
REFLECTIONS ON BUILDING THE JOINT EXPERIMENTAL
FEDERATION

Andy Ceranowicz
IITRI

Mark Torpey, Bill Helfinstine, and John Evans
Lockheed Martin Information Systems

Jack Hines
Titan Systems Corporation

ABSTRACT

The Joint Experimental Federation (JEF) is a large collection of simulations federated together by the US Joint
Forces Command (JFCOM) and the Military Services to support Millennium Challenge 2002. The federation
stimulates Service C4I devices to create a Common Operating Picture for a Joint Force Headquarters. The MC02
construct also included concurrent Service experiments, such as the Navy's Fleet Battle Experiment and the Air
Force's Joint Expeditionary Force Experiment.

JFCOM asked the Services to nominate simulations that would drive their C4I systems and realistically portray
military capabilities. The JEF was constructed by linking the nominees together via the Defense Modeling and
Simulation Office's Run Time Infrastructure (RTI). The resulting federation linked RTI and Distributed Interactive
Simulation (DIS) federates and live exercise feeds into a single geographically distributed simulation. Federation
integration took a year and was primarily a process of resolving conflicting simulation approaches. Significant
extensions allowed RTI-1.3NG to achieve the scalability and fault tolerance required for MC02. The federation
simulated over 34,000 battlefield platforms over a Wide Area Network and allowed individual simulation federates
or communications links to fail and restart without restarting the entire federation. A common Federation Object
Model (FOM) and Federation Agreements were developed based on the Real-time Platform Reference FOM.

While federations allow for simulation reuse, they also have drawbacks. Interactions gravitate to the least common
denominator models and the effort required to implement new capabilities is significantly multiplied. The real
power behind the federation concept is that it allows disparate groups to use their own simulations in common
experiments.

ABOUT THE AUTHORS

ANDY CERANOWICZ was the Technical Lead for the MCO2 JEF. He led the development of the FOM and
Federation Agreements. Andy is a Senior Science Advisor at IITRI in Harvard MA.

MARK TORPEY was a MC02 federation developer and is the lead developer and integrator of JSAF (Joint Semi-
Automated Forces). He is a Staff Software Engineer at Lockheed Martin Information Systems Advanced Simulation
Center (LMIS-ASC) in Burlington MA.

BILL HELFINSTINE was a MC02 federation developer. He is the lead developer for JSAF RTI interfaces and
RTI-S. He is a Staff Software Engineer at LMIS-ASC in Burlington MA.

JOHN EVANS was a MC02 federation developer. He developed the enumeration testing tools and monitored
enumeration compliance. John is a Senior Software Engineer at LMIS-ASC in Norfolk VA.

JACK HINES was a federation developer for MC02. He developed the detonation testing support tools. Jack is a
Senior Systems Analyst at Titan Systems Corporation in San Diego CA.

REFLECTIONS ON BUILDING THE JOINT EXPERIMENTAL
FEDERATION

Andy Ceranowicz
IITRI

Mark Torpey, Bill Helfinstine, and John Evans
Lockheed Martin Information Systems

Jack Hines
Titan Systems Corporation

THE FEDERATION

Millennium Challenge 2002 (MC02) was a large
simulation supported experiment conducted in July and
August of 2002 by 13,500 personnel at locations across
the United States. It was led by US Joint Forces
Command (JFCOM) under a mandate from Congress to
demonstrate the Joint and Service warfighting concepts
described in Joint Vision 2020. In addition to JFCOM
and the Military Services, MC02 also included
participation by a number of other government
agencies. JFCOM focused on exploring new concepts
for a standing Joint Force Headquarters executing
Rapid Decisive Operations. The Joint Experimental
Federation (JEF) was designed to simulate the Joint
battlespace for the purpose of presenting a realistic
operational picture to stimulate the experimental
audience. The JEF also supported Service specific
experimentation such as the Navy Joint Fires Initiative
and the Air Force Global Strike Task Force.

Table 1. provides a list of the simulations used in the
JEF (USJFCOM 2002). This list only includes
simulations electronically connected to the federation.
A number of additional simulations were run offline to
simulate other required functions, such as the flow of
forces into theater and the handling of casualties.

Table 1. Simulations in JEF

SERVICE SIMULATION INTER-
FACE

Air Force AWSIM RTI
CATT RTI
DICE RTI
GIAC RTI
DCE DIS
IWEG DIS
JQUAD DIS
PSM+/NAV DIS

SERVICE SIMULATION INTER-
FACE

MDST RTI
VSTARS DIS
AFSERS DIS
UMS DIS
CL-GPS DIS
AWACS DIS
COBRA BALL DIS
Airborne Laser DIS
Rivet Joint Trainer DIS
CV-22 DIS
LOGSIM Indirect

ARMY JCATS RTI
EADSIM DIS
FIRESIM DIS
TUAV DIS
TENCAP MUSE DIS

Marines JCATS RTI
Navy JSAF RTI

WARCON RTI
OASES RTI
TENCAP MUSE DIS
WALTS RTI
IMPACT (CUSP) RTI
PC SWAT RTI
BFTT DIS
AUTO SIGS DIS
ATLOS RTI
LEAPS DIS
vSSGN DIS

NRO SLAMEM RTI
NWARS RTI

SOF JCATS RTI
JSAF RTI
AWSIM RTI

Joint Civil Env. Model Indirect
JSAF Clutter RTI

The High Level Architecture (HLA) is the DoD
approach to simulation interoperability (Kuhl 1999).
Simulations using the HLA communicate via a Run
Time Infrastructure (RTI). RTI simulations were
connected directly into the federation. Distributed
Interactive Simulations (DIS) use an older
interoperability standard (IEEE 1998) and were
connected to the federation via gateways. The Civil
Environment Model and LOGSIM were indirectly
connected via other simulations. There were too many
simulations in the MC02 JEF to allow more than a brief
mention of the primary ones. JSAF was used to model
naval and maritime platforms, including Navy air and
shore based anti-ship missile batteries. JSAF also
provided civilian traffic referred to as clutter. AWSIM
represented Red and Blue air, as well as civil air traffic.
CATT, DICE, IWEG, and DCE represented the
Opposing Force (OPFOR) integrated air defense.
JCATS modeled the land forces for the Army, Marines,
SOF, and OPFOR. JQUAD provided reporting for
AWSIM entities and modeled fixed targets. SLAMEM
and NWARS modeled national sensors and MDST
modeled the detection of OPFOR missile launches.

RECONCILING DIFFERENCES

The process of building a federation from existing
federates is primarily one of reconciling differences in
the philosophy and implementation of the simulations
involved. Our integration began in June of 2001 and
continued until experiment execution in July of 2002.
The majority of our integration efforts could be
classified as:

• Porting federates to HLA
• Maturing the RTI and network
• Reconciling differences among federates

These tasks consumed virtually all our available time
leaving little to implement new federation functionality.
Because the majority of the MC02 simulations had
previously supported DIS, we had a common base to
start from. Even so, there were unexpected conflicts in
the interpretation of fundamental DIS interactions. For
example, when should entities be deleted from the
simulation? AWSIM simulates aircraft only while they
are flying. Once they are destroyed or land they are
deleted from the federation. However, JCATS and
JSAF aircraft fall to earth and remain there as destroyed
hulks. This initially confused AWSIM aircraft, which
would continue to engage destroyed aircraft and even
fly into the ground after them.

ENTITIES VS. AGGREGATES

The first question resolved was whether to use
aggregate or entity representations. Since we were
dealing with the operational level of warfare, there was
a strong argument for aggregate representations.
However, since a primary focus of the experiment was
C4ISR assets, which detect individual entities not
aggregates, entities made more sense. The scenario
also focused on small units rather than large formations,
further limiting the usefulness of aggregate
representations. The major question was whether we
could simulate and control enough entities to support
the scenario. We targeted 30,000 entities for our
federation and actually used approximately 35,000 in
the experiment. Although that was not enough to
model all the civilian traffic in the theater, it was
sufficient to represent all of the entities tracked via the
C4I devices used in the experiment.

TIME: MANAGED VS. REAL

The decision to run a real time federation without time
management was made early. In fact, we made
simulation time identical to wall clock time to support
interfaces with real world C4I equipment and live
forces. We would have preferred to run 12 hours of
simulation time per wall clock day, but getting the C4I
equipment to adapt to discontinuous simulation time
was decided to be too hard. So we used a 24/7
simulation execution schedule.

There were other reasons for using a real time
federation without time management (Hung 2002). An
important characteristic of real time simulation is that
simulation time advances without requiring overhead
for coordination. In time managed federations, a time
advance request and grant procedure is required to
move time forward. Time management overhead
increases with the number of federates and smaller time
steps. The JEF included around 90 federates with
internal update rates that ranged from 0.1 to 10 seconds,
so the overhead for advancing time could have been
significant. The JEF computers do, however, use NTP
to synch their system clocks. Real time simulation
supports fault tolerance as well. Since time
management essentially waits for each federate to catch
up, if a federate gets into a state where it cannot
proceed forward or cannot communicate its advance,
the entire simulation stops. This was unacceptable for
an experiment that would be run once and included live
forces. Finally, since the majority of the simulations in
the federation had DIS roots, they were already
designed for real time. Not using time management just
made it easier to interface the DIS models to the
federation.

Arguments for using time management include
reproducible simulation runs, running faster than real
time, and insuring proper event ordering. In this case,
however, we were executing only a single trial and the
C4I equipment and live operators restricted us to real
time. Event ordering anomalies occur when external
events are processed at a time later than when they
occur due to publishing, transmission, or federate
processing delays. Thus a tank in one federate may kill
a remote tank before it can open fire, but because of
delays in processing the detonation, the second tank
gets a chance to fire back. In this federation these
delays were usually under two seconds, so for these
anomalies to occur, both tanks need to fire within a
couple seconds of each other. Given the C4I focus of
the experiment these types of effects were of negligible
consequence.

FOM: BOTTOM UP VS. TOP DOWN

Our first major activity was to determine what should
be in our Federation Object Model (FOM). The FOM
is an HLA formalism for capturing all the object
classes, attributes, interactions, and parameters, which
will be used to communicate simulation state between
federates. There were two potential approaches. You
could work bottom up from a blank FOM and add in
only the data required for the current federation.
Alternatively, you could start with an existing FOM
from each simulation and work top down to resolve the
conflicts. We used the second approach. We started
with the core set of federates: AWSIM, DICE, CATT,
MDST, JQUAD, JCATS, and JSAF and merged their
FOMs. We guided conflict resolution by defining what
each federate would simulate and what interactions
would be supported. There was a great deal of overlap
in simulation capabilities. We divided the FOM into
public and private components. Public components
were used by all federates, while private components
were only used between federates from one or two
simulations. For example, OASES used environmental
objects to communicate ocean state to JSAF. This top
down approach was probably the most efficient because
of several factors. First, since our FOMs were based on
the Real-time Platform Reference FOM (RPR) (Reilly
1999), there were few cases that needed to be resolved.
Most often, federates had only to add FOM items that
they had not supported in the past. Second, because
these were existing simulations, they already supported
other distributed simulation applications. Allowing
them to keep most of their existing FOMs intact
minimized conflicts with their original applications.
Private protocols could be merged in without discussion
since, by definition, private protocols had no conflicts.
The disadvantages of this approach were that the JEF
.omt file, which defines the FOM, was over a megabyte

in size and provided no explicit distinction between
private and public data elements.

FEDERATION AGREEMENTS

Significantly more information is required to create a
working federation than what is in the FOM. The HLA
defines the FEDEP process (DMSO 1999) to capture
this information. However, we decided to follow the
example of the RPR GRIM document (Reilly 1999) and
developed a set of federation agreements. But, we
disagreed on how to document them. Some favored a
document describing differences from the RPR, but we
ended up writing an independent federation agreements
document. While this worked reasonably well, in
hindsight, we feel it would have benefited from more
detail than was provided and we continue to disagree.

DESIGN: SERIAL VS. PARALLEL

Questions about operational requirements came up
continually during the design of the FOM. What would
the scenario look like? What would the force list be?
The reality was that the time available to create the
federation precluded waiting for other groups to
formulate their requirements. The experimental
concepts were still in flux and the force lists and
scenario delivery dates were far away. The only
approach that would produce an experiment in the
available time was to work in parallel, make
assumptions, and adjust as requirements became more
solid. While this is not the most efficient approach in
resource utilization, it is the fastest way to develop and
mature concepts.

RTI

The major part of our federation development time was
spent porting simulations from DIS to the RTI and
maturing the RTI to support the experiment. The RTI is
the common network interface code that federates use
to communicate with each other. We started the process
with two candidate RTIs. The primary candidate was
the DMSO 1.3NG RTI (RTI-NG) (Bachinsky 1999)
and the secondary was RTI-S (Calvin 1997), developed
by DMSO and DARPA for the STOW Program. The
DMSO team was able to modify RTI-NG sufficiently to
support MC02 requirements and it was used for the
experiment. The availability of two different RTIs was
extremely useful during development, as switching
between them helped to diagnose problems and
suggested alternative solutions.

Subset vs. Complete RTIs

RTI-NG is a fully compliant RTI that implements the
entire RTI-1.3 Specification (Spec) (DoD 1998). RTI-S

predated the Spec and had been engineered to provide
those features required to support large-scale real-time
federations. RTI-S supports only a portion of the Spec
but provides additional services not required by the
Spec. Functions such as time management are not fully
implemented, while minimum rate transport modes are
provided. RTI-NG was developed with a strict
interpretation of the Spec. Because many parts of the
Spec were stated in the form: “if service X is invoked
on federate A, then action Y SHALL be executed on
federate B,” RTI-NG implemented all these functions
using reliable protocols and centralized control. Since
this led to severe performance and fault tolerance
problems for the federation, we proposed that DMSO
allow federations to use subset RTIs, like RTI-S.
DMSO rejected this approach on the basis that allowing
subset RTIs would limit interoperability and be too hard
to manage effectively. To be compliant, an RTI has to
implement all the functions in the Spec. Fortunately,
RTI-NG can modify its characteristics via the Run-time
Initialization Data (RID) file. A user can specify RID
parameters to configure the RTI for his federation.
Eventually DMSO allowed the RTI-NG developers to
add RID parameters that would enable RTI-NG to
support a large real-time federation effectively.

Porting to HLA

Most MC02 simulations started federation development
with DIS interfaces. To move forward while federates
were building their RTI interfaces, we used gateways to
link their DIS versions into the federation. As each
simulation was ported to HLA, it was moved from the
DIS side to the HLA side. This approach was very
important to our progress because it allowed
simulations to participate in the federation immediately.
They could deal with other integration issues such as
enumerations and it allowed the team to gain
confidence that the federation could work early on in
the development process. Basing our federation on the
RPR FOM made porting from DIS and developing
gateways easier.

Outboard vs. Inboard RTIs

Two approaches were used to connect to the federation.
JSAF, SLAMEM, MDST, and DICE used inboard
RTIs. They used the RTI for their private
communications as well as federation communications.
When running multiple JSAF simulations, each one
joins the federation as a separate federate and the
control messages from one JSAF to another go through
the RTI. On the other hand, many of the server style
simulations like JCATS, CATT, and AWSIM used
multiple computers communicating with internal
protocols and had a single computer acting as a

gateway or bridge to the RTI federation. All the
computers for one of those simulations were treated as
a single federate. Thus the number of computers in the
federation significantly exceeded the number of
federates. Centralized architectures with a gateway
typically could not take advantage of Data Distribution
Management (DDM). This is an approach for limiting
the network traffic each federate has to process to
provide scalability. DDM works by segmenting
federation network traffic so that federates can listen to
only those segments containing data about objects and
interactions that can affect them. A gateway, which
connects many kinds of entities and sensors scattered
throughout the playbox to the federation, makes it
impossible to segment the simulation traffic because the
simulations behind the gateway are interested in all of
it. Using a gateway can also increase overall network
bandwidth requirements since the same information is
transmitted in multiple formats. On the positive side,
the use of a gateway or bridge does allow a simulation
to use more efficient specialized protocols for its
internal communications and provides isolation from
FOM changes.

FAULT TOLERANCE VS. RELIABILITY

One of the biggest RTI issues that we had to face was
fault tolerance. As a federation tasked to support a one-
time exercise with many live players, we had to do
everything we could to keep the simulation running and
to recover seamlessly even if individual federates
failed. As long as a federate can recover before the C4I
picture is compromised, the federation can keep
running. Thus we had to prevent the failure of
individual federates or network connections from
causing a failure of the federation.

On first glance, fault tolerance and reliability are
compatible and desirable features, but on deeper
inspection they turned out to be polar opposites. Fault
tolerance means that if an individual component fails
the remainder of the federation keeps on running.
Reliability of message delivery means that the RTI
must guarantee that the message is received. This is
typically done by buffering messages and resending
them until an acknowledgement is received. If no
acknowledgement is received, federates can run out of
memory and crash in turn, bringing down the entire
federation. Initially, even stopping a single federate in
the debugger would crash the federation. The RTI-1.3
Specification has no requirement for federation fault
tolerance but its language does imply reliable message
delivery. So the failure of any federate can cause the
failure of the federation. This is not unreasonable if you
assume losing a federate invalidates the experiment,
however for our application it was the wrong

assumption. To work around this, a RID parameter was
provided that turned RTI-NG into a connectionless RTI
without a central RTI executive, supporting only best
effort transmission. The magnitude of the change
inspired the humorous name “hurt_me_plenty” for the
parameter. With this change, the majority of the fault
tolerance problems were resolved. As we migrated
from a LAN to a WAN environment this proved to be
critical. Federates started to crash when they received
packets corrupted by the network and we were unable
to find and correct the source of the problem. We
eventually worked around it by adding CRC checking
of packet payloads in the RTI. Corrupted packets were
discarded allowing the federates to survive.

HEARTBEATS VS. QUERIES

The remaining federation stability problem was due to
network spikes. In most cases, we traced these
problems back to class queries. Research on scalability
had suggested that you could limit traffic by publishing
static information once and having federates that
missed the information query for it. The Spec requires
support for both class and individual object queries.
Unfortunately, with over 30,000 entities in the
federation, a query for the base class results in a very
large traffic spike. Since queries have a nasty tendency
to become unstable, we disallowed queries in the
Federation Agreements. We used a special RTI module
to detect queries and identify offenders. We also turned
off as many individual attribute queries as possible.
While these did not cause large spikes, requesting
attributes for 30,000 entities individually, requires a lot
of queries. In place of queries, we went back to the old
DIS practice of heartbeating objects periodically even if
their attributes have not changed. This traded large
spikes for an increased average traffic rate. We found
that the smoother the network traffic rate was, the more
stable the federation was. Heartbeating also allowed
federates to time out objects when they went out of
scope. The RTI-NG advisory mechanism for tracking
scope was not scalable.

SCALABILITY: RTI VS. SIM

The other major RTI issue was scalability, that is, how
many entities could the federation simulate if more
computers could be added. We had a operational
requirement to simulate at least 30,000 individual
entities. Initially, with RTI-NG, the federation was
only able to handle several thousand entities.

Packet Rates vs. Entities

We characterize federation performance by entity count
because scenario developers are interested in the size of
the forces they can represent. However, RTI

performance is more tied to attribute update and
interaction rates and sizes than to the specific number
of entities. Also the actual number of RTI objects
required to support these entities was much larger that
the entity count. Throughout the integration process we
worked on reducing the message traffic required to
support 30,000 entities. Our initial measurements
indicated a potential traffic rate as high as 48
megabits/sec and we were able to reduce it to less than
ten. Another important dimension to scalability is the
number of federates the federation can support. Our
initial RTI configuration maintained a mesh of reliable
connections between federates. The overhead of
maintaining this net increased with the number of
federates. Going to a connectionless RTI improved
federate count scalability by eliminating the reliable
mesh and globally shared RTI knowledge. This
lowered packet rates by reducing RTI administrative
traffic.

We also reduced federate update rates. A federate
publishes updates if attribute values change or if
heartbeats are required. For continuous attribute values
such as position and velocity we used the concept of
dead reckoning: the attribute is updated only if the error
from its dead reckoned value exceeds a threshold.
Initially we ran the federation with DIS threshold
values and heartbeat rates and then we gradually
relaxed them. We ended up with a 60 second heartbeat
and thresholds of 10 meters in position and 15 degrees
in rotation. We also eliminated attributes, such as turret
orientation, that would significantly increase traffic and
were not required for the experiment.

The packet handling efficiency of RTI-NG was
optimized and we tuned the packet bundling parameters
to get better performance. We bundled up to 4500
bytes in each IP packet and collected updates for up to
one second. The tradeoffs were that bundling more
data together increased latency and packet loss due to
transmission errors, while smaller packets increased the
transmission of overhead data.

Declaration vs. Data Distribution Management

The other approach we took to scaling the federation
was to filter traffic going to each federate. The RTI
provides two mechanisms for filtering: Declaration
Management (DM) and Data Distribution Management
(DDM) (Helfinstine 2001). DM is a more static
approach; once you publish an object to a class you
cannot change it. Each federate can then tell the RTI
which classes it wants to receive at any point in time.
DDM allows information to be filtered more selectively
and dynamically. DDM allows you to publish any
object or interaction to a space of publication

dimensions. Federates can select a region of the space
to publish to and subscribers can select a region of the
space to listen to. If a publication space overlaps a
subscription space, the subscriber will receive the
update or interaction. Unlike DM, DDM allows a
federate to change the region it publishes to, in order to
indicate that the object has changed its properties and
that it may be of interest to a different set of listeners.

Different federates approached filtering from different
perspectives. JCATS used very little filtering since it
had a server architecture with a gateway bridge. Since
its entities were scattered over the playbox, there was
little benefit to filtering. Other federates favored DM.
AWSIM filtered out ground entities except for a special
class that included missile launchers and anti-aircraft
systems. That allowed it to ignore the bulk of the
updates, which came from the other ground vehicle
classes. The drawback to using DM for filtering is that
it is static. An entity cannot become interesting because
it has moved into your sensor range and you cannot
have radios publish to different classes based on the
current frequency they are using unless you delete and
recreate the object. If you subscribe to ground vehicles,
you get all ground vehicles from the entire playbox
because, in practice, you cannot subclass on location. If
you did, the entities would not be able to leave the
region specified in their original subclasses. DDM
allows you to filter on dynamically changing attributes
such as position, frequency, and emissions.

Software vs. Hardware Filtering

Filtering for DM and DDM was implemented in RTI-
NG in three ways. First, if no other federate subscribes
to information published by a federate, the RTI can
apply source based filtering and never send it out on the
network. However, in practice, with 90 federates in the
federation, virtually everything will have at least one
federate subscribing to it, if only to log it. This type of
filtering was not used, and the advisories that supported
it were eliminated when we went to a connectionless
RTI.

The second type of filtering was based on the
comparison of publication and subscription regions.
Each update had its publication region sent with it.
Upon arrival at a federate, the publication region was
compared with the subscription regions of the receiving
federate and the update was reflected to the application
only if there was an overlap in the regions. While this
worked acceptably for a federate which used very few
regions, the comparison was enormously expensive for
a federate that used many regions. Additionally,
including the publication region with each update
increased the size of the publication and therefore the

network bandwidth required to support the federation.
Another RID file parameter was provided to turn off
this region comparison.

The final form of filtering, and the only one we actually
used was multicast filtering. This filtering is primarily
accomplished in the network hardware, either in the
network switches and routers or at the network interface
card. Thus, it can significantly reduce the filtering
performed by the federate processor. While all RTI
federates used DDM to take advantage of multicast
filtering, not all federates used it dynamically. When
using DDM, simulations request that the RTI publish
data to regions in a space specified by the federation
(Coffin 1999) For MC02, the space consisted of a
primary dimension that was divided into 31 enumerated
regions, such as the Blue air space, the Red ground
space, the radio space, and the detonation space. Two
additional dimensions were used to further separate
objects published to each region on the primary
dimension based on their attributes. For example, the
Red ground space interprets the two secondary
dimensions as geographic extents, so the position of the
entities determines their publication region.
Publications to the radio space treat one secondary
dimension as a frequency dimension and ignore the
second dimension. Publications to the detonation space
ignore both secondary dimensions. Thus a receiving
federate can subscribe to Red ground entities in a
particular area, or it can subscribe to radios in a
particular frequency range, but if it subscribes to
detonations it will get all of them.

To turn these regions into multicast addresses, the RTI
is given a DDM scheme that tells it how many multicast
addresses to assign to each dimension. For the Red
ground space, 15 multicast cells were assigned to each
secondary dimension producing a grid of 225 multicast
addresses over the playbox. The detonation space is
assigned a single address. Using this information the
RTI takes the publication region specified by the
publisher and assigns it to a single multicast address for
publication. Publication regions were restricted to point
regions to avoid overlapping multiple multicast address
regions. Subscription regions, which are typically not
points, translate into subscriptions to the multicast
addresses covering the region. This allows the
receiving federate to tune into the data it needs just like
tuning to a number of TV channels. MC02 used
slightly more than a thousand multicast addresses for all
its publications.

A number of new RTI features had to be implemented
to make this filtering scheme practical. First, we had to
stop federates from publishing without DDM extents.
RTI-NG will take a non-DDM publication and publish

it to every multicast address. This ensures that all
DDM subscribers receive DM publications. For
federations that use a few multicast addresses, this is
not harmful. But for our 1000 multicast addresses, this
multiplied the bandwidth required for DM publications
by 1000 and caused spectacular network spikes.
Forcing federates to publish using DDM with point
regions eliminated this multiplication. Initially, RTI-
NG did not allow efficient allocation of multicast
addresses. It would only allow a uniform grid over all
the dimensions of the publication space. Thus if you
used 225 addresses for the Red ground space, you had
to use 225 address for every other region on the primary
dimension. With 31 regions on the primary dimension,
we had to use 6,975 multicast addresses to get a 15x15
grid over the playbox. Nonuniform gridding was added
and brought this number down to around 1000.
Multicast processing was also initially very inefficient
in RTI-NG. Initializing large numbers of multicast
addresses took many minutes and sometimes did not
work at all. Through repeated code optimization, these
problems were overcome and it became practical to use
DDM.

ENUMERATIONS

In order for federates to understand each other they
need not only a common FOM, which is akin to a
grammar, but also a common vocabulary. That
vocabulary is provided by enumerations. Enumerations
are used to identify platforms such as an M1A2 tank,
munitions such as a Block 2 Standard Missile, radar
emitters, and IFF codes. While conceptually simple,
developing a common set of enumerations and making
sure that they are implemented in each simulation
requires considerable patience and constant attention.
MC02 probably posed a greater challenge than most
federations because of the sheer number of federate
types and the constantly changing enumerations. We
started with around 1000 platform enumerations based
on the DIS standard (Braun 2000). Within weeks of
experiment execution we were still tweaking
enumerations, primarily to accommodate changing
force lists. To help with this task, we built a number of
tools to partially automate testing. The first of these
tools was an enumeration blaster. It was a federate that
could publish an array of all the entities with legal
enumerations. This tool was used to check whether
federates would recognize the enumerations correctly.
Unfortunately verifying this was a painful manual
process. While it was useful for initially checking a
federate, the dynamically changing entity list prohibited
its continued use to verify changes. Fully automated
checking would have been useful, but that would have
required a second independent way of identifying the
entity and instrumentation to respond to automated

queries. Most federates did not have the time or
resources to implement additional instrumentation. We
also provided a tool, called SNN, to monitor the
federation and detect enumerations that were not on the
legal enumerations list. This was used for individual
tests and during integration events. SNN monitored all
enumerations published and produced a list of all illegal
enumerations and the simulations that produced them.
Unfortunately, SNN could not determine whether the
enumerations that were on the legal enumeration list
actually represented the correct platform types. With
these tools and much manual effort, the enumerations
were slowly synchronized over the integration period.
One of the things that made the problem easier was that
the enumeration blaster, SNN, gateways, JSAF, and
clutter all shared the same enumeration file. If that
sharing could be extended to more simulations it would
be very helpful.

DAMAGE ASSESSMENT

The most difficult set of enumerations to verify were
munitions. Verifying them required examining their
damage against each platform they would be used to
attack. This is a cross product problem where the brute
force approach would try each weapon against each
platform in the federation. Not only were there many
cases, but, because damage is calculated
probabilistically and depends on many factors, such as
the velocity and incidence angle of the hit, the number
of combinations gets out of hand rapidly. Recognizing
that this was a significant federation problem, we
attempted to add supporting tools and instrumentation.
We directed each of the federates to implement a
damage assessment interaction that would report data
such as the probabilities of different levels of damage
and any enumeration mapping which the target
simulation was using for each detonation it received.
Then we developed a detonation blaster that would hit
each entity in the federation with a series of detonations
and modified SNN to capture the resulting damage
assessments. The SNN log was processed to find
problems such as detonations that were thrown away
because the federate did not know about the munitions
or did not have damage tables for those munition/target
pairings. We also requested the implementation of a
mode in which detonations produced damage
assessments but did not actually implement the damage.
This allowed the detonation blaster to try a series of
detonations against each entity without having to
replace damaged vehicles. For each run with these
tools, a federate would create an array of all the entities
it was going to simulate in the experiment and the
detonation blaster would try each of the legal munitions
against it with a variety of detonation result codes and
detonation miss distances. Detonation results are

enumerations that indicate whether the detonation
represents a direct fire hit, a proximate hit, a miss, or an
indirect fire detonation. The result of the test was a list
of detonations together with the resulting damage
assessments describing how the detonation was
processed including rejection cases, munition
substitutions, and raw damage probabilities. Special
cases that did not yield expected outcomes were flagged
for easier recognition. Unfortunately, the analysis
program did not have a table of expected damage
probabilities. So the problems it flagged were limited to
the processing preceding the actual damage calculation,
such as, munition mappings and the handling of
damage result codes. Even those problems required
someone to determine which ones needed to be
corrected and how. Although a few simulations
implemented the damage assessment, most did not have
the time or resources to do so. However, we were able
to use the precise control of detonation parameters
provided by the detonation blaster to run through a set
of general test cases for manual analysis. For those that
implemented damage assessment, we found that the
blaster generated huge numbers of cases for Subject
Matter Expert (SME) review. Although the blaster had
some simple logic for eliminating target munition pairs
that were unlikely to occur, it was still quite exhaustive
in generating test cases. Lacking instrumentation for
most federates, we had to rely on a manual review of
the damage tables. We limited the scope of the manual
review by considering only cross simulation
interactions and selecting only the likely
target/munition pairings. The review focused on
identifying pairings that were ignored or had munition
substitutions. The SMEs for the firing simulation were
required to determine whether the substitutions were
acceptable or that pairing could be ignored. This
approach was coupled with face validation testing for
major interactions. Unfortunately, we could only
scratch the surface of this problem. There was just no
practical way to verify that damage was correct under
all conditions.

One of the surprising results from the general test cases
generated by the blaster was that even though most of
the simulations used the same DIS paradigm for
damage and had employed it in previous DIS exercises,
their interpretations of the model were significantly
different. Some simulations responded only to direct
fire. Some required that the firer parameter field be
filled in. Others treated proximate misses as complete
misses, while still others treated them as direct hits.
These kinds of problems could not have been found by
damage table analysis alone. The detonation testing
experience showed the true difficulty of performing a
thorough V&V of such a large federation. It cannot be
accomplished without automated testing, which in turn

requires the allocation of sufficient resources for
instrumentation and SME support.

FEDERATION MONITORING

A very important instrumentation effort allowed us to
monitor federation health. We needed a way to
determine whether the entities each federate was
simulating were visible at all the federation sites. We
also needed to be able to identify which federate was
simulating a particular entity. To accomplish this, we
came up with a format for the RTI object name that
identified the federate simulating the entity. Each RTI
name contained a string identifying the simulation, the
federate IP address, and a locally unique ID for the
entity. DIS entities could not be identified from their
RTI object names because they contained the name and
IP of their gateways. To allow the source of these
entities to be identified, we assigned site numbers to
each simulation type. These DIS IDs were preserved in
the HLA object identifier attribute, so gateway objects
can have their DIS IDs examined to determine their
sources. To make use of this instrumentation, we
developed an SNN operating mode in which SNN
subscribes to all entities and displays the number of
entities from each federate, HLA and DIS. By placing
SNNs at each site, we could see if all the sites were
receiving the same number of entities. This provided us
with a good indication of network and federation
health. We also had RTI commands to tell us which
federates were joined to the federation without running
a central executive process. We did not have sufficient
time to implement more instrumentation, but what we
developed was crucial to our ability to monitor and
control the federation.

TERRAIN CORRELATION

The MC02 federates used a wide variety of terrain
representations. AWSIM and JQUAD used a flat Earth
geodetic projection. DICE and CATT used geodetic
coordinates with stair step elevations. JCATS had a
gridded Cartesian coordinate system augmented with
elevations. JSAF had a coordinate system that tiled the
Earth with Cartesian cells and used an irregular grid of
triangles to represent the elevation surface. Getting all
these representations to agree was a major challenge.
We started by attempting to use ground clamping to
provide correlation. As each remote entity position was
updated, the local copy of its position was adjusted to
place the entity on the surface of the local terrain or
ocean. Of course, this was not possible for air and
subsurface entities. We considered adding a surface
relative altitude attribute so that we could adjust the
local elevation to match the altitude in the owning
simulation. This approach had a number of

disadvantages. It was computationally expensive,
especially if the remote entities were distributed enough
to require terrain to swap in and out. Clamping could
produce very choppy aircraft movement since the
aircraft would essentially bob up and down with the
local terrain surface. Fair fight issues would emerge
because entities hidden by terrain features in one
federate would be exposed in another. Finally, dead
reckoning would not work since it was driven by
different terrain surfaces. Thus we decided it was
necessary to try to correlate all the terrains. We started
by building a single source data set. Then we generated
all the other terrain representation formats from that
source data. Both JCATS and AWSIM underwent
major terrain representation changes, with AWSIM
adding elevation data to their terrain model and JCATS
changing from a projection to round Earth
representation in a Cartesian space. JSAF built a terrain
representation with regular triangles to exactly match
the JCATS grid. DICE added geoid corrections to its
altitudes. The resulting terrain correlation was fairly
good with most elevations being within a couple of
meters of each other. However, there was no way to
perfectly align all the disparate coordinate systems.
Fortunately, almost all the ground forces were in the
JCATS federates, which by definition had perfect
correlation. No terrain anomalies were noticed during
execution.

LEAST COMMON DENOMINATOR

One of the difficulties of creating federations is that
interactions between federates must be grounded in
common or at least compatible models in all federates.
So the tendency is not to use the most sophisticated
models, but instead to pick a simple model that all
federates can understand. For example, when modeling
day and night, instead of using a gradual change in
illumination we used an on/off switch. Similarly when
dealing with terrain features, some federates had
abstract vegetation while other federates had explicit
representations of individual trees. We ended up
ignoring vegetation because it took so much effort just
to get the elevations correlated. In the case of
camouflage, where we had to get everyone to
implement a new model, we used a very simple four
state model with percentage degradations in the
probability of detection for each camouflage type.
Thus, federations that integrate platforms from different
federates tend not to make use of the more sophisticated
features of any federate but instead gravitate to the least
common denominator models in the federation.
Because of the many DIS models we were using, we
were even further constrained. The approach we took,
integration by platform, can be described as vertical
integration. An alternative approach would be to

integrate horizontally. Instead of building each platform
or entity entirely in one simulation, one federate could
provide the detection model, another the targeting
model and so on. This would get around the least
common denominator problem and fair play issues.
However, this approach brings out an entirely new set
of problems such as increased communications among
federates, more latency issues, much more complicated
interfaces between models, and a complete inability to
test without every federate present. So, it is unlikely
that this approach would be easier.

MULTIPLICATION OF WORK

Vertical integration requires that a model of each
capability needs to be implemented in every simulation.
For example, every major simulation has its own model
of detection. If you decide to improve a common model
or add a new one, you have to do it in every simulation.
This multiplies the effort required to upgrade and
evolve the simulation. While there are a few models
that are Service specific, like ship hull motion, most,
like radar, are common to all the simulations. It is
necessary to not only build a new model once for each
simulation, but also to negotiate a design that every
simulation can support. This makes evolving a
federation like the JEF expensive. Again, horizontal
integration might solve this problem but at the cost of
many new problems. New technology would probably
be required. A server architecture where only one
federate executes a particular model may not be
appropriate for horizontal integration. Perhaps model
code could be dynamically distributed to federates that
need it. While horizontal integration is not practical
today, it is probably worth exploring approaches to
horizontal integration for the long term.

HUMAN NATURE

The rationale for simulation federations has been that
they allow reuse of simulation code and therefore make
simulation much more economical. However, our
experience indicates that for experimentation, this idea
can break down. Experimentation requires rapidly
changing federations to try out new concepts. The more
simulations you have involved, the harder it is to
modify the federation to simulate future weapons,
tactics, and effects. However, federations do provide
very practical advantages. For future Joint
experiments, the cooperation of the Services,
government agencies, and coalition partners will be
required. To represent themselves accurately, these
groups will often prefer to use their own models. It is
difficult to learn a new simulation and understand its
capabilities, limits, and workarounds. It is also very
difficult to design and implement a common simulation

for many parties. The effort required to coordinate the
requirements and design can easily exceed the
implementation cost. Federations allow each group to
design and build simulations independently and then
take advantage of the best of them in a Joint context. It
is easier to get everyone to pull together if they can
bring their own simulations to the experiment.

CONCLUSIONS

The Millennium Challenge 2002 team has created one
of the largest federations ever attempted. Over 40
simulations have been linked together via the RTI and
HLA/DIS gateways. Added to these simulation
federates are monitoring, recording, and C4I interface
federates. In addition, live forces from all Services
have been integrated into the experiment. Putting
together this federation has taken a lot of work by many
talented people. We did not run into any showstoppers
or fundamental roadblocks in the integration. The
federation became steadily better the longer we worked
on it and we could, of course, continue to improve it.
However, our experience has raised questions as to the
efficiency of the vertical federation concept and
whether technically it provides the best simulation for
the effort expended. Horizontal integration may turn
out to be more effective in the long run. Nevertheless,
federations are a great mechanism for bringing together
disparate communities into a common experiment.

ACKNOWLEDGMENTS

The authors would like to thank the JFCOM federation
management team for handling the political, financial,
and operational coordination required to create and
operate the MC02 federation. The efforts of Tony Cerri,
Annette Ratzenberger, CDR Jeff Connor, Todd and
Terri Morgan, LTC Jeff Kulp, Rae Dehncke, Donna
Brooks Dehncke, plus many others were critical to the
success of the MC02 federation.

REFERENCES

Bachinsky, S., Noseworthy, R., & Hodum, F. (1999).
Implementation of the Next Generation RTI, Simulation
Interoperability Workshop, 99S-SIW-118, March 1999.

Braun, J. (2000). Enumeration and Bit Encoded Values
for use with Protocols for Distributed Interactive
Simulation Applications, IST-CF-00-10 August 13,
2000. See http://www.sisostds.org/doclib/
doclib.cfm?SISO_CID_41.

Calvin, J., Chiang, C., McGarry, S., Rak, S., Van Hook,
D., & Salisbury, M. (1997). Design, Implementation,
and Performance of the STOW RTI Prototype (RTI-s),

Simulation Interoperability Workshop, 97S-SIW-019,
March 1997.

Coffin, D., Calef, M., Macanucco D., & Civinskas, W.
(1999). Experimentation with DDM schemes,
Simulation Interoperability Workshop, 99S-SIW-053.

DMSO (1999). High Level Architecture, Federation
Development and Execution Process (FEDEP) Model,
Version 1.5, Dec. 8, 1999. See www.dmso.mil/public/
library/projects/hla/guidelines/fedepv15.pdf.

Helfinstine, B., Wilbert, D., Torpey, M., & Civinskas,
W. (2001). Experiences with Data Distribution
Management in Large-Scale Federations, Simulation
Interoperability Workshop, 01F-SIW-032, Sept 2001.

 Hung, J., Torpey, M., & Hodum, F. (2002).
Performance Cost of Using Time Management
Services, Simulation Interoperability Workshop, 02S-
SIW-041, March 2002.

IEEE (1998). IEEE Standard for Distributed Interactive
Simulation - Application Protocols, IEEE Std 1278.1A-
1998.

Kuhl, F., Weatherly R., & Dahmann J. (1999). Creating
Computer Simulation Systems, An Introduction to the
High Level Architecture, Upper Saddle River, NJ:
Prentice Hall.

Reilly, S., & Briggs, K., (Eds.) (1999). Guidance,
Rationale, and Interoperability Modalities for the Real-
time Platform Reference Federation Object Model
(RPR FOM), Version 1.0, DRAFT 2, 10 September
1999. Available from www.sisostds.org.

U.S. Department of Defense (1998). High Level
Architecture, Interface Specification Version 1.3, Draft
11, 20 April 1998. See www.dmso.mil/public/library/
projects/hla/specifications/main_body.pdf.

USJFCOM (2002). Millennium Challenge 2002 Model
and Simulation Federation, August 2002.

http://www.sisostds.org/doclib/
http://www.dmso.mil/public/library/projects/hla/guidelines/fedepv15.pdf
http://www.sisostds.org
http://www.dmso.mil/public/library/projects/hla/specifications/main_body.pdf

