simulation, along with what it observes of the user’s
knowledge base and preferred level of interaction, in
order to balance flexibility with tractability.

In development of the Knowledge Acquisition for
Gaming Environment: SASO (KAGES) system, the
following principles applied:
- input must be structured in natural ways
- unnecessary information must be hidden, and
displayed information simplified wherever
possible
- the user must always be provided with context in
terms of both the SASO scenario domain and
what needs to be done in the KA process
- KA can be incremental, unordered, and
incomplete
The core of KAGES that satisfies these principles is an
adaptive collaborator, which employs awareness of the
KA process, the SASO domain, and the user. KA
process knowledge is incorporated into a set of plans,
and into the acquisition manager which follows these
plans adaptively in concert with the user’s initiative.

SASO domain context is provided through the reuse of
knowledge, employing case-based reasoning to adapt
past SASO scenarios—and past acquisition episodes—
to the user’s current task, through the execution of
inference modules that attempt to fill in missing
information formulaically, and through templates that
characterize broadly various SASO mission types. User
awareness employs user modeling techniques drawn
from adaptive training applications.

WHAT IT DOES

As stated above, the goal of our system is to allow
military planners and analysts to encode their mission
domain knowledge into a SASO wargaming simulation
without the assistance of a programmer or knowledge
engineer. Within this overarching purpose, KAGES’
functionality can be divided into three main areas:
knowledge acquisition, knowledge representation, and
scenario generation.

Knowledge Acquisition

The knowledge acquisition component of KAGES is
designed to guide the military analyst through the
process of specifying a complex SASO scenario. It
consists of an intelligent authoring tool that collaborates
with the user as a knowledge engineer would, by
gauging the desired level of guidance, presenting varied
graphical forms of expressing information that appeal
to the user’s perspectives, and ensuring that the process
approaches the goal of a valid executable scenario. If
the user expresses interest, more powerful (and
complicated) interfaces can be provided. When the
process stalls, KAGES can change its approach. For
instance, if the user is having trouble identifying
relevant entities, the system might switch to behavior
expression; determining different situations to be acted
upon might suggest what entities bring those situations
about. Alternatively, KAGES could search its SASO
ontology for groups that the user might not have
considered, like political groups or information
operators, and ask if they are relevant. More substantive
suggestions can arise from the system’s adaptations of
previous knowledge that are discovered as relevant.
We discuss each of these major features in the
following sections.

Intuitive Visual Authoring

Most knowledge entry in KAGES is visual, taking
place on a “mission canvas” where objects are created
and manipulated. The canvas can represent a terrain
map, an organizational chart, a behavior diagram, or
various other specialized display formats. Standard UI
idioms allow clicking and dragging to establish
relations, double-clicking to examine individual

objects, and context menus to access available
manipulations of an object. Such UI gestures are
interpreted intelligently depending on the types of
objects involved, possibly querying the user further to
specify the meaning of the action. Beside the canvas are
other display areas that show object attributes, palettes
for the creation of new objects, or various view
configurations such as selective display of terrain
overlays. These areas of the editor can appear and
disappear according to the level of interaction desired
by the user, or depending on what types of objects or
viewing modes are selected.

=laix|

Bl Edt

Edt | checkist | Recent steps |

Flaton1 add

| [acrs o] [ov 2| memone
& &SRS =
e o g

oo 2] renesn Q@ OEA
& o Zoom Edit
T~ labels
Display made
& Graph
é Cutine
[R12 -Add " Matrix
i:%}zss (] Diagram Change.
& Bvp2 =l B

Figure 1 Editor: Red Threat Organization

The accompanying figures demonstrate uses of the
intelligent visual editor, including three primary visual
editing modes: a specialized threat organization mode
(Figure 1), a map editor allowing free sketching of
overlays (Figure 2), and a behavior editor (Figure 3).

Each consists of objects that are directly manipulable.
=10l x]

Ele Edt

[Threat coss

A

C matrix

%I (other) Change...
Figure 2 Editor: AO and Trafficability Overlays

| _’lJ/
I Biiiary Taske
I Secondary Tasks W Catalog | [£] FieView b Hietiew
I~ Reactive Tasks

I condtions
T Variables:

‘ - e = ey

Figure 3 Editor: Red Sniper Behavior

In the first, knowledge about force compositions is
expressed. Each unit can be broken down to whatever
level of detail is necessary to express behavior. In this
case, a platoon and its equipment are specified. The
second example shows two sets of overlays
simultaneously, one designating AOs and another for
specified regions of trafficability. Having drawn these
regions, the user can edit them to assign levels of
trafficability to each. Entity behaviors can be made
sensitive to those regions, and the regions can be
transmitted to the simulation if such knowledge is
supported in it. The third figure illustrates our entity
behavior representation, which uses a flowchart-like
diagram to depict complex, nested sequences of
decisions and actions.

Multi-Modal, Multiple Level-of-Detail Presentation
The visual editor is the centerpiece of the user’s
experience with KAGES, but it is not a static form.
During the course of its collaboration with the user, the
system adjusts the editor’s appearance and presentation
style, showing or hiding scenario elements according to
the skill level and preferences of the user. A novice
user, for example, may see a high-level view of entity
behaviors, where only the critical decisions and action
paths are shown, while an expert user would have direct
access to all behavior details. The system’s goal is to
provide the user with sufficient context for her to be
able to specify a mission model without overwhelming
her with irrelevant information. In addition, the user
can choose to manually modify the detail level of the
display, providing less detail if the display is too
cluttered, or more detail if resolution is too low to allow
full expression of the knowledge.

While the visual editor’s ability to display multiple
levels of detail is a powerful tool for accommodating a
wide variety of users, KAGES is also capable of

adapting its presentation more drastically. Rather than
having a single fixed knowledge-entry interface for
each type of knowledge to be acquired, KAGES allows
for multiple overlapping knowledge-acquisition
modalities. For each knowledge element being elicited
from the wuser, the system determines the most
appropriate presentation modality to use. These
modalities tend to be familiar methods of eliciting
knowledge, such as doctrinal diagrams, maps and
overlays, flowcharts, checklists, organizational charts,
association matrices, and so on. By using already-
existing input formats, the system can leverage the
user’s existing training and intuitions and minimize the
mistakes made due to miscommunications.

It is worth noting that the presentation modalities
employed by KAGES may vary widely in form and
behavior. Some modalities may be very simple —
perhaps no more than a few dialogue windows that
prompt the user to enter a few pieces of information —
while others may be quite complex, involving
sophisticated logic, elaborate diagrams, or graphics-
intensive displays.

For example, the user may have specified a set of
behaviors that reference the attitudes of various
scenario groups toward one another. KAGES
recognizes that these relationships have not been
expressed, and launches an attitude relationship
“wizard” to elicit the knowledge. The wizard will guide
the user through selecting groups or individuals of
interest, based on the existing scenario or on new
information that the user enters at that time. Then it will
ask the user to identify the relevant set of relationships
given what is known to the SASO ontology, or to
author new ones as before. Finally it will present an
interactive association matrix for specifying each
relationship.

Intelligent Automated Guidance

While the visual authoring system is capable of a wide
variety of adaptations and presentation styles, these
alone are not enough to enable users with no knowledge
engineering skills to encode their mission domain
knowledge. Such users need assistance to navigate
successfully through the knowledge acquisition process
and the complexities of a large knowledge base. The
authoring system thus incorporates an intelligent
guidance facility that attempts to automate the expertise
of the knowledge engineer. KAGES contains a built-in
model of the knowledge-acquisition process, and it uses
this model to drive a collaborative, mixed-initiative
interaction with the user. The level of automation
exhibited by the system is determined by the skill level
of the user.

Throughout the knowledge acquisition session,
KAGES’ guidance facility keeps track of the status of
the emerging mission knowledge base, noting areas of
incompleteness as well as inconsistencies in the model.
It then prompts the user (according to one of its various
guidance plans) to fill in the gaps or correct the errors
in the knowledge base. Collaboration will often consist
of an iterative deepening of scenario knowledge, in
which the user first defines a simple executable
scenario, and then goes on to provide further detail. In
fact this is one of various general authoring plans
employed by the system; another is a formal IPB
process. Each such plan consists of a hierarchy of
subplans, and the goal of completing any of these
various plans guides KAGES’ behavior. The power
user is able to view the plans themselves as a sort of
authoring checklist, and even modify them to a degree.

While KAGES generally selects the appropriate level of
collaboration for the current user, the user can also
manipulate the mode of collaboration directly in a
variety of ways, through a ubiquitous collaboration
control window. One option is a simple “Guide Me”
request, which prompts the system to analyze the user’s
current activity, and determine what needs to be done
next. This can consist of an interview process to fill out
an incomplete knowledge element, navigation to a
subsequent step, or identification of inconsistencies or
assumptions in the current domain model. In general,
the user is able to tweak the collaboration performed by
KAGES to the desired level.

Knowledge Reuse

KAGES constrains the general knowledge acquisition
problem through built-in knowledge of the SASO
domain. Two forms of this knowledge are templates
and cases. Templates are partially populated sets of
generic knowledge pertaining to a particular situation.
For instance, when the user selects an “Interdiction”
scenario, the system can provide default Blue and Red
behaviors, and also plan to query the user about
locations and the nature of the object of interdiction.
Templates exist on smaller scales, for example as sets
of reactive behaviors that can be added to a primary
behavior. Cases are an entirely different form of help,
providing fleshed-out scenarios from past authoring. If

the system determines that such a past case is
sufficiently similar to the user’s current authoring, it
adapts the case as much as possible to the current
scenario and presents it to the user for possible
inclusion in the domain model. Reusing large portions
of past similar scenarios will increase greatly the
efficiency of the knowledge acquisition process.

Knowledge Representation

The knowledge representation component of the system
is designed to store the set of entities, attributes,
relationships, behaviors, constraints, objectives, map
data, and other elements of SASO mission knowledge
produced by the authoring tool, ranging from
conventional METT-T to political and cultural factors.
All of this knowledge can be expressed at an arbitrary
level of resolution, allowing the user to include such
entities as entire populations or individual leaders.
Domain models developed by the user are validated
based on incorporated SASO knowledge, and when
complete can immediately be compiled into executable
scenarios.

Scenario Generation

Behaviors are authored in KAGES with the ultimate
goal of seeing them played out in a simulation. Given a
simulation engine, KAGES can be integrated in two
ways. First, KAGES can output a scenario complete
with behaviors in some format that a simulation can
understand; this separates the authoring system from
simulation entirely. Second, KAGES could use its own
behavior execution engine in conjunction with the
simulation, operating through a software interface.
Either method will result in an end-to-end authoring
and simulation system, in which the user can repeatedly
modify and execute scenarios as necessary.

SYSTEM ARCHITECTURE
The high-level architecture for our system comprises

eight major components (see Figure 4). We discuss
each of these below.

Knowledge Acquisition Manager

User

Profiler Inference

Module
Library

KA
Planner

Wargaming
Engine
(Loki)

Scenario -
Generator

-

Presentation Manager

ir

Mission

GUI B
<:> Interaction Dlarr:jalln
Picker ode
hteraction Knowledge Librarian ﬁ
Modality CBR nowledge
- h . Model
Library Engine Library Validator

Figure 4 High-Level Architecture

Graphical User Interface (GUI)

As described in the previous section, the user interacts
with KAGES via an adaptive graphical user interface
(GUI). This interface provides a “toolbox” of visual
interaction components that can be dynamically
assembled by the system to construct the most
appropriate user interface for the current task and user.
Because the GUI is highly modular, it is also quite
extensible: new interaction components to support new
types of knowledge entry can be easily added.

The set of interaction components includes a full set of
common elements such as tree-hierarchies, property
sheets, wizard dialogs, pop-up menus, drop-down
menus, and toolbars. In addition, it includes a variety
of more specialized components, such as a map overlay
editor, an entity relationship editor, and an entity
behavior editor. The map overlay editor allows the user
to import standard-format terrain maps and annotate
them with overlays describing salient scenario features:
unit locations, movement corridors, terrain features, etc.
These overlay displays are very similar to the overlays
currently in use by the Army, though here they are
backed by knowledge structures that permit KAGES to
translate them into a format suitable for computational
processing.

The entity relationship editor enables the user to
visually specify the various entities of interest (e.g., red
forces, blue forces, local populations, media) in the
scenario and the relationships between them. This
editor has many of the features of a modern drawing
program like Adobe Illustrator or Visio — a tool palette,
a “drawing” canvas, property editors for the currently-
selected entity object, and so on — except that the visual
objects represent knowledge elements in the domain

model. Each type of entity object has logic associated
with it that fully describe how it reacts to the user’s
mouse gestures and how it interacts with the other types
of objects. Thus, different entities can intelligently
respond to the same user action in the way that is most
appropriate to their type.

The entity behavior editor is another visual authoring
component, but its purpose is to allow the user to define
the behaviors followed by the entities in the scenario.
This editor is based upon our BrainFrame visual
behavior authoring technology (previously developed
for the Air Force), and it permits the user to intuitively
specify complex, conditional sequences of actions using
a flowchart-like representation. It supports
compositional hierarchies of behaviors so that
complicated behaviors can be broken down into
simpler, more easily-defined units.

The GUI also supports a variety of different
intervention modalities that KAGES can use to provide
advice and guidance to the user. Dialog boxes can be
popped up to prompt the user for information, objects in
the editor can be highlighted or pointed to, and
interactive help tutorials can be invoked. The GUI can
even manipulate its own interface (e.g., clicking on
buttons, dragging objects, selecting menu items) to
demonstrate how to perform certain tasks to the user.

User Profiler

In order for the system to adapt itself to the needs of the
user, it must have some idea about what those needs
are. Determining those needs is the job of the User
Profiler module, which draws upon multiple data
sources to create a constantly-updated profile of the
current user. Its primary input is the user’s own
actions, which it monitors for both implicit and explicit

preference information. Implicit preferences are
embedded in the user’s interaction with the interface —
for example, if the user never uses the entity hierarchy
tool on the interface, perhaps he or she finds it awkward
or difficult to understand. Explicit preferences are
directly stated by the user — as, for example, when the
user clicks “Do not show me this message again” in an
information dialog box, or when the user manually sets
the level of guidance desired. The User Profiler may
also draw upon summary information provided by the
Knowledge Acquisition Manager to evaluate the
suitability of the current knowledge acquisition style for
the user.

As the User Profiler collects information about the user
from the rest of the system, it processes it (using user-
modeling technology borrowed from intelligent tutoring
system research) and generates a detailed user profile.
This profile can be queried by other system modules,
which can then adjust their own activity to better suit
the user’s perceived needs. The result is that a novice
user will have a qualitatively different interaction with
the system than an expert user — generally speaking, he
or she will receive more step-by-step guidance and less
low-level detail.

Knowledge Acquisition Manager

The Knowledge Acquisition (KA) Manager is the
“brain” of KAGES. It is responsible for orchestrating
the behavior of the system and providing the user with
consistent, coherent guidance through the KA process.
The KA Manager is goal-directed and methodical; it
enables KAGES to plan and carry out a sequence of
steps to attain its knowledge acquisition objectives
rather than simply reacting to each user action on an
individual, short-term basis. Its plan-driven nature
affords a great deal of flexibility to the KA Manager: it
can interrupt the current plan in order to perform an
unrelated task and then smoothly pick up where it left
off, and it can also abandon an ineffective plan to try a
completely different approach.

KA Planner

To enable this kind of intelligent, goal-directed
behavior, the Knowledge Acquisition Manager is built
upon a hierarchical partial planner. This type of
automated planner generates plans according to a very
natural strategy of progressive plan refinement whereby
a high-level abstract plan is selected first and then
broken down into more and more detailed subplans,
until finally a plan consisting of low-level performable
actions (e.g., “Prompt user to input the terrain for the
mission site”) has been created. There are obviously
often many ways to break down a given plan step;
accordingly, the planner possesses a plan library of

possible decompositions from which it automatically
selects the one that is most appropriate for the current
situation (labeled “KA Plans” in the diagram).

The above-described planner drives the decisions made
and actions chosen by the KA Manager. Taking as its
inputs the current state of interaction with the user and
the contents of the mission domain model, the planner
devises a collaboration plan that details what actions
KAGES will take and what kinds of responses are
expected from the user. These plans may have
conditional components to deal with different paths of
user action. Once the planner has created a plan, the
KA Manager then carries it out step by step. The plan
is constantly monitored during its execution to see if the
user-system interaction has deviated from the path
prescribed in the plan; if it has, the planner will rapidly
replan to address the new situation.

Inference Module Library

To be able to generate a runnable wargaming scenario
from the information entered by the user, KAGES must
have a completely-specified model stored in the
Mission Domain Model. In most cases, however, it is
highly undesirable to force the user to fully specify
every detail of a mission, because it can be both tedious
and difficult. The KA Manager thus does not attempt
to extract the full mission specification from the user
but instead draws upon its library of inference modules
to fill in the blanks in the Mission Domain Model.
These inference modules contain knowledge about the
SASO domain, encoded in the form of templates (e.g.
common courses of action, standard mission
characteristics) and inference rules. Each module is
capable of taking an incompletely-specified knowledge
element related to its area of expertise, combining that
element with its own stored domain knowledge, and
producing a new and more complete knowledge
element. Based on the kinds of input that are being
provided by the user, the KA Manager chooses the set
of inference modules needed to fill in the domain model
to the desired level of detail. The KA Manager
maintains a distinction between knowledge produced by
inference, and knowledge specified entirely by the user,
to guide further refinement of the model.

Presentation Manager

In KAGES, the decision about what knowledge to ask
the user for is separated from the decision about how to
ask for it. The KA Manager is responsible for the
former, while the latter devolves upon the Presentation
Manager module. Once the KA Manager has decided
what the current knowledge acquisition goal is to be, it
informs the Presentation Manager. This knowledge
acquisition goal is stated abstractly:

“Ask the user to specify population distributions for
Region X,” rather than the more explicit “Display a pie
chart for Region X allowing the user to specify the
population distribution by sizing the pie wedges.”
Once the Presentation Manager is notified of this goal,
it examines its library of possible interaction modalities
and selects an appropriate one (generally drawing upon
input from the User Profiler as well). The Presentation
Manager then instructs the GUI to display that
interaction, waits for the results, and returns the
resulting information to the KA Manager.

Note that multiple interaction modalities may be active
at once; thus, the Presentation Manager is equipped
with algorithms to detect potential conflicts between
them. Moreover, many modalities may consist of
simplification or abstraction upon the knowledge,
leaving gaps in the actual representation. The KA
Manager can then compensate by specifically
requesting the remaining knowledge, or by appealing to
an inference module. An example of this situation
arises with the graph-based relationship editor. If it
were used to show every entity and every relationship,
the result would be an enormous, incomprehensible
tangle; therefore every practical use will involve
filtering for specific entities and relations between
them. The Presentation Manager is capable of both
production of this simplified graph, and translating the
user’s modification of it back to the original
representation.

The interaction modalities themselves may vary greatly
in their nature. They range from very simple dialogue
boxes that request one or two pieces of data to
sophisticated, multi-stage interactive “smart wizards”
that guide the user through the full specification of
some part of the mission. Modalities may often
resemble forms of doctrinal knowledge: building link
diagrams, plotting event pattern analysis, filling out
association matrices, or drawing a wide variety of
overlays, as examples. In the absence of a specialized
modality, the Presentation Manager can also provide
direct access to data representation, for the power user.
This is the mode in which the fundamental SASO
ontology is modified, and almost all knowledge content
is accessible with it.

Knowledge Librarian

The Knowledge Librarian is charged with the duty of
helping the user to find and reuse relevant knowledge
from previous KA sessions. It is built upon a case-
based reasoning (CBR) engine that maintains a library
(also known as a case-base), consisting of every
knowledge element ever created by a user along with its
associated contextual information. Included in this

contextual information are, among other things, the date
of the element’s creation and various details of the
mission for which the element was created. This library
serves as a repository of mission domain knowledge
and experience that grows with each new user
interaction.

To make use of this repository, the Librarian
incorporates a specialized knowledge retrieval
algorithm that can quickly search the library to find past
knowledge elements that are similar (both structurally
and in terms of mission context) to elements that the
user is currently creating. Once the most similar old
element has been retrieved, the Librarian adapts it to fit
the present context, updating dates, locations, and other
attributes so that they match up with the corresponding
features of the element-in-progress. The Librarian then
informs the KA Manager that it is able to complete
some of the user’s partially constructed knowledge
elements. If the KA Manager deems this to be
acceptable in the context of the current knowledge
acquisition plan, it will request that the Librarian
perform the offered completion; otherwise, the
Librarian discards the adapted knowledge element and
continues its ongoing retrieval process.

Mission Domain Model/Model Validator

The mission domain model is the central knowledge
base that stores the contextual domain knowledge
entered by the user. This knowledge is maintained in a
special internal format that is designed to facilitate
automated processing and inference, with particular
emphasis on compilation into wargaming scenarios. As
the user manipulates domain knowledge elements in the
GUI, the mission domain model automatically
translates the user’s changes into the corresponding
internal representations. The knowledge base engine
itself is optimized for compact data storage and fast
knowledge retrieval to ensure that KAGES is quick and
responsive. (See the discussion on knowledge
representation in the Phase I Results section of this
proposal for more information on the characteristics of
the internal knowledge model.)

Closely integrated with the mission domain model is
the Model Validator. This module is designed to catch
gaps and conflicts in the domain model that may go
unnoticed by the KA Manager. The Model Validator
relies upon a set of model validation rules defined by an
expert human knowledge engineer to catch errors and
missing information in the domain model. Each time a
knowledge element is added, changed, or deleted, the
Model Validator evaluates its rules to check for newly
introduced problems.

If a rule does fire, indicating a possible error in the
model, then the Model Validator will notify the KA
Manager about the problem (and may include as well
suggestions about possible resolutions). The KA
Manager will then adjust its plan to incorporate model
correction tasks. For minor errors, this correction may
be automatic; in most cases, however, KAGES will
walk the user through the process of fixing the problem.

Scenario Generator

Once the user has specified a mission domain model,
KAGES can then translate that model into a scenario
suitable for execution in a SASO gaming system. This
translation capability is built into the Scenario
Generator module, which uses mapping rules, code
libraries, and game rule templates to compile KAGES’
internal knowledge elements into the equivalent rules,
configuration data, units, resources, terrain, and mission
details needed by the wargame. The Scenario
Generator will draw upon the automated scenario
generation capability that SHAI has developed in the
past for Navy training simulations. Note that multiple
Scenario Generator modules are possible, one for each
gaming system that KAGES should support.

Wargaming Engine

While KAGES, using the appropriate Scenario
Generator, could be integrated with a variety of
different wargaming systems, we will provide a default
system based upon our LOKI behavior engine. This
engine, which was developed to provide pluggable A.I.-
controlled entities in Air Force simulations, is fast,
powerful, and easily integrated with a broad class of
simulators (though for our purposes, we may use the
LOKI engine itself as the simulator, implementing the
gaming rules as a set of interacting entities). In
addition, the LOKI behavior description language is well
understood and will provide an excellent testbed for the
domain knowledge-to-wargame scenario translation
process.

RELATED WORK

In the area of decision support tools for course of action
analysis (COAA), several systems of note have been
developed, including the Army Research Lab’s FOX-
GA (Hayes & Schlabach 1998), CECOM’s Course of
Action Display & Evaluation Tool (CADET), the
Course of Action Selection Tool (COAST), and the
Consequence Analysis Tool Set (CATS). While these
systems are instructive, neither of them is designed to
handle the kinds of small-scale SASO missions that the
Army is faced with today. In addition, these tools
require the involvement of a programmer or knowledge

engineer to customize them for new missions. They do
not provide the collaborative knowledge acquisition and
custom wargame authoring capability that the KAGES
system offers.

Other systems have been developed or adapted to
address the SASO knowledge domain, such as
Actheling’s NationLab system and Deployable Exercise
System (DEXES), and SAIC’s Situational Influence
Assessment Module (SIAM). While breaking some
ground in the engineering of SASO knowledge, they do
not support simulation for fine-grained COAA.
DEXES, for example, produced outcome predictions in
the form of global societal effects. These tools provide
insight into the wider variety of knowledge necessary to
characterize a SASO scenario, but fail to bridge the gap
between knowledge representation and COAA
wargaming.

DARPA’s ongoing Rapid Knowledge Formation (RKF)
Program shares with KAGES the research goals of
enabling codification of knowledge by nontechnical
subject matter experts. RKF differs in scope, including
many research groups working on such aspects as
natural language understanding and knowledge
discovery from text, as well as extensive reasoning on
knowledge bases. While these objectives are largely
outside the immediate scope of our project, RKF and its
predecessor, the High Performance Knowledge Base
(HPKB) project, have yielded valuable insight into
issues of knowledge representation and engineering.
Future research for KAGES will continue to consider
the theoretical advances that these researchers
contribute to the state of the art.

Another highly relevant area of research is the field of
mixed-initiative planning, which is devoted to the study
of software systems that can work in concert with the
user to perform tasks that would be difficult for either
one alone. These systems generally involve a
collaborative planning component that plays a role
similar to the KA Manager in the KAGES system; we
have drawn heavily upon literature in this area as a
source for useful algorithms.

James Allen (1996) at the University of Rochester has
worked extensively on mixed-initiative planning, with a
particular focus on collaborative planning viewed as a
dialogue between agents (human or machine). His
TRAINS system is an intelligent planning assistant that
works with a human user to route freight trains. Karen
Myers (1996) at SRI International has done much
recent work in the area of “advice-taking” planners,
which are based on the recognition that computers are
better at managing the low-level complexities of the
planning process, while human talents lie more towards

more abstract plan guidance. Her system, the
Advisable Planner, is essentially a traditional generative
planner (SIPE-2) fitted with a special interface allowing
users to offer high-level strategic advice to steer the
automated plan construction. Other notable research in
the field includes the MI-CBP planner of Manuela
Veloso (1997), at Carnegie Mellon, which is based
upon a combination of the ForMAT case-based military
planning system and the Prodigy automated planner,
and Robert St. Amant’s AIDE system (1996), which is
a mixed-initiative planning system intended to assist a
human with exploratory data analysis.

CONCLUSION

We have described here the architecture for a
knowledge acquisition tool that will enable military
analysts with no knowledge engineering experience to
capture a wide range of SASO mission knowledge in a
format suitable for use in wargaming simulations and
decision aids. We have partially validated our approach
through the construction of a limited prototype and
through discussion with SASO subject matter experts,
and we feel that the complete system will provide an
innovative set of capabilities that could prove useful to
the knowledge engineering and modeling communities.

The difficulty of the knowledge acquisition task is well-
recognized, and many other research efforts have
addressed the problem of making it less intimidating.
The KAGES system we have outlined here does not
solve this problem, but it does make certain inroads
toward a solution. The application of existing mixed-
initiative planning technology to the knowledge
acquisition process is, we believe, thus far unique, and
makes possible a new class of intelligent modeling
tools. KAGES’ explicit separation of presentation
modality from knowledge acquisition plans and its
ability to adapt to the level of the user are also powerful
new techniques for enabling programmer-free
knowledge acquisition — new to the KA community,
that is, though quite familiar to the builders of
intelligent tutoring systems. In short, the KAGES
research is focused less on the development of
revolutionary new knowledge representation algorithms
and more on the application of a number of proven
technologies from heretofore unrelated areas to the
knowledge acquisition problem. The resulting synthesis
shows promise as knowledge capture tool that can truly
be said to be designed for domain experts rather than
knowledge engineers.

AKNOWLEDGEMENT

The work described herein was supported by Army
contract DAAB07-02-C-H801.

REFERENCES

Ferguson, G., Allen, J.F., & Miller, B. (1996, May).
TRAINS-95: towards a mixed-initiative planning
assistant. In Proceedings of the Third Int’l
Conference on Al Planning Systems, May 1996.

Hayes, C.C., & Schlabach, J.L. (1998). FOX-GA: a
planning support tool for assisting military planners
in a dynamic and uncertain environment. In AAAI
Technical Report WS-98-02, AAAI Press.

Myers, K. L. (1996). Advisable planning systems. In
Tate, A., Advanced Planning Technology. Menlo
Park, CA: AAAI Press.

St. Amant, R., & Cohen, P. (1996). A planner for
exploratory data analysis. In Proceedings of the
Thirteenth National Conference on Artificial
Intelligence.

Veloso, M., Mulvehill, A., & Cox, M. (1997, July).
Rationale-supported = mixed-initiative case-based
planning. In Proceedings of IAAI-97, Innovative
Applications of Artificial Intelligence.

