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ABSTRACT 
 

Since the 1980's the underlying technology in speech recognition has been the Hidden Markov Model 
(HMM), an accurate process to statistically model continuous human speech. A speech model is 
represented as combination of probabilities associated with both acoustic and language models. Acoustic 
models estimate the probability associated with postulated sequence of acoustic observations. Language 
models describe the probability associated with postulated sequence of words and can incorporate both 
syntactic and semantic constraints of the language. When developing speech recognition for training 
systems, both acoustic and language models are crafted for the application. Due to the complexity in 
building a tuned accurate speech recognition application, it is necessary to understand how acoustic and 
language models affect accuracy. The Speech Technology Group (STG) at NAVAIR Orlando develops 
acoustic and language models specifically for the Navy Air Traffic Control (ATC) trainers, in contrast to 
commercial-off-the-shelf speech tools that contain generic acoustic models with limited alterability. The 
present study evaluates several speech model configurations including word pair (bi-gram) models. The 
STG, under laboratory conditions, measured the effects of accuracy of the following variables: vocabulary, 
perplexity, acoustic models, and language models. The findings of this study describe the influence of 
acoustic and language modeling on speech recognition. These lessons learned provide a better 
understanding of how speech model parameters influence model accuracy and can be used to more 
efficiently incorporate speech recognition within training applications, thereby enhancing the learning 
performance of the war-fighter. 
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INTRODUCTION 

 
This article analyzes the influence of acoustic 
and language models within a speech recognition 
system. Figure 1 presents a diagram that 
illustrates one approach to implementing a 
speech recognition system. The Entropic Speech 
Recognition System of Cambridge Research 
Laboratory [8] is a speech modeling toolkit that 
implements this approach. The Speech 
Technology Group (STG) at NAVAIR Orlando 
has utilized and applied it to developing speech 
models for Navy Air Traffic Control (ATC) 
training systems.  This speech recognition 
system was selected because it allows for the 
customization of acoustic models within a 
speech application.  For comparison, the Nuance 
speech modeling toolkit was used because it 
contains an efficient generic acoustic model and 
has demonstrated a flexible approach to language 
modeling.  
 

 
 

Figure 1.  Basic Architecture of a Speech 
Recognition System 

 
ACOUSTIC MODEL 

 
The theory of acoustic phonetics postulates that 
there exists a distinctive, finite set of phonetic 
units in a language and that the phonetic units are 
broadly characterized by a set of properties that 
are manifested in the speech signal over time. 
Hence the first step in acoustic modeling is 
called segmentation and labeling because it 
involves segmenting the speech signal into 

discrete time intervals. This process occurs in the 
block labeled Adaptation of Figure 1. 
  
Acoustic pressure waves are transformed into a 
description of the spectral characteristics of the 
speech signal using Digital Signal Processing 
(DSP) techniques. That description of the 
continuous speech waveform is then converted 
into a sequence of equally spaced discrete speech 
state vectors.  It is then postulated that the 
duration (typically 10 ms) covered by a single 
speech state vector provides sufficient data to 
recover stable phoneme information.  The speech 
state vectors shown in Figure 2 form an 
observation sequence.  For convenience, we 
denote each of the vectors in the observation 
sequence by oi  where i = 1,2,…,n. 
 

 
 

Figure 2.  Acoustic Decoding 
 
A probabilistic model of speech assumes that a 
specified word or word sequence, W, produces 
an acoustic observation sequence Y, with 
probability P(W|Y).  The recognition problem 
can then be defined as determining the 
following: 
 

          
 
This probability is not computable directly, but 
using Bayes' Rule, equation (1) can be rewritten 
as 
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Since P(Y) is independent of W, the decoding 
rule becomes 
 

    
 
The first term in equation (3), P(Y|W), is 
generally called the acoustic model, as it 
estimates the probability of a sequence of 
acoustic observations, conditioned on the word 
string. 
 
 A Markov model is a finite state machine that 
changes state at regularly spaced, discrete time 
units. Any system may be described as being in 
one of N distinct states. Transitioning from state 
i to j is probabilistic and is governed by a 
discrete probability aij that form a transition 
probability distribution A = {aij}. If one denotes 
the time instances associated with a state change 
as t = 1,2,… and the actual state at time t as qt,  
 then in a Markov chain we have as the 
probabilistic dependence between any state and 
its  predecessor states given by 
 
  aij = P[ qt = j | qt-1 = i ];   1≤ i,j ≤ N 
 
where the right-hand side is considered to be 
independent of time.                                                 
 
 In Hidden Markov Model (HMM) based speech 
recognition, it is assumed that a sequence of 
observed speech vectors corresponding to each 
word is generated by a Markov chain as shown 
in Figure 3. It is an example of a simple model 
with 5 states (labeled 1 to 5) where the entry and 
exit states are non-emitting. By traversing the 
state machine in this example, we produce an 
observation sequence. In practice, however, only 
the observation sequence is known and the 
underlying state sequence is hidden. Note that if 
all probabilities, aij, are nonzero, then it is 
possible to transition from any state directly to 
any other state.  However, due to the nature of 
speech (i.e. a speech signal has properties such 
that it changes over time in a successive manner) 
an HMM as applied to speech recognition 
imposes certain constraints that govern the 
transition between states. Any prohibited 
transitions have a state transition probability aij = 
0. Also, if one denotes that there may be M 

distinct observation symbols (e.g. phonemes) per 
state given by Vk, with 1 ≤ k ≤ M, then the 
symbol probability distribution in state j is B = 
{bj(ok)}, in which 
 
          bj(ok) = P[ ot = Vk | qt = j ] 
 
where ot is a speech vector or observation at 
time, t, in the sequence  O = {o1,o2, …on} having 
a total of n observations.   
 

 
 

Figure 3.  5-State Left-to-Right Markov 
Chain 

 
In computing P(Y|W), we need to use a 
statistical model for subword speech units. For 
our purposes, subword speech units consist of 
phonemes.  The STG used phonemes with 
aggregation to form triphone units. Each vector 
oi  is a p-dimensional vector. Ideally, we have for 
each phoneme its single corresponding 
observation vector oi. Practically speaking, more 
than one vector may correspond to one phoneme. 
In order to handle this situation a method called 
vector quantization (VQ) is used. These 
quantized vectors form a codebook, which is 
then used to find the most probable HMM and 
consequently the most probable corresponding 
word.  
 

LANGUAGE MODEL 
 
The second term in Equation (3), P(W), is 
generally called the language model, as it 
describes the probability associated with a 
postulated sequence of words. Such language 
models can incorporate both semantic and 
syntactic constraints of the language and the 
recognition task. If only syntactic constraints are 
used, the language model is called a grammar 
and may be viewed as a formal parser and syntax 
analyzer, N-gram word model (N = 2, 3, …), or a 
word pair grammar of some type. Generally such 
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language models are represented in a finite state 
network so as to be integrated into the acoustic 
model. 
 
Unlike small vocabulary speech recognition 
systems that don’t rely heavily on a language 
model to accomplish their selected tasks, a large 
vocabulary speech recognition system is 
dependent on linguistic knowledge, which can be 
presented in the form of a statistical language 
model. In a large vocabulary recognition system, 
a statistical language model provides an estimate 
of the probability of a word sequence W for the 
given recognition task. If we assume that W is a 
specified sequence of words, i.e., 
 

 
 
then P(W) can be computed as: 
 

 
Since it is nearly impossible to estimate word 
probabilities, P(wm |w1w2…wm-1) for all word 
and word sequences possible in a language, we 
use an N-gram word model to approximate this 
term as: 
 

 
In other words, it is based only on the preceding  
N-1 words. It is computationally intensive to 
estimate N-gram probabilities when N is large.  
Hence, for practical purposes, we use N = 2 (bi-
gram) or at most N = 3 (tri-gram). In practice, 
the binary indicator function that follows is used 
to specify which word pairs are valid in a bi-
gram model. 
 

 
 

Language models implemented as finite state 
networks can be integrated with an acoustic 
recognition decoding algorithm to provide 
efficient recognition.  
 
Statistical Language Model and Its Perplexity 
 
The language model, or probability of word 
sequences P(W), is essential for accuracy in 
large vocabulary speech recognition systems.  
Depending on the size of the vocabulary, it is 
impractical or impossible to explicitly define 
every possible sequence in a model, hence P(W) 

has to be estimated from a textual training corpus 
that is representative of the targeted domain of a 
language. In practice, the word sequence 
probability P(W) is approximated by an N-gram 
model as follows: 
 

 
 
where the conditional probabilities,  
P(wi | wi-1,wi-2,…wi-N+1) can be estimated 
using the simple relative frequency approach. 
 

 
 
in which F is the number of occurrences of the 
string in the given training corpus.  This implies 
that a relatively large corpus is needed to get a 
reliable estimate.  
 
When crafting a language model, one should be 
interested in measuring how well the model will 
perform in speech recognition tasks.  One 
approach to measuring performance is based on 
the concept of source of information in 
information theory.  Suppose some source 
outputs sequences of words (w1,w2,…,wm) 
from a given vocabulary. Then the entropy of the 
source is defined as 
 

 
 

This summation is over all possible sequences of 
words. If the source has statistical properties that 
can be completely characterized in a sufficiently 
long sequence that the source puts out, then the 
entropy can be computed as: 
 

 
 
 
 
 
 
 

Since a typical sequence that approaches infinity 
is unattainable, we estimate entropy for a 
sufficiently large value of m as: 
 

 
 
This estimate is feasible to evaluate and use as a 
metric of performance of a language model. One 
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interpretation of H from a speech recognition 
perspective is the degree of difficulty that the 
recognizer encounters in determining a word 
from the language model. However, it is more 
convenient to use perplexity of a source of 
information, which has a one-to-one relationship 
to entropy and gives a larger scaling difference 
between sources of information. Perplexity is 
computed as: 

 
or 
 

 
 

where  

                 
 

is the probability estimate assigned to the word 
sequence (w1,w2,…,wm) by a language model. 
Perplexity can be viewed as the average number 
of possible words following any string of N-1 
words in a large corpus. It is often referred to as 
the average word branching factor of the 
language model.  
 

AIR TRAFFIC CONTROL 
EXPERIMENTAL DATA ANALYSIS 

 
In 2000, the Speech Technology Group (STG) at 
NAVAIR Orlando embarked on an endeavor to 
provide speaker independent, continuous speech 
recognition capabilities for the Navy Air Traffic 
Control (ATC) trainers located at NAS 
Pensacola. The STG was recruited for this task 
in order to upgrade an existing trainer that was 
equipped with hardware-based speech 
recognition capabilities and required each 
student to voice enroll prior to participation in a 
training exercise. The recognition performance 
was often less than optimal and required re-
enrolling the student to try to correct the 
situation. With this in mind, the STG's objective 
was to build a software-based solution that 
would perform recognition for any student and 
could deliver at least 95% word accuracy under 
classroom conditions. The STG selected the 
HTK (Hidden Markov Model Tool Kit) 
developed by Cambridge Research Laboratories 
in order to build the speech models required by 
the Navy's ATC facility. The HTK toolkit 
employs a generic pattern recognition approach 
that can be applied to a variety of pattern 
recognition problems. Hidden Markov Model 
(HMM) based speech recognition is a statistical 

method of characterizing the spectral properties 
of the frames of a pattern (i.e. a spoken 
utterance). The HTK provides the ability to build 
models that perform continuous, speaker- 
independent speech recognition within a 
constrained domain. Further, it offers the ability 
to build custom acoustic models and language 
models versus exclusively building language 
models and utilizing generic acoustic models. 
The STG adopted this approach in order to more 
accurately model the acoustic patterns 
idiosyncratic of air traffic controllers. The 
vocabularies for ATC applications were large yet 
constrained and highly structured. Those 
vocabularies were divided into categories 
according to more specific types of air traffic 
control operations. The training facility at NAS 
Pensacola required the STG to build models that 
covered vocabularies for the Tower Operator 
Trainer System (TOTS), Carrier Air Traffic 
Control Center (CATCC) and the Amphibious 
Air Traffic Control Center (AATCC). Each of 
these vocabularies can be further categorized 
according to individual training positions for 
speech recognition purposes. For example, the 
CATCC trainer system has positions associated 
with departure, final, approach and marshal 
phases of aircraft handling as well as an 
Instructor Operator Station (IOS). This paper 
focuses on the CATCC Final position for 
analysis. The perplexity of the position yielded a 
value of 1.7397 when traversing the word 
network using 1,000,000 utterances. The 
maximum nodes required to traverse the network 
was 22. A traverse of the same network using 
only 1,000 utterances yielded a perplexity of 
1.7446. This indicates that the perplexity is 
converging to a stable number (see Figure 4). 
 

 
 

Figure 4. Analysis of perplexity 
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The construction of the network allowed an 
optional silence path between each word. A valid 
utterance consisted of a call sign (e.g. TOP HAT 
ONE SIX THREE) followed by a valid ATC 
phrase for that position. In addition, the network 
provided for a loop back to the beginning of a 
call sign or phrase from any word using the 
keyword CORRECTION at the speakers' 
discretion if a mistake was made. For 
comparison, a more complex position, CATCC 
IOS, yielded a perplexity of 1.8030 when 
traversing the word network with 1,000,000 
phrases. The number of all possible utterances 
however far exceeds that of CATCC Final. In 
order to build the CATCC Final model, 10 
individuals of the same gender each recorded 
approximately 4200 phrases at the training site. 
The CATCC IOS model was built with 
approximately four times the utterances of 
CATCC Final. The training utterances chosen 
ensured that every possible word pair was 
exercised at least once and every possible word 
was exercised at least twice. The word dictionary 
for final contained 216 words compared to 364 
words for CATCC IOS, where the larger word 
count is reflected in the larger perplexity. The 
tools used to build the speech model provided for 
both a monophone and a triphone based model. 
The later was generated using an equivalent set 
of triphone transcriptions from the monophones 
transcriptions. The results of analysis of male 
gender models built for CATCC Final are 
illustrated in Figure 5 as follows: 
 

 
 

Figure 5. Acoustic models comparison 
 
For comparison, the language model for the 
CATCC Final position was also built using 
Nuance's speech modeling toolkit. Nuance offers 
the ability to customize language models that can 
be used with their generic acoustic models. 
There are two approaches to designing language 

models with Nuance. In the first approach, the 
Grammar Specification Language (GSL) can be 
used to build models with highly constrained 
vocabularies. In a GSL model, all legal phrases 
must be explicitly defined in the model. In the 
second approach, a Statistical Language Model 
(SLM) is "trained" from a set of examples that 
models the users’ speech rather than explicitly 
defining every legal phrase. To train an SLM 
grammar, a domain specific set of example 
phrases is passed to a Nuance utility that 
estimates the model probabilities. The CATCC 
Final position vocabulary was modeled using 
both approaches in Nuance. An analysis of the 
perplexity of the SLM using Nuance's product 
called “process-slm” yielded a value of 4.2918 
when traversing the model using 1,000 phrases. 
Both the GSL and SLM were tested using 120 
utterances from two speakers (one male and one 
female) for a total of 240 phrases collected under 
laboratory conditions. The results of those tests 
are illustrated in Figure 6. 
 

 
 

Figure 6. Language models comparison 
 

CONCLUSION 
 
Extensive tests of the custom acoustic and 
language models built with HTK show those 
models will perform with a rate of accuracy 
required for ATC applications. However, the 
process for building custom acoustic models is 
time consuming and requires undergoing the 
lengthy process of collecting and editing vast 
amounts of training data at the training site. 
Also, any minor change in vocabulary could 
require undergoing the costly process of 
collecting additional training data and potentially 
rebuilding the acoustic model. However, the 
process of building language models and 
utilizing generic acoustic models is far more 
rapid and does not require a data collection 
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process at the training site. The results from the 
preliminary test using the Nuance toolkit suggest 
that the language models could perform with a 
rate of accuracy sufficient for ATC applications. 
Consequently, an approach that forgoes building 
custom acoustic models for applications such as 
ATC merits further investigation. 
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