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ABSTRACT 

 

Human behavior representations (HBRs) are an essential component of simulation-based training.  Historically, 
these HBRs involve significant cost to encode expert knowledge for specific uses. One of the largest development 
costs is re-engineering due to failure, where failures stem from incorrect, incomplete, obsolete, or inconsistent 
information. 

Previous work has demonstrated that it is possible for HBRs to overcome a significant number of their own failures 
by providing them with limited meta-awareness through self-monitoring, error-detection, and failure recovery. A 
limitation of those approaches has been their reliance on random selection among possible actions. Although self-
correcting systems utilizing random selection are theoretically capable of eventually searching the entire recovery 
space, this is undesirable in real-time applications. Pruning the search space to decrease the number of options that 
must be attempted before achieving success can reduce the impact on real-time applications as well as reducing the 
incidence of recovery-induced failure. However, it can be developmentally intensive to manually annotate world 
states with suggested recovery actions. 

This paper describes a complementary methodology that improves the quality of recovery actions without 
significantly increasing development cost. Specifically, this paper examines constraints on failure recovery through 
the use of causal models and learning.  These constraints drastically reduce the search possibilities over exhaustive 
recovery techniques. First, HBRs are enhanced with internal representations of causal models describing recovery 
domain spaces.  These models guide the reasoning process to the selection of appropriate, relevant recovery actions. 
Once a recovery method is attempted, the self-monitoring capability of the agents is utilized to measure the efficacy 
of the selected recovery actions.  Finally, a learning mechanis m, which will be described in detail, is used to prefer 
future selection of recovery actions in similar circumstances. 
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INTRODUCTION 

Errors are inevitable in any non-trivial system.  All 
representations that lack knowledge, including humans, 
will fail.  The difference between humans and human 
behavior models is that humans can recognize their 
failures, resolve them, and move on, while models  are 
generally incapable of recovery and tend to become 
“stuck” or crash. 

We believe that it is not possible to eliminate the 
sources of failure in any non-trivial system.  Legacy 
approaches have attempted to eliminate failure, but 
empirical results demonstrate that they have been 
unsuccessful (Ginsberg, 1989).  While this may be 
attributed to sloppy programming, theoretical results 
indicate that it is impossible to test all possible 
scenarios of a complex system (Gödel, 1931). Thus, 
failure will occur in any non-trivial system.  Our 
approach assumes that failure will occur and embraces 
it, allowing the system to recover before failure 
becomes catastrophic. 

This paper presents an approach to error detection in 
complex human behavior models that is based on 
abstract causal models and learning. The approach is 
tractable for computation yet complete in its ability to 
represent all relevant influences upon the system.  The 
type of knowledge presented here is fundamentally 
different from the “how to” knowledge normally 
associated with carrying out a task.  Instead it describes 
high-level, general characteristics of the desired world 
state and makes explicit methods that are acceptable or 
unacceptable.  Because there could be an enormous 
number of behaviors that are unacceptable, the 
knowledge must be specific to the goals the agent is 
trying to achieve.  Rather than attempt to anticipate all 
possible behaviors a priori, there is additional 
knowledge in the system that will recognize 
discrepancies between allowable world states and 
unacceptable world states.  Once the agent realizes that 
something is wrong, additional repair knowledge may 
be brought to bear that will alter the behavior until it is 
once again acceptable. 

TERMINOLOGY 

Brittleness 

Brittleness is a lack of reasonable behavior due to 
unanticipated external conditions.  It is exacerbated 
both by complexity and the desire to use software in 
domains for which it was not originally designed.  
Brittleness severely limits the effectiveness of 
intelligent behavior systems and their application for 
military endeavors.  Though the system may exhibit 
satisfactory performance within a narrowly defined 
area of expertise, once the situation becomes 
sufficiently complex the possibility of failure 
approaches one hundred percent. 

Brittleness arises when knowledge about how to handle 
the current situation is: 

1. Inaccurate: knowledge is untrue 
2. Incomplete: knowledge is lacking 
3. Obsolete: knowledge is no longer true 
4. Inconsistent: knowledge contradicts itself 
5. Ill-defined: knowledge is too vague to use 
 

Brittleness significantly increases the life -cycle cost 
since software maintenance effort must be expended to 
diagnose and fix problems.  It can result in lost person 
time and hold up other expensive resources resulting in 
loss beyond the system itself.  If used for mission 
critical applications the results of failure can have 
catastrophic consequences.  Finally, the results of any 
such system may be unsuitable because of lack of faith 
in the results. 

Robustness 

In contrast, robustness is the ability for a system to 
exhibit reasonable behavior in response to 
unanticipated events. 

BACKGROUND 

Soar Technology, Inc. undertook the task of improving 
the robustness of behavioral models for computer-
generated forces with the idea that the problem of 
brittleness is fundamentally a knowledge problem 
arising out of ignorance (incomplete knowledge), not 
representation (architecture).  Our claim is that 
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brittleness is caused by a lack of knowledge about what 
should be expected.   

Soar Technology, Inc. develops human cognitive 
models for use in military simulations.  These models 
account for a wide range of behaviors including air-to-
air combat, air-to-ground attack, reconnaissance, 
control, and support.    These representations are 
created in the Soar computational model of human 
cognition (Laird, et. al., 1991), which is used 
extensively as a basis for human performance modeling 
in cognitive science and artificial intelligence.  Models 
developed with Soar can provide insight into such 
aspects of human performance modeling as task 
timing, cognitive system load, focus of attention, and 
novice vs. expert level behaviors (Newell, 1990; 
Rosenbloom, et al., 1993).   

The specific application we are using to demonstrate 
this methodology is TacAir-Soar, (Jones, et. al., 1999) 
which is a rule-based implementation of human 
cognitive models for pilot and controller behaviors. 

TacAir-Soar generates entity level behaviors for most 
aircraft and missions in the military.  It is a highly 
complex application consisting of approximately 8000 
rules describing navigation, coordination, 
communication, and tactics. It allows unsupervised 
agents to perform missions autonomously in simulation 
exercises. 

CONTEXT 

Scaling is problematic for human behavior 
representations.  What works in a niche domain may be 
problematic for real-world applications.  Thus, there 
have been large volumes of work reported about 
approaches that solve narrowly constrained problems 
but very few applications that attempt to replicate a 
significant portion of human behavior to a believable 
level of fidelity.  The implications for robustness are 
that trivial systems may be proven correct 
exhaustively, but large-scale human behavior 
representations may fail because of complexity. 

This ability to recognize failure is critical to developing 
intelligent systems.  Before they can adapt their 
behaviors to new circumstances, they must first realize 
the futility of their current situation.  Conventional 
programming techniques that do not do this will either 
continue their aberrant behavior or simply fail.  
Intelligent systems should embrace failure as an 
opportunity for improvement. 

Our investigation is grounded in a specific application 
because a general solution to all commonsense 
knowledge would be too large in scope to produce 
tangible results.  Without context, the problem 
explodes.  Previous attempts at commonsense 

modeling have been largely unsuccessful because there 
is too much general-purpose commonsense to model it 
all completely (Copeland, 1997; Lenat, 2001).  

APPROACH 

To reduce brittleness in software systems, there are two 
primary things that must be done.  First, there needs to 
be feedback from the environment.  When directed to 
perform an action, the agent needs to confirm that the 
action was actually performed.  For example, when 
told to turn, the entity needs to ensure that a turn 
actually is taking place, heading is changing, and the 
new heading is the indicated heading.  This problem 
most often arises in missed communication, but also 
arises from actuator failure. 

Second, the agents need a deep understanding of the 
task they are trying to perform.  This project would 
develop a representation of the first principles of flight 
in a format usable by intelligent computer generated 
forces to provide them with a common sense awareness 
of expectations about their world.  For example, a CGF 
should know that if speed is non-zero, position should 
be changing; maneuvering should result in a change of 
heading; etc. 

These assertions provide a mechanism for performing a 
“reality check.”  The recovery procedure will be 
situation specific, but may include such 
recommendations as abandoning the current course of 
action, re-attempting the action, or requesting 
assistance.  The resultant corrective action represents 
an opportunity for learning in the system so it will 
avoid making such mistakes in the future.  

Our approach to software recovery is structured around 
an eight-step recovery plan, termed “Recourse”, as 
follows: 

1. Reduce failure 
2. Represent the environment.   
3. Recognize progress toward goals. 
4. Allocate resources to the problem. 
5. Diagnose the possible reasons.  
6. Create alternative responses.   
7. Initiate recovery actions.   
8. Remember successful recovery actions.   
 

This paper focuses on tractable methods of 
representing the environment and remembering 
successful recovery actions.  Details of other aspects of 
this approach may be found in (Nielsen, et. al., 2002; 
Beard, et. al., 2002; and Kiessel, et. al., 2002) 

CAUSAL MODEL 

Although the effector-based recovery mechanism that 
is part of the Recourse approach is theoretically 
sufficient to eventually search the entire realm of 
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possible recovery actions, it is possible that the 
consequences of continuing failure might be terminal 
before recovery was successful. To reduce the amount 
of recovery action search necessary, we determined 
that giving agents the ability to reason about cause-
and-effect relationships could help to guide selection of 
recovery actions – thus increasing the possibility of 
successful recovery before terminal failure in a real-
time system. 

For an agent to reason about cause-and-effect within a 
simulation environment, it is necessary for the agent to 
have an internal representation of that world to reason 
about. Providing a mental model of the environment as 
detailed as the actual environment is cognitively and 
computationally implausible, effectively requiring a 
recursive copy of the external world.  Instead, we have 
given the agents an abstracted representation of the 
environment using qualitative models.  A qualitative 
representation uses intervals, rather than actual numeric 
values, exhaustively covering the domain to be 
represented. Although this representation may suffer 
from ambiguity and lack the detail necessary to predict 
which of multiple outcomes will actually happen, it is 
useful as a guide to suggest possibilities and actions for 
recovery that can be tested in the physical environment 
and then further refined. 

For the purposes of this research, we have only 
implemented a causal model representation for flight 
dynamics within TacAir-Soar, but there is no reason 
that causal models could not be created to cover every 
domain in which an agent may act. In our 
implementation, there are qualitative metrics for each 
evaluation in the flight domain. Using these qualitative 
representations, we can develop a computational model 
of causal actions, which may be predictive. 

The causal model illustrated here (see Figure 1) shows 
how the relationships between the environmental 
parameters of the entity can be affected by the entity’s 
actions. This illustration is a prototype visualization of 
a causal model indicating the cause and effect of 
various effectors in the flight domain. In developing 
recovery actions, an enhanced version of this causal 
model was used to describe the flight domain.  

Recovery actions are constrained to the effectors of the 
system; the agent can only use the controls it has the 
capability to manipulate.  Therefore, the causal model 
defines the relationships between effectors of the 
system. The causal model itself was implemented 
within the agent as production rules encoding sets of 
cause-and-effect beliefs. 

Agent reasoning which backchains through the causal 
model shows how different effectors can influence 
various environmental parameters of the agent. For 
example, if an agent detects an error in the execution of 
its goals, it may diagnose that the error is due to flying 
too fast. With that diagnosis, the agent could try to use 
the recovery system originally implemented as part of 
the Recourse methodology, and begin attempting 
recovery actions within the flight domain. On the other 
hand, using the newly implemented system of causal-
model relationships encoded as beliefs, the agent 
would be able to evaluate the causal model encoded as 
beliefs to determine the selection of an appropriate 
effector action. In the model used, changes in 
acceleration and altitude both influence speed, so if a 
problem with the entity's speed is detected, it is 
possible to change the acceleration to influence the 
speed. The causal model beliefs describe the 
relationship of each of the environmental parameters of 
the entity, and the nature of the influence, i.e. whether 
it is direct or inverse. The variables described in this 
causal model are: pitch, roll, yaw, delta-altitude, 
altitude, acceleration, speed, position, thrust, heading, 
and delta-heading. 

The agents have beliefs about how these various 
variables influence each other – both which 
environmental parameters affect which other 
parameters, and whether the effect is direct or inverse. 
The agents use that knowledge in their choice of 
recovery actions. The agents can identify flight-domain 
symptoms that correspond to the causal model, e.g., 
"going too slow". They translate that into a desire to go 
faster, or increase speed. Then the causal model tells 
them that to increase speed, one can, for instance, 
increase acceleration. Therefore, the agent could 
choose "increase acceleration" as a viable recovery 
action. 
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LEARNING 

Learning is used principally at the action selection 
stage - if an action has been successful in resolving a 
particular problem in the past, that action should be 
remembered and tried first when the problem next 
occurs. Our first implementation attempt was to create 
a recovery state with learning enabled and chunk the 
effects of tried actions. 

All learning in Soar occurs through the "chunking" 
mechanism.  Chunking is a way of converting goal-
based problem solving into accessible long-term 
memory.  Whenever problem solving provides a result , 
a new production is created, whose actions are the new 
results and whose conditions are the working-memory 
elements that were involved in producing the results.  
This production is called a “chunk.” (Newell, 1990) 

Several problems were experienced while 
experimenting with this method: 

1) Soar immediately chunks the effects of any 
actions that effect parts of the agent outside 
the scope of the recovery action (e.g., putting 
something on the output link), making it very 
difficult to not learn actions that fail. 

2) If success or failure can only be determined by 
examining elements outside of the learning 
state (e.g., checking input link parameters), 
Soar includes those conditions in the 
conditions of the chunk, making the chunk 
useless (i.e., it will only fire in situations in 
which the problem has already been solved). 

3) Chunking does not deal well with time 
sensitive actions. It is very difficult to learn 
time constraints on actions (perform an 
arbitrary action and wait for ten seconds to see 
if it worked) and sequences of actions. 

The current learning mechanism, as implemented, 
essentially collects counts of successes and failures to 
determine a historical success rate for each action 
suggested for a given diagnosis. These success rates are 
used to set preferences for choosing recovery actions in 
the recover state. 

A separate recover state is created to try each action. 
An action is proposed and applied, and a timer is set. If 
the conditions for success are not met before the timer 
expires, the action has failed. It is marked as tried, and 
a new action is selected. 

Figure 1. Flight domain causal back-chain model 

Arrows indicate an influence of some sort between quantities.  Those with a plus (+) indicate a positive 
influence between the quantities; those with a minus (-) indicate a negative influence; and those with a 
question mark (?) indicate that there is a relationship between the quantities, but it is indeterminate or 
requires further knowledge to determine the direction of the influence. 



Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2003 

In both cases (success and failure), learning is briefly 
turned on, and a count of the success or failure is 
recorded on the "experience" node for the action. A 
new state must be created, so that trial activity can 
proceed without learning enabled. The counts are later 
used to determine a success rate for the action. 

This method effectively works around the first and 
third problems described above. Setting flags for both 
success and failure to true before recovery starts can 
overcome the second problem described above. That 
will allow chunks to fire and contribute their 
knowledge, setting them to false at the start of 
recovery, and then setting the appropriate flag to signal 
success or failure during recovery. 

This method has the added advantage of recovering 
gracefully from serendipitous successes in early trials, 
while maintaining the desirable property that an agent 
will persevere with an action as long as it is working.  

Unfortunately, this method also seems to subvert the 
design intentions of chunking more than working with 
it. Whether this is due to my unforeseen applications or 
essential properties of chunking is an open question. 

TEST METHODOLOGY 

Platform setup 

The tests were run on two platforms, an AMD Athlon 
XP 1700+ running at 1.4 GHz with 512 MB of RAM 
and an AMD Athlon at 1GHz and 512MB of RAM. 

Each of the platforms had an identical default copy of 
Red Hat 7.3 installed.  Each was furnished with an 
identical copy of JSAFv5 (MBCJSAF).  To prevent 
outside interference, the test platforms were isolated 
from the local area network during test runs. 

 

A set of test scripts were developed and committed to a 
version control system (CVS).  As the tests were 
developed, each change to the scripts was committed 
into version control.  Before each set of test runs, cvs 
update was run upon both platforms, and then the 
results of cvs diff on each of the platforms was used to 
identify any discrepancy between the CVS versions of 
the Tcl test scripts and the versions on the platforms. 

Automation 

The automation system was based upon the Android 
user interaction scripting language for XWindows.  
Android is built upon the Tcl language.  It was 
modified for ease of installation, and a custom C 
program was coded to add the ability to detect the 
current window's title.  Several Tcl libraries were 
developed to aid in JSAF automation and log parsing. 

A set of modular scenarios was created.  The scenarios 
created were as follows: 

• 1S - A single Blue TAS agent in an F/A-18C 

• 1D - A single Red task frame agent in a MIG-
29 Fulcrum flying a sweep 

• 1RS - A single Red TAS agent in a MIG-29 
Fulcrum 

• 4S - A four-ship of Blue TAS agents in F/A-
18Cs  

• 4D - Four single Red task frame agents in 
MIG-29 Fulcrums  

• 4SR - A four-ship of Red TAS agents in MIG-
29 Fulcrums  

These modular scenarios were composed into the 
testing scenarios.  For example, 1S vs. 1RS is an air 
engagement between an F/A-18C and a MIG-29.  The 
complete set of testing scenarios was 1S, 1Sv1D, 
1Sv1RS, 4S, 4Sv4D, and 4Sv4SR.  Each testing 
scenario was run with one of three different levels of 
artificially induced failures: no productions removed, 5 
productions removed (roughly 1% of original 
rulebase), or 55 productions removed (roughly 10% of 
original base).  Two test runs were performed for each 
set of rule removals: with robustness error-correction 
code, and without.  The productions to be removed 
were chosen randomly from the existing productions 
for each pair of test runs. 

Pairs of test runs were performed in batches of 50 pairs 
each, once for each possible combination of testing 
scenario and production removal level.  Each batch 
contained agent log files from 100 test runs.  An 
example batch might use the 1Sv1RS testing scenario, 
and have a production removal level of 5 rules.  Each 
batch was performed on both testing platforms. 

Weapons  
Sensors  

Flight 

Communications  

Planning 

Figure 2. Percentages of errors induced by 
domain through rule removal 
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Timing 

Each test run lasted for 70 minutes of simulation time.  
The runs were performed at a ratio of 4:1 simtime to 
realtime.  Each took roughly 19 minutes to perform 
from application run to scenario end.  A total of 1800 
test runs were performed on each testing platform (the 
platforms ran simultaneously).  The total estimated 

time for all testing runs was 570 hours (if performed 
back-to-back 24 hours a day and 7 days a week, 3.39 
weeks). 

Log Processing 

Monitoring productions were inserted into each of the 
agents' rule bases, not considered for removal by the 
production-removal code.  Each agent produced logs 
recording three separate types of events:  production 
firings, operator selections, and milestone events.  Tcl 
scripts invoking the Linux text -processing tools sed 
and awk  were used to process the log scripts into 
comma -separated-value format. 

Scripts also separated the events into logs of the 
different types of events, sorted them, and compared 
them quantitatively via diff and lc with selected golden 
logs containing logging information from known 
correct agent runs. 

RESULTS 

We derived some initially promising results with the 
tests described above in 2001.  Specifically, for the 
0.1% removal trials, on average, the Recourse-enabled 
TAS agents had about a 2.25% higher rate of mission 
success. For the 1.0% removal trials, the Recourse-
enabled TAS agents had about a 5.25% higher rate of 

mission success. When compared to the amount of 
induced failure, this  is an appreciable achievement. At 
the 0.1% rule removal rate, failure is at 12.25% and 
10.0% respectively for non-Recourse and Recourse-
enhanced TAS agents. That comes out to an 18.0% 
performance improvement from non-Recourse to 
Recourse-enhanced TAS agents. A similar comparison 

at the higher 1.0% rule removal rate shows a 6.9% 
improvement in performance.  

When examining the log files generated during each of 
the failed trials and manually categorizing the cause of 
the failures, it was possible to further characterize the 
nature of the failures. In the case of the 1.0% rule 
removal rate, 86.5% of the categorized errors fell into 
either pre-mission planning or communications; neither 
of which had error detection or failure recovery 
implemented. A similar condition existed at the 0.1% 
removal rate, where 95% of the errors that occurred fell 
into either pre-mission planning or communications 
domains (see Figure 2). 

Using the above-described categorization of errors, the 
performance improvement afforded by the initial 
Recourse enhancement very nearly covered the entire 
range of errors encountered by the agents subjected to 
random rule removal. The data generated by the first 
phase of this study also seemed to indicate that the 
areas of greatest potential failure appear to be in pre-
mission planning and communications, which became 
our next area of research. 

During 2002, we built upon the generic infrastructure 
that had been established in 2001 and were able to 
quickly develop domain-specific self-monitoring and 

Figure 3. Comparison results of domain coverage via protocol analysis  
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recovery actions for both the pre-mission planning and 
communications domains. Furthermore, we enhanced 
the generic solution recovery system with a generic 
causal model back-chaining system. To test the causal 
model back-chaining system, we implemented a simple 
causal model for the flight domain. Finally, we were 
able to experiment with cognitive learning mechanisms 
and build a functional prototype of a diagnosis and 
blame-assignment learning system. 

In the late part of 2002 and first quarter of 2003, we re -
worked the testing regimen established in the first 
phase to eliminate some areas of concern with respect 
to the statistical significance of our performance metric 
gathering methods. Amongst these improvements was 
a change to the random generation of rule removals so 
that in a given trial batch of 50 paired runs, the 
particular rule removed per run for the non-Recourse 
and Recourse-enhanced versions of TacAir-Soar was 
identical. We believe that this strengthened the 
significance of the results captured in the second round 
of performance metric gathering that took place in 
2003. 

Incorporating the improvements developed in 2002, we 
proceeded to gather performance metrics in scenarios 
identical to those tested in 2001 (with the exceptions 
noted above).  Recovery within coverage areas (which 
had expanded from 2001) was 100% across the board 
(see Figure 3). Furthermore, there was a fourfold 
increase in error recovery effectiveness for the 
Recourse-enabled TacAir-Soar agent from 2001 to 
2003 for both the 0.1% and 1.0% removal cases. The 
breakdown of failure by domain was nearly identical to 
that observed in 2001, but the expanded domain 
coverage exhibited recovery in areas that were 
invariably fatal before. Given the 100% recovery 
demonstrated in domains with coverage, we believe 
that this improvement can be attributed to the newly 
implemented causal model and learning systems. 

RELATED WORK 

Brittleness has been a perennial problem with 
intelligent systems.  It can be reduced by good software 
engineering principles, but not eliminated. Previous 
work to solve this problem has fallen into several 
different schools of thought. 

Forbus and Falkenhainer (1992) proposed methods for 
using qualitative physics in simulations to describe 
quantitative knowledge. Their work focused on self-
explanatory simulations. These mechanisms served as 
an inspiration for our system of building domain-
specific qualitative models and using them to detect 
potential errors. Although qualitative reasoning in our 
architecture is used to differentiate between nominal 
and error states, the error-detection tests are dependent 

on a system of self-monitoring and the models are 
human behaviors, not physics models. 

Qualitative physics (Forbus, 1996) attempts to capture 
the kinds of representations and reasoning techniques 
that humans use in dealing with the physical world.  
Rather than precisely modeling physical interactions, 
people seem very good at figuring out what is 
happening around them, accounting for a broader range 
of alternatives, and working with far less data than 
would be required by traditional methods.  Qualitative 
techniques create representations for continuous 
aspects of the world, such as space, time, and quantity, 
which support reasoning with very little information.  
Our primary interest in these techniques is using these 
interval representations to provide alternative outcomes 
that may not have been foreseen by the subject matter 
experts in describing their response to a situation.  

Temporal database theory defines two dimensions of 
time: transaction time and valid time (Snodgrass and 
Ahn, 1983).  In (Jensen and Snodgrass, 1996) it is 
shown that these two dimensions are sufficient for 
answering a broad range of questions about when an 
event occurred and when it was recorded that an event 
occurred.  We borrow from this theory and define two 
dimensions for agent reasoning. 

The qualitative time intervals (Always, Past, Distant 
Past, Recent Past, Now, Near Future, Distant Future, 
Future) aid in writing human understandable 
inferences.  It has been shown (Trafton, et. al., 2003) 
that humans are effective at thinking about complex 
problems qualitatively. We borrow from the research 
done in Qualitative Process Theory (Forbus, 1984) to 
structure our formalism around qualitative terms and 
reasoning, thus making it more human understandable.  
The exact number of qualitative bins may vary as 
required.  Furthermore, the exact boundaries of these 
intervals can be modified to reflect the temporal scope 
of the inferences and the task to be accomplished. 

Using the above time representation, we can reason 
about what is happening now, what happened in the 
past, what will happen in the future, and what was 
previously thought about. 

Some of the design decisions for our recovery handler 
system were based on Michael Cox's dissertation work 
on recovery from reasoning failure (Cox, 1996). 
Specifically, Cox describes a variety of mechanisms 
for the application of introspective machine learning 
techniques. These were principally of interest to us for 
the design and development of our general recovery 
handling system, and for future work on the integration 
of learning into recovery. 

At Yale University, Toyama and Hager (1997) were 
among the first to propose researching post-failure 
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robustness in the context of artificial intelligence. The 
philosophy behind our approach closely matches the 
case made by Toyama and Hager that the most 
effective general-purpose solutions to the problem of 
brittleness are to be found in recovery, not exhaustive 
prevention. Their perspective and other similar views 
led us to rely on nature's examples for appropriate 
general recovery actions. 

The Cognitive Science and Integrative Behavior 
Biology research groups at Michigan State University 
have done extensive study of insect navigation (Dyer, 
et. al., 1993). Their discoveries, particularly with 
regard to redundant and hierarchical systems, have 
helped to guide the design of our general recovery 
handlers and generic solutions system. 

CONCLUSIONS 

This approach is not a panacea.  There will still be a 
wide range of ways for the system to fail.  Incorrect 
target coordinates may not be caught, low-level flights 
may still crash into the terrain, planes may circle 
endlessly waiting to land on a dead airfield, and aircraft 
will still get shot down. 

This approach cannot guarantee correctness of results.  
It will not notice subtle errors, but it will detect grossly 
incorrect behaviors.  However, these grossly incorrect 
behaviors are the same types of error most people 
notice and that they typically describe as the system 
behaving “stupidly.” 

What is considered “grossly incorrect behavior” is 
domain specific.  For example, in paleontology a 
difference of a few hundred years may not be 
significant, while for computer hardware a difference 
of a few nanoseconds could render a chip defective.  
By tying error detection to the specific goals the system 
is trying to solve, the system is able to use context 
dependent information to resolve problems for which it 
was not specifically programmed. 

The basic principles described here are applicable to all 
complex software systems based on a hierarchy of 
goals.  The key point is the approach of working to 
correct failure in real-time when it occurs, rather than 
trying to prevent all failure.  

Failures cost time, money, and confidence in software.  
Other disadvantages associated with brittleness are 
increased cost spread over life-cycle, loss of time and 
training, expensive support, user frustration, lack of 
faith in results, and unacceptable results for mission-
critical applications.  The benefits of our approach are 
increased reliability, preservation of the investment, 
reduced life cycle cost, increased life cycle, and not 
holding up expensive assets.  The benefits of human 
emulation are believability, avoiding negative training, 

recovery actions are comprehensible, and when it does 
break, it responds like a human.  Applications include 
training, guidance systems, acquisition, mission 
rehearsal, strategic planning, deterrence, and UAV 
control.   

We claim that our eight-step plan is sufficient to model 
recovery.  These eight steps are plausible descriptions 
of human and biological recovery mechanisms.  Our 
robust agents imitate this behavior.   
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