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ABSTRACT

Since the 1980's the underlying technology in speech recognition has been the Hidden Markov Model
(HMM), an accurate process to statistically model continuous human speech. A speech model is
represented as combination of probabilities associated with both acoustic and language models. Acoustic
models estimate the probability associated with postulated sequence of acoustic observations. Language
models describe the probability associated with postulated sequence of words and can incorporate both
syntactic and semantic constraints of the language. When developing speech recognition for training
systems, both acoustic and language models are crafted for the application. Due to the complexity in
building a tuned accurate speech recognition application, it is necessary to understand how acoustic and
language models affect accuracy. The Speech Technology Group (STG) at NAVAIR Orlando develops
acoustic and language models specifically for the Navy Air Traffic Control (ATC) trainers, in contrast to
commercia-off-the-shelf speech tools that contain generic acoustic models with limited alterability. The
present study evaluates several speech model configurations including word pair (bi-gram) models. The
STG, under laboratory conditions, measured the effects of accuracy of the following variables: vocabulary,
perplexity, acoustic models, and language models. The findings of this study describe the influence of
acoustic and language modeling on speech recognition. These lessons learned provide a better
understanding of how speech model parameters influence model accuracy and can be used to more
efficiently incorporate speech recognition within training applications, thereby enhancing the learning
performance of the war-fighter.
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INTRODUCTION

This article analyzes the influence of acoustic
and language models within a speech recognition
system. Figure 1 presents a diagram that
illustrates one approach to implementing a
speech recognition system. The Entropic Speech
Recognition System of Cambridge Research
Laboratory [8] is a speech modeling toolkit that
implements this approach. The Speech
Technology Group (STG) at NAVAIR Orlando
has utilized and applied it to developing speech
models for Navy Air Traffic Control (ATC)
training systems.  This speech recognition
system was selected because it alows for the
customization of acoustic models within a
speech application. For comparison, the Nuance
speech modeling toolkit was used because it
contains an efficient generic acoustic model and
has demonstrated a flexible approach to language
modeling.
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Figure 1. Basic Architecture of a Speech
Recognition System

ACOUSTIC MODEL

The theory of acoustic phonetics postulates that
there exists a distinctive, finite set of phonetic
units in alanguage and that the phonetic units are
broadly characterized by a set of properties that
are manifested in the speech signal over time.
Hence the first step in acoustic modeling is
caled segmentation and labeling because it
involves segmenting the speech signal into
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discrete time intervals. This process occursin the
block labeled Adaptation of Figure 1.

Acoustic pressure waves are transformed into a
description of the spectral characteristics of the
speech signal using Digital Signal Processing
(DSP) techniques. That description of the
continuous speech waveform is then converted
into a sequence of equally spaced discrete speech
state vectors. It is then postulated that the
duration (typically 10 ms) covered by a single
speech state vector provides sufficient data to
recover stable phoneme information. The speech
state vectors shown in Figure 2 form an
observation sequence. For convenience, we
denote each of the vectors in the observation
sequence by o, wherei = 1,2,...,n.
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Figure 2. Acoustic Decoding

A probabilistic model of speech assumes that a
specified word or word sequence, W, produces
an acoustic observation sequence Y, with
probability P(W[Y). The recognition problem
can then be defined as determining the
following:

arg max P(WY) (1)

This probability is not computable directly, but
using Bayes' Rule, equation (1) can be rewritten
as
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Since P(Y) is independent of W, the decoding
rule becomes

argmax P(Y [W)P(IV) (3)

The first term in equation (3), P(Y|W), is
generaly caled the acoustic model, as it
estimates the probability of a sequence of
acoustic observations, conditioned on the word
string.

A Markov model is a finite state machine that
changes state at regularly spaced, discrete time
units. Any system may be described as being in
one of N distinct states. Transitioning from state
i to j is probabilistic and is governed by a
discrete probability &; that form a transition
probability distribution A = {&;}. If one denotes
the time instances associated with a state change
ast=1.2,... and the actual state at timet as G,
then in a Markov chain we have as the
probabilistic dependence between any state and
its predecessor states given by

gi=Pl =] |q1=1]; 1<ij<N

where the right-hand side is considered to be
independent of time.

In Hidden Markov Model (HMM) based speech
recognition, it is assumed that a sequence of
observed speech vectors corresponding to each
word is generated by a Markov chain as shown
in Figure 3. It is an example of a simple model
with 5 states (labeled 1 to 5) where the entry and
exit states are non-emitting. By traversing the
state machine in this example, we produce an
observation sequence. In practice, however, only
the observation sequence is known and the
underlying state sequence is hidden. Note that if
al probabilities, g;, are nonzero, then it is
possible to transition from any state directly to
any other state. However, due to the nature of
speech (i.e. a speech signal has properties such
that it changes over time in a successive manner)
an HMM as applied to speech recognition
imposes certain constraints that govern the
transition between states. Any prohibited
transitions have a state transition probability a; =
0. Also, if one denotes that there may be M

distinct observation symbols (e.g. phonemes) per
state given by Vy, with 1 < k < M, then the
symbol probability distribution in state j is B =
{(0K)}, in which

bj(ox) =P[ 0t =Vi |G =]]
where o, is a speech vector or observation at

time, t, in the sequence O ={0,,0,, ...0,} having
atotal of n observations.
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Figure 3. 5-State L eft-to-Right Markov
Chain

In computing P(Y|W), we need to use a
statistical model for subword speech units. For
our purposes, subword speech units consist of
phonemes. The STG used phonemes with
aggregation to form triphone units. Each vector
0, isap-dimensional vector. Idealy, we have for
each phoneme its single corresponding
observation vector o,. Practically speaking, more
than one vector may correspond to one phoneme.
In order to handle this situation a method called
vector quantization (VQ) is used. These
guantized vectors form a codebook, which is
then used to find the most probable HMM and
consequently the most probable corresponding
word.

LANGUAGE MODEL

The second term in Equation (3), P(W), is
generaly caled the language model, as it
describes the probability associated with a
postulated sequence of words. Such language
models can incorporate both semantic and
syntactic constraints of the language and the
recognition task. If only syntactic constraints are
used, the language model is caled a grammar
and may be viewed as aformal parser and syntax
analyzer, N-gramword model (N=2,3,...),0ra
word pair grammar of some type. Generally such
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language models are represented in a finite state
network so as to be integrated into the acoustic
model.

Unlike small vocabulary speech recognition
systems that don’t rely heavily on a language
model to accomplish their selected tasks, a large
vocabulary speech recognition system s
dependent on linguistic knowledge, which can be
presented in the form of a statistical language
model. In alarge vocabulary recognition system,
a statistical language model provides an estimate
of the probability of a word sequence W for the
given recognition task. If we assume that W is a
specified sequence of words, i.e.,

W = [T L TR T L (13
then P(W) can be computed as:

FIW] = MPiejoyg A 1)
= e | M oey ey )
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Since it is nearly impossible to estimate word
probabilities, P(Wy, [wiW,...wn,1) for all word
and word sequences possible in a language, we
use an N-gram word model to approximate this
term as:

Fmd e, L ] o LI C LI R T | (3]

In other words, it is based only on the preceding
N-1 words. It is computationally intensive to
estimate N-gram probabilities when N is large.
Hence, for practical purposes, we use N = 2 (bi-
gram) or at most N = 3 (tri-gram). In practice,
the binary indicator function that follows is used
to specify which word pairs are valid in a bi-
gram model.

- 1 b wper; = vl -
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Language models implemented as finite state
networks can be integrated with an acoustic
recognition decoding algorithm to provide
efficient recognition.

Statistical Language M odel and Its Perplexity

The language model, or probability of word
sequences P(W), is essential for accuracy in
large vocabulary speech recognition systems.
Depending on the size of the vocabulary, it is
impractical or impossible to explicitly define
every possible sequence in a model, hence P(W)

has to be estimated from atextual training corpus
that is representative of the targeted domain of a
language. In practice, the word sequence
probability P(W) is approximated by an N-gram
model as follows:

I u'._]'[.l'...,..-_ TP T I T ("
o |

where the conditional probabilities,
P(Wi | Wi1,Wi_2,...Wi.n+1) can be estimated
using the simple relative frequency approach.

in which F is the number of occurrences of the
string in the given training corpus. This implies
that a relatively large corpus is needed to get a
reliable estimate.

When crafting a language model, one should be
interested in measuring how well the model will
perform in speech recognition tasks. One
approach to measuring performance is based on
the concept of source of information in
information theory.  Suppose some source
outputs sequences of words (W1,W2,...,Wm)
from a given vocabulary. Then the entropy of the
source is defined as

Hom i 2Ty (P

e o H L1}

This summation is over al possible sequences of
words. If the source has statistical properties that
can be completely characterized in a sufficiently
long sequence that the source puts out, then the
entropy can be computed as:

1
i o= 1 —|l|'_|I"I'I| 1 Lo TR | - | {111

Since atypical sequence that approaches infinity
is unattainable, we estimate entropy for a
sufficiently large value of mas:

|'.|'=l|--'_1_ Peity . wita. . . s Ml ) {13

i -

This estimate is feasible to evaluate and use as a
metric of performance of alanguage model. One
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interpretation of H from a speech recognition
perspective is the degree of difficulty that the
recognizer encounters in determining a word
from the language model. However, it is more
convenient to use perplexity of a source of
information, which has a one-to-one relationship
to entropy and gives a larger scaling difference
between sources of information. Perplexity is
computed as.

PP =2" 13)
or
. n i
PP = FPi{uy,wsa...., Wy | ™ (14}
where
Plwy. wg, ..., w,)

is the probability estimate assigned to the word
sequence (W1,Wa, ...,Wm) by a language model.
Perplexity can be viewed as the average number
of possible words following any string of N-1
words in a large corpus. It is often referred to as
the average word branching factor of the
language model.

AIR TRAFFIC CONTROL
EXPERIMENTAL DATA ANALYSIS

In 2000, the Speech Technology Group (STG) at
NAVAIR Orlando embarked on an endeavor to
provide speaker independent, continuous speech
recognition capabilities for the Navy Air Traffic
Control (ATC) trainers located a NAS
Pensacola. The STG was recruited for this task
in order to upgrade an existing trainer that was
equipped  with  hardware-based  speech
recognition capabilities and required each
student to voice enroll prior to participation in a
training exercise. The recognition performance
was often less than optimal and required re-
enrolling the student to try to correct the
situation. With this in mind, the STG's objective
was to build a software-based solution that
would perform recognition for any student and
could deliver at least 95% word accuracy under
classroom conditions. The STG selected the
HTK (Hidden Markov Model Tool Kit)
developed by Cambridge Research Laboratories
in order to build the speech models required by
the Navy's ATC facility. The HTK toolkit
employs a generic pattern recognition approach
that can be applied to a variety of pattern
recognition problems. Hidden Markov Model
(HMM) based speech recognition is a statistical

method of characterizing the spectral properties
of the frames of a pattern (i.e. a spoken
utterance). The HTK provides the ability to build
models that perform continuous, speaker-
independent  speech recognition within a
constrained domain. Further, it offers the ability
to build custom acoustic models and language
models versus exclusively building language
models and utilizing generic acoustic models.
The STG adopted this approach in order to more
accurately model the acoustic patterns
idiosyncratic of air traffic controllers. The
vocabularies for ATC applications were large yet
constrained and highly structured. Those
vocabularies were divided into categories
according to more specific types of air traffic
control operations. The training facility at NAS
Pensacola required the STG to build models that
covered vocabularies for the Tower Operator
Trainer System (TOTS), Carrier Air Traffic
Control Center (CATCC) and the Amphibious
Air Traffic Control Center (AATCC). Each of
these vocabularies can be further categorized
according to individual training positions for
speech recognition purposes. For example, the
CATCC trainer system has positions associated
with departure, final, approach and marsha
phases of aircraft handling as well as an
Instructor Operator Station (I0S). This paper
focuses on the CATCC Fina postion for
analysis. The perplexity of the position yielded a
value of 1.7397 when traversing the word
network using 1,000,000 utterances. The
maximum nodes required to traverse the network
was 22. A traverse of the same network using
only 1,000 utterances yielded a perplexity of
1.7446. This indicates that the perplexity is
converging to a stable number (see Figure 4).
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Figure 4. Analysis of perplexity
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The construction of the network alowed an
optiona silence path between each word. A valid
utterance consisted of a call sign (e.g. TOP HAT
ONE SIX THREE) followed by a valid ATC
phrase for that position. In addition, the network
provided for a loop back to the beginning of a
cal sign or phrase from any word using the
keyword CORRECTION at the speakers
discretion if a mistake was made. For
comparison, a more complex position, CATCC
I0S, yielded a perplexity of 1.8030 when
traversing the word network with 1,000,000
phrases. The number of al possible utterances
however far exceeds that of CATCC Fina. In
order to build the CATCC Fina model, 10
individuals of the same gender each recorded
approximately 4200 phrases at the training site.
The CATCC I10S model was built with
approximately four times the utterances of
CATCC Final. The training utterances chosen
ensured that every possible word pair was
exercised at least once and every possible word
was exercised at least twice. The word dictionary
for final contained 216 words compared to 364
words for CATCC 10S, where the larger word
count is reflected in the larger perplexity. The
tools used to build the speech model provided for
both a monophone and a triphone based model.
The later was generated using an equivalent set
of triphone transcriptions from the monophones
transcriptions. The results of analysis of mae
gender models built for CATCC Finad are
illustrated in Figure 5 as follows:
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Figure5. Acoustic models comparison

For comparison, the language model for the
CATCC Fina position was aso built using
Nuance's speech modeling toolkit. Nuance offers
the ability to customize language models that can
be used with their generic acoustic models.
There are two approaches to designing language

models with Nuance. In the first approach, the
Grammar Specification Language (GSL) can be
used to build models with highly constrained
vocabularies. In a GSL model, al legal phrases
must be explicitly defined in the model. In the
second approach, a Statistical Language Model
(SLM) is "trained”" from a set of examples that
models the users' speech rather than explicitly
defining every legal phrase. To train an SLM
grammar, a domain specific set of example
phrases is passed to a Nuance utility that
estimates the model probabilities. The CATCC
Final position vocabulary was modeled using
both approaches in Nuance. An analysis of the
perplexity of the SLM using Nuance's product
called “process-dm” yielded a value of 4.2918
when traversing the model using 1,000 phrases.
Both the GSL and SLM were tested using 120
utterances from two speakers (one male and one
female) for atotal of 240 phrases collected under
laboratory conditions. The results of those tests
areillustrated in Figure 6.
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Figure 6. Language models comparison

CONCLUSION

Extensive tests of the custom acoustic and
language models built with HTK show those
models will perform with a rate of accuracy
required for ATC applications. However, the
process for building custom acoustic models is
time consuming and requires undergoing the
lengthy process of collecting and editing vast
amounts of training data at the training site.
Also, any minor change in vocabulary could
require undergoing the costly process of
collecting additional training data and potentially
rebuilding the acoustic model. However, the
process of building language models and
utilizing generic acoustic models is far more
rapid and does not require a data collection
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process at the training site. The results from the
preliminary test using the Nuance toolkit suggest
that the language models could perform with a
rate of accuracy sufficient for ATC applications.
Consequently, an approach that forgoes building
custom acoustic models for applications such as
ATC merits further investigation.
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