Interservice/Industry Training, Smulation, and Education Conference (I/ITSEC) 2003

Causal Modelsand Learning for Robust Human Behavior M odels

Dr. Paul E. Nielsen, Jonathan T. Beard, Sean A. Lisse
Soar Technology, Inc.
Ann Arbor, M1 48105
nielsen@soartech.com, beard@soartech.com, lisse@soar tech.com

ABSTRACT

Human behavior representations (HBRs) are an essential component of simulation-based training. Historically,
these HBRs involve significant cost to encode expert knowledge for specific uses. One of the largest development
costs is re-engineering due to failure, where failures stem from incorrect, incomplete, obsolete, or inconsistent
information.

Previous work has demonstrated that it is possible for HBRs to overcome a significant number of their own failures
by providing them with limited meta-awareness through self-monitoring, error-detection, and failure recovery. A
limitation of those approaches has been their reliance on random selection among possible actions. Although self-
correcting systems utilizing random selection are theoretically capable of eventually searching the entire recovery
space, thisis undesirable in real-time applications. Pruning the search space to decrease the number of options that
must be attempted before achieving success can reduce the impact on real-time applications as well as reducing the
incidence of recovery-induced failure. However, it can be developmentally intensive to manually annotate world
states with suggested recovery actions.

This paper describes a complementary methodology that improves the quality of recovery actions without
significantly increasing development cost. Specifically, this paper examines constraints on failure recovery through
the use of causal models and learning. These constraints drastically reduce the search possihilities over exhaustive
recovery techniques. First, HBRs are enhanced with internal representations of causal models describing recovery
domain spaces. These models guide the reasoning process to the selection of appropriate, relevant recovery actions.
Once arecovery method is attempted, the self-monitoring capability of the agentsis utilized to measure the efficacy
of the selected recovery actions. Finally, a learning mechanism, which will be described in detail, is used to prefer
future selection of recovery actionsin similar circumstances.

ABOUT THE AUTHORS

Paul E. Nielsen is vice-president and co-founder of Soar Technology, Inc. an intelligent, simulation software
company based in Ann Arbor, Michigan. He received his Ph.D. in computer science from the University of Illinois
in 1988. Prior to joining the Soar Technology he worked at the GE Corporate Research and Development Center
and the University of Michigan Artificial Intelligence Laboratory. Dr. Nielsen's primary research interest lies in
creating intelligent autonomous entities that generate human-like behavior.

Jonathan T. Beardis a Software Engineer and the TacAir-Soar Product Manager at Soar Technology, Inc. He has
attended Hope College, the Kyrgyz State National University, and Northern Michigan University. Prior to joining
Soar Technology, he was a Systems Architect at DaimlerChrysler, where he was the technical lead and designer of
the EMIS-3 enterprise change-management system. Mr. Beard's primary research interests are in human behavior
modeling, wearable and embedded computing, and cooperative autonomous agents.

Sean A. Lisseis a Software Engineer at Soar Technology, Inc. He has a Bachelor of Arts in Comp uter Science
from Rice University. Prior to joining Soar Technology he worked at Enron Broadband Services, where he was a
member of the EnFiber bandwidth trading software development team. Mr. Lisse's primary research interests are in
knowledge representation, knowledge engineering, and the combination of traditional software engineering with
advanced artificial intelligence techniques.

Interservice/Industry Training, Smulation, and Education Conference (I/ITSEC) 2003

Causal Modelsand Learning for Robust Human Behavior M odels

Dr. Paul E. Nielsen, Jonathan T. Beard, Sean A. Lisse
Soar Technology, Inc.
Ann Arbor, M| 48105
nielsen@soar tech.com, bear d@soar tech.com, lisse@soartech.com

INTRODUCTION

Errors are inevitable in any non-trivial system. All
representations that lack knowledge, including humans,
will fail. The difference between humans and human
behavior models is that humans can recognize their
failures, resolve them, and move on, while models are
generally incapable of recovery and tend to become
“stuck” or crash.

We believe that it is not possible to eliminate the
sources of failure in any non-trivial system. Legacy
approaches have attempted to eliminate failure, but
empirical results demondrate that they have been
unsuccessful (Ginsberg, 1989). While this may be
attributed to sloppy programming, theoretical results
indicate that it is impossible to test all possible
scenarios of a complex system (Godel, 1931). Thus,
failure will occur in any non-trivial system. Our
approach assumes that failure will occur and embraces
it, alowing the system to recover before failure
becomes catastrophic.

This paper presents an approach to error detection in
complex human behavior models that is based on
abstract causal models and learning. The approach is
tractable for computation yet complete in its ability to
represent all relevant influences upon the system. The
type of knowledge presented here is fundamentally
different from the “how to” knowledge normally
associated with carrying out atask. Instead it describes
high-level, general characteristics of the desired world
state and makes explicit methods that are acceptable or
unacceptable. Because there could be an enormous
number of behaviors that are unacceptable, the
knowledge must be specific to the goals the agent is
trying to achieve. Rather than attempt to anticipate all
possible behaviors a priori, there is additional
knowledge in the system that will recognize
discrepancies between alowable world states and
unacceptable world states. Once the agent realizes that
something is wrong, additional repair knowledge may
be brought to bear that will alter the behavior until it is
once again acceptable.

TERMINOLOGY
Brittleness

Brittleness is a lack of reasonable behavior due to
unanticipated external conditions. It is exacerbated
both by complexity and the desire to use software in
domains for which it was not originally designed.
Brittleness severely limits the effectiveness of
intelligent behavior systems and their application for
military endeavors. Though the system may exhibit
satisfactory performance within a narrowly defined
area of expertise, once the situation becomes
sufficiently complex the possibility of failure
approaches one hundred percent.

Brittleness arises when knowledge about how to handle
the current situation is:

Inaccurate: knowledge is untrue
Incomplete: knowledge is lacking
Obsolete: knowledge is nho longer true
Inconsistent: knowledge contradicts itself
I1l-defined: knowledge istoo vague to use

apr wdhpE

Brittleness significantly increases the life-cycle cost
since software maintenance effort must be expended to
diagnose and fix problems. It can result in lost person
time and hold up other expensive resources resulting in
loss beyond he system itself. If used for mission
critical applications the results of failure can have
catastrophic consequences. Finally, the results of any
such system may be unsuitable because of lack of faith
in the results.

Robustness

In contrast, robustness is the ability for a system to

exhibit reasonable behavior in response to
unanticipated events.
BACKGROUND

Soar Technology, Inc. undertook the task of improving
the robustness of behavioral models for computer-
generated forces with the idea that the problem of
brittleness is fundamentally a knowledge problem
arising out of ignorance (incomplete knowledge), not
representation (architecture). Our claim is that

Interservice/Industry Training, Smulation, and Education Conference (I/ITSEC) 2003

brittlenessis caused by alack of knowledge about what
should be expected.

Soar Technology, Inc. develops human cognitive
models for use in military simulations. These models
account for a wide range of behaviors including air-to-
air combat, air-to-ground attack, reconnaissance,
control, and support. These representations are
created in the Soar computational model of human
cognition (Laird, et. al., 1991), which is used
extensively as a basis for human performance modeling
in cognitive science and artificial intelligence. Models
developed with Soar can provide insight into such
aspects of human performance modeling as task
timing, cognitive system load, focus of attention, and
novice vs. expert level behaviors (Newell, 1990;
Rosenbloom, et al., 1993).

The specific application we are using to demonstrate
this methodology is TacAir-Soar, (Jones, &. al., 1999)
which is a rule-based implementation of human
cognitive models for pilot and controller behaviors.

TacAir-Soar generates entity level behaviors for most
aircraft and missions in the military. It is a highly
complex application consisting of approximately 8000
rules describing navigation, coordination,
communication, and tactics. It alows unsupervised
agents to perform missions autonomously in simulation
exercises.

CONTEXT

Scaling is problematic for human behavior
representations. What works in a niche domain may be
problematic for real-world applications. Thus, there
have been large volumes of work reported about
approaches that solve narrowly constrained problems
but very few applications that attempt to replicate a
significant portion of human behavior to a believable
level of fidelity. The implications for robustness are
that trivill systems may be proven correct
exhaustively, but large-scale human behavior
representations may fail because of complexity.

This ability to recognize failure is critical to developing
intelligent systems. Before they can adapt their
behaviors to new circumstances, they must first realize
the futility of their current situation. Conventional
programming techniques that do not do this will either
continue their aberrant behavior or simply fail.
Intelligent systems should embrace failure as an
opportunity for improvement.

Our investigation is grounded in a specific application
because a general solution to al commonsense
knowledge would be too large in scope D produce
tangible results. Without context, the problem
explodes. Previous attempts at commonsense

modeling have been largely unsuccessful because there
is too much general-purpose commonsense to model it
al completely (Copeland, 1997; Lenat, 2001).

APPROACH

To reduce brittleness in software systems, there are two
primary things that must be done. First, there needs to
be feedback from the environment. When directed to
perform an action, the agent needs to confirm that the
action was actually performed. For example, when
told to turn, the entity needs to ensure that a turn
actually is taking place, heading is changing, and the
new heading is the indicated heading. This problem
most often arises in missed communication, but also
arises from actuator failure.

Second, the agents need a deep understanding of the
task they are trying to perform. This project would
develop a representation of the first principles of flight
in a format usable by intelligent computer generated
forces to provide them with acommon sense awareness
of expectations about their world. For example, a CGF
should know that if speed is non-zero, position should
be changing; maneuvering should result in a change of
heading; etc.

These assertions provide a mechanism for performing a
“reality check.” The recovery procedure will be
situation specific, but may include such
recommendations as abandoning the current course of
action, re-attempting the action, or requesting
assistance. The resultant corrective action represents
an opportunity for learning in the system so it will
avoid making such mistakesin the future.

Our approach to software recovery is structured around
an eight-step recovery plan, termed “Recourse’, as
follows:

1. Reducefailure

Represent the environment.

Recognize progress toward goals.
Allocate resourcesto the problem.
Diagnose the possible reasons.

Create alternative responses.

Initiate recovery actions.

Remember successful recovery actions.

O NOOA~WDN

This paper focuses on tractable methods of
representing the environment and remembering
successful recovery actions. Details of other aspects of
this approach may be found in (Nielsen, et. al., 2002;
Beard, et. al., 2002; and Kiessel, et. al., 2002)

CAUSAL MODEL

Although the effector-based recovery mechanism that
is pat of the Recourse approach is theoretically
sufficient to eventually search the entire ream of

Interservice/Industry Training, Smulation, and Education Conference (I/ITSEC) 2003

possible recovery actions, it is possible that the
consequences of continuing failure might be terminal
before recovery was successful. To reduce the amount
of recovery action search necessary, we determined
that giving agents the ability to reason about cause-
and-effect relationships could help to guide selection of
recovery actions — thus increasing the possibility of
successful recovery before termina failure in a real-
time system.

For an agent to reason about cause-and-effect within a
simulation environment, it is necessary for the agent to
have an internal representation of that world to reason
about. Providing a mental model of the environment as
detailed & the actua environment is cognitively and
computationally implausible, effectively requiring a
recursive copy of the external world. Instead, we have
given the agents an abstracted representation of the
environment using qualitative models. A qualitative
representation uses intervals, rather than actual numeric
values, exhaustively covering the domain to be
represented. Although this representation may suffer
from ambiguity and lack the detail necessary to predict
which of multiple outcomes will actually happen, it is
useful as a guide to suggest possibilities and actions for
recovery that can be tested in the physical environment
and then further refined.

For the purposes of this research, we have only
implemented a causal model representation for flight
dynamics within TacAir-Soar, but there is no reason
that causal models could not be created to cover every
domain in which an agent may act. In our
implementation, there are qualitative metrics for each
evaluation in the flight domain. Using these qualitative
representations, we can develop a computational model
of causal actions, which may be predictive.

The causal model illustrated here (see Figure 1) shows
how the relationships between the environmental
parameters of the entity can be affected by the entity’s
actions. Thisillustration is a prototype visualization of
a causal model indicating the cause and effect of
various effectors in the flight domain. In developing
recovery actions, an enhanced version of this causal
model was used to describe the flight domain.

Recovery actions are constrained to the effectors of the
system; the agent can only use the controls it has the
capability to manipulate. Therefore, the causal model
defines the relationships between effectors of the
system. The causal model itself was implemented
within the agent as production rules encoding sets of
cause-and-effect beliefs.

Agent reasoning which backchains through the causal
model shows how different effectors can influence
various environmental parameters of the agent. For
example, if an agent detects an error in the execution of
its goals, it may diagnose that the error is due to flying
too fast. With that diagnosis, the agent could try to use
the recovery system originally implemented as part of
the Recourse methodology, and begin attempting
recovery actions within the flight domain. On the other
hand, using the newly implemented system of causal-
model relationships encoded as beliefs, the agent
would be able to evaluate the causal model encoded as
beliefs to determine the selection of an appropriate
effector action. In the model used, changes in
acceleration and altitude both influence speed, so if a
problem with the entity's speed is detected, it is
possible to change the acceleration to influence the
speed. The causal model beliefs describe the
relationship of each of the environmental parameters of
the entity, and the nature of the influence, i.e. whether
it is direct or inverse. The variables described in this
causal model are: pitch, roll, yaw, delta-atitude,
atitude, acceleration, speed, position, thrust, heading,
and delta-heading.

The agents have beliefs about how these various
variables influence each other — both which
environmental parameters affect which other
parameters, and whether the effect is direct or inverse.
The agents use that knowledge in their choice of
recovery actions. The agents can identify flight-domain
symptoms that correspond to the causal model, e.g.,
"going too slow". They trandate that into a desire to go
faster, or increase speed. Then the causal model tells
them that to increase speed, one can, for instance,
increase acceleration. Therefore, the agent could
choose "increase acceleration” as a viable recovery
action.

Interservice/Industry Training, Smulation, and Education Conference (I/ITSEC) 2003

pitch
N ?
- +
yaw :{> d-altitude
PN
thrust

altitude

= A1

acceleration

position

+

roll > d-heading

s
-

> speed

heading

Figure 1. Flight domain causal back-chain model

Arrows indicate an influence of some sort between quantities. Those with a plus (+) indicate a positive
influence between the quantities; those with a minus (-) indicate a negative influence; and those with a
guestion mark (?) indicate that there is a relationship between the quantities, but it is indeterminate or
requires further knowledge to determine the direction of the influence.

LEARNING

Learning is used principaly at the action selection
stage - if an action has been successful in resolving a
particular problem in the past, that action should be
remembered and tried first when the problem next
occurs. Our first implementation attempt was to create
a recovery state with learning enabled and chunk the
effects of tried actions.

All learning in Soar occurs through the "chunking"
mechanism. Chunking is a way of converting goal-
based problem solving into accessible long-term
memory. Whenever problem solving provides a result,
anew production is created, whose actions are the new
results and whose conditions are the working-memory
elements that were involved in producing the results.
Thisproductioniscalled a“chunk.” (Newell, 1990)

Several problems were
experimenting with this method:

experienced while

1) Soar immediately chunks the effects of any
actions that effect parts of the agent outside
the scope of the recovery action (e.g., putting
something on the output link), making it very
difficult to not learn actions that fail.

2) If success or failure can only be determined by
examining elements outside of the learning
state (e.g., checking input link parameters),
Soar includes those conditions in the
conditions of the chunk, making the chunk
useless (i.e., it will only fire in gtuations in
which the problem has already been solved).

3) Chunking does not deal well with time
sensitive actions. It is very difficult to learn
time constraints on actions (perform an
arbitrary action and wait for ten seconds to see
if it worked) and sequences of actions.

The current learning mechanism, as implemented,
essentially collects counts of successes and failures to
determine a historical success rate for each action
suggested for agiven diagnosis. These success rates are
used to set preferences for choosing recovery actions in
the recover state.

A separate recover state is created to try each action.
An action is proposed and applied, and atimer is set. If
the conditions for success are not met before the timer
expires, the action has failed. It is marked as tried, and
anew action is selected.

@ Communications

W Sensors

m Weapons

Interservice/Industry Training, Smulation, and Education Conference (I/ITSEC) 2003

In both cases (success and failure), learning is briefly
turned on, and a count of the success or failure is
recorded on the "experience" node for the action. A
new state must be created, so that trial activity can
proceed without learning enabled. The counts are later
used to determine a success rate for the action.

This method effectively works around the first and
third problems described above. Setting flags for both
success and failure to true before recovery starts can
overcome the second problem described above. That
will alow chunks to fire and contribute their
knowledge, setting them to false at the start of
recovery, and then setting the appropriate flag to signal
success or failure during recovery.

This method has the added advantage of recovering
gracefully from serendipitous successes in early trials,
while maintaining the desirable property that an agent
will persevere with an action aslong asit is working.

Unfortunately, this method also seems to subvert the
design intentions of chunking more than working with
it. Whether thisis due to my unforeseen applications or
essential properties of chunking is an open question.

O Flight

W Planning

Figure 2. Percentages of errorsinduced by
domain through rule removal

TEST METHODOLOGY
Platform setup

The tests were run on two platforms, an AMD Athlon
XP 1700+ running at 1.4 GHz with 512 MB of RAM
and an AMD Athlon at 1GHz and 512MB of RAM.

Each of the platforms had an identical default copy of
Red Hat 7.3 installed. Each was furnished with an
identical copy of JSAFv5 (MBCJSAF). To prevent
outside interference, the test platforms were isolated
from the local area network during test runs.

A set of test scripts were developed and committed to a
version control system (CVS). As the tests were
developed, each change to the scripts was committed
into version control. Before each set of test runs, cvs
update was run upon both platforms, and then the
results of cvs diff on each of the platforms was used to
identify any discrepancy between the CVS versions of
the Tcl test scripts and the versions on the platforms.

Automation

The automation system was based upon the Android
user interaction scripting language for XWindows.
Android is built upon the Tcl language. It was
modified for ease of installation, and a custom C
program was coded to add the ability to detect the
current window's title. Several Tcl libraries were
developed to aid in JSSAF automation and log parsing.

A set of modular scenarios was created. The scenarios
created were as follows:

1S - A single Blue TAS agent in an F/A-18C

1D - A single Red task frame agent in a MI1G-
29 Fulcrum flying a sweep

IRS - A single Red TAS agent in a MIG-29
Fulcrum

4S - A four-ship of Blue TAS agents in F/A-
18Cs

4D - Four single Red task frame agents in
MI1G-29 Fulcrums

4SR - A four-ship of Red TAS agentsin MIG-
29 Fulcrums

These modular scenarios were composed into the
testing scenarios. For example, 1S vs. 1RS is an air
engagement between an F/A-18C and a MI1G-29. The
complete set of testing scenarios was 1S, 1SviD,
1SvIRS, 4S, 4Sv4D, and 4Sv4SR. Each testing
scenario was run with one of three different levels of
artificially induced failures: no productions removed, 5
productions removed (roughly 1% of original
rulebase), or 55 productions removed (roughly 10% of
original base). Two test runs were performed for each
set of rule removals: with robustness error-correction
code, and without. The productions to be removed
were chosen randomly from the existing productions
for each pair of test runs.

Pairs of test runs were performed in batches of 50 pairs
each, once for each possible combination of testing
scenario and production removal level. Each batch
contained agent log files from 100 test runs. An
example batch might use the 1Sv1RS testing scenario,
and have a production removal level of 5 rules. Each
batch was performed on both testing platforms.

Interservice/Industry Training, Smulation, and Education Conference (I/ITSEC) 2003

Timing

Each test run lasted for 70 minutes of simulation time.
The runs were performed at a ratio of 4:1 simtime to
realtime. Each took roughly 19 minutes to perform
from application run to scenario end. A total of 1800

test runs were performed on each testing platform (the
platforms ran simultaneously). The total estimated

mission success. When compared to the amount of
induced failure, this is an appreciable achievement. At
the 0.1% rule removal rate, failure is at 12.25% and
10.0% respectively for non-Recourse and Recourse
enhanced TAS agents. That comes out to an 18.0%
performance improvement from non-Recourse to
Recourse-enhanced TAS agents. A similar comparison

100% 100%

100%

80%

60%

40%

20%

% Coverage Domain Success

0%

2002
2003

-1% Removal 2002 -1% Removal

Robustness Performance Data - Coverage Inside Domains via
Protocol Analysis

o08% 100%

2003 1% Removal 2002 1% Removal 2003
Trial Types

Figure 3. Comparison results of domain coverage via protocol analysis

time for all testing runs was 570 hours (if performed
back-to-back 24 hours a day and 7 days a week, 3.39
weeks).

L og Processing

Monitoring productions were inserted into each of the
agents' rule bases, not considered for removal by the
production-removal code. Each agent produced logs
recording three separate types of events: production
firings, operator selections, and milestone events. Tcl
scripts invoking the Linux text -processing tools sed
and awk were used to process the log scripts into
comma-separated-value format.

Scripts also separated the events into logs of the
different types of events, sorted them, and compared
them quantitatively via diff and Ic with selected golden
logs containing logging information from known
correct agent runs.

RESULTS

We derived some initially promising results with the
tests described above in 2001. Specifically, for the
0.1% removal trials, on average, the Recourse-enabled
TAS agents had about a 2.25% higher rate of mission
success. For the 1.0% removal trials, the Recourse
enabled TAS agents had about a 5.25% higher rate of

at the higher 1.0% rule removal rate shows a 6.9%
improvement in performance.

When examining the log files generated during each of
the failed trials and manually categorizing the cause of
the failures, it was possible to further characterize the
nature of the failures. In the case of the 1.0% rule
removal rate, 86.5% of the categorized errors fell into
either pre-mission planning or communications; neither
of which had error detection or failure recovery
implemented. A similar condition existed at the 0.1%
removal rate, where 95% of the errors that occurred fell
into either pre-mission planning or communications
domains (see Figure 2).

Using the above-described categorization of errors, the
performance improvement afforded by the initia
Recourse enhancement very nearly covered the entire
range of errors encountered by the agents subjected to
random rule removal. The data generated by the first
phase of this study also seemed to indicate that the
areas of greatest potential failure appear to be in pre-
mission planning and communications, which became
our next area of research.

During 2002, we built upon the generic infrastructure
that had been established in 2001 and were able to
quickly develop domain-specific self-monitoring and

Interservice/Industry Training, Smulation, and Education Conference (I/ITSEC) 2003

recovery actions for both the pre-mission planning and
communications domains. Furthermore, we enhanced
the generic solution recovery system with a generic
causal model back-chaining system. To test the causal
model back-chaining system, we implemented a simple
causal model for the flight domain. Finally, we were
able to experiment with cognitive learning mechanisms
and build a functional prototype of a diagnosis and
blame-assignment learning system.

In the late part of 2002 and first quarter of 2003, we re-
worked the testing regimen established in the first
phase to eliminate some areas of concern with respect
to the statistical significance of our performance metric
gathering methods. Amongst these improvements was
a change to the random generation of rule removals so
that in a given trial batch of 50 paired runs, the
particular rule removed per run for the non-Recourse
and Recourse-enhanced versions of TacAir-Soar was
identical. We believe that this strengthened the
significance of the results captured in the second round
of performance metric gathering that took place in
2003.

Incorporating the improvements developed in 2002, we
proceeded to gather performance metrics in scenarios
identical to those tested in 2001 (with the exceptions
noted above). Recovery within coverage areas (which
had expanded from 2001) was 100% across the board
(see Figure 3). Furthermore, there was a fourfold
increase in error recovery effectiveness for the
Recourse-enabled TacAir-Soar agent from 2001 to
2003 for both the 0.1% and 1.0% removal cases. The
breakdown of failure by domain was nearly identical to
that observed in 2001, but the expanded domain
coverage exhibited recovery in areas that were
invariably fatal before. Given the 100% recovery
demonstrated in domains with coverage, we believe
that this improvement can be attributed to the newly
implemented causal model and learning systems.

RELATED WORK

Brittleness has been a perennial problem with
intelligent systems. It can be reduced by good software
engineering principles, but not eliminated. Previous
work to solve this problem has fallen into severa
different schools of thought.

Forbus and Falkenhainer (1992) proposed methods for
using qualitative physics in simulations to describe
quantitative knowledge. Their work focused on self-
explanatory simulations. These mechanisms served as
an inspiration for our system of building domain-
specific qualitative models and using them to detect
potential errors. Although qualitative reasoning in our
architecture is used to differentiate between nominal
and error states, the error-detection tests are dependent

on a system of self-monitoring and the models are
human behaviors, not physics models.

Qualitative physics (Forbus, 1996) attempts to capture
the kinds of representations and reasoning techniques
that humans use in dealing with the physical world.

Rather than precisely modeling physical interactions,

people seem very good at figuring out what is
happening around them, accounting for a broader range
of alternatives, and working with fr less data than
would be required by traditional methods. Qualitative
techniques create representations for continuous
aspects of the world, such as space, time, and quantity,
which support reasoning with very little information.

Our primary interest in these techniques is using these
interval representations to provide alternative outcomes
that may not have been foreseen by the subject matter
expertsin describing their response to a situation.

Temporal database theory defines two dimensions of
time: transaction time and valid time (Snodgrass and
Ahn, 1983). In (Jensen and Snodgrass, 1996) it is
shown that these two dimensions are sufficient for
answering a broad range of questions about when an
event occurred and when it was recorded that an event
occurred. We borrow from this theory and define two
dimensions for agent reasoning.

The qualitative time intervals (Always, Past, Distant
Past, Recent Past, Now, Near Future, Distant Future,
Future) ad in writing human understandable
inferences. It has been shown (Trafton, et. a., 2003)
that humans are effective at thinking about complex
problems qualitatively. We borrow from the research
done in Qualitative Process Theory (Forbus, 1984) to
structure our formalism around qualitative terms and
reasoning, thus making it more human understandable.
The exact number of qualitative bins may vary as
required. Furthermore, the exact boundaries of these
intervals can be modified to reflect the temporal scope
of the inferences and the task to be accomplished.

Using the above time representation, we can reason
about what is happening now, what happened in the
past, what will happen in the future, and what was
previously thought about.

Some of the design decisions for our recovery handler
system were based on Michael Cox's dissertation work
on recovery from reasoning failure (Cox, 1996).
Specifically, Cox describes a variety of mechanisms
for the application of introspective machine |learning
techniques. These were principally of interest to us for
the design and development of our genera recovery
handling system, and for future work on the integration
of learning into recovery.

At Yale University, Toyama and Hager (1997) were
among the first to propose researching post-failure

Interservice/Industry Training, Smulation, and Education Conference (I/ITSEC) 2003

robustness in the context of artificial intelligence. The
philosophy behind our approach closely matches the
case made by Toyama and Hager that the most
effective general-purpose solutions to the problem of
brittleness are to be found in recovery, not exhaustive
prevention. Their perspective and other similar views
led us to rely on nature's examples for appropriate
general recovery actions.

The Cognitive Science and Integrative Behavior
Biology research groups at Michigan State University
have done extensive study of insect navigation (Dyer,
et. a., 1993). Their discoveries, particularly with
regard to redundant and hierarchical systems, have
helped to guide the design of our general recovery
handlers and generic solutions system.

CONCLUSIONS

This approach is not a panacea. There will still be a
wide range of ways for the system to fail. Incorrect
target coordinates may not be caught, low-level flights
may still crash into the terrain, planes may circle
endlessly waiting to land on adead airfield, and aircraft
will still get shot down.

This approach cannot guarantee correctness of results.
It will not notice subtle errors, but it will detect grossly
incorrect behaviors. However, these grossly incorrect
behaviors are the same types of error most people
notice and that they typically describe as the system
behaving “stupidly.”

What is considered “grossly incorrect behavior” is
domain specific. For example, in paleontology a
difference of a few hundred years may not be
significant, while for computer hardware a difference
of a few nanoseconds could render a chip defective.

By tying error detection to the specific goals the system
is trying to solve, the system is able to use context
dependent information to resolve problems for which it
was not specifically programmed.

The basic principles described here are applicable to all
complex software systems based on a hierarchy of
goals. The key point is the approach of working to
correct failure in realtime when it occurs, rather than
trying to prevent all failure.

Failures cost time, money, and confidence in software.
Other disadvantages associated with brittleness are
increased cost spread over life-cycle, loss of time and
training, expensive support, user frustration, lack of
faith in results, and unacceptable results for mission-
critical applications. The benefits of our approach are
increased reliability, preservation of the investment,
reduced life cycle cost, increased life cycle, and not
holding up expensive assets. The benefits of human
emulation are believability, avoiding negative training,

recovery actions are comprehensible, and when it does
break, it responds like a human. Applications include
training, guidance systems, acquisition, mission
rehearsal, strategic planning, deterrence, and UAV
control.

We claim that our eight-step plan is sufficient to model
recovery. These eight steps are plausible descriptions
of human and biological recovery mechanisms. Our
robust agents imitate this behavior.

ACKNOWLEDGEMENTS

This research was funded by the Office of Naval
Research contract number N00014-00-C-0312 under
the direction of Harold Hawkins. Thank you to Jennifer
Marsman, Dr. Richard Frederiksen, Dr. James Beisaw,
Richard Falk, Chris Kiekintveld, Nancy Shanley, and
Glenn Taylor for their contributionsto this research.

REFERENCES

Beard, J., Nielsen, P., Kiessal, J. Self-Aware Synthetic
Forces: Improved Robustness Through Qualitative
Reasoning. Proceedings of the I/ITSEC Conference,
2002.

Copeland, B. J.: "CYC: A Case Study in Ontological
Engineering."
http://ejap.louisiana.edu/EJA P/1997.spring/copel and97
6.2.html. 1997

Cox, M. Introspective Multistrategy Learning:
Constructing a Learning Strategy Under Reasoning
Failure. 1996.

Dyer, F.C., Berry, N.A., Richard, A.S. "Honey Bee
Spatial Memory: Use of Route-Based Memories After
Displacement.” Animal Behaviour 45 : 1028-1030.
1993.

Forbus, K.D. "Qualitive Process Theory." In Artificial
Intelligence, Vol 24. p.85-168. 1984.

Forbus, K.D., "Qualitative Reasoning." CRC
Handbook of Computer Science and Engineering.
CRC Press. 1996.

Forbus, K.D., Fakenhainer, B. "Self-explanatory
Simulations. Integrating Qualitative and Quantitative
Knowledge." Recent Advances in Qualitative Physics.
B. Faltings and P. Struss eds. MIT Press. 1992.

Ginsberg, M. L. "Universal Planning: An (Almost)
Universally Bad Idea.” Al Magazine, vol. 10, no. 4,
1989.

Godel, Kurt. "On Formally Undecidable Propositions
of Principia Mathmatica and Related Systems", 1931.
Available at:
http://www.ddc.net/ygg/etext/godel/godel 3.htm

http://ejap.louisiana.edu/EJAP/1997.spring/copeland976.2.html
http://www.ddc.net/ygg/etext/godel/godel3.htm

Interservice/Industry Training, Smulation, and Education Conference (I/ITSEC) 2003

Jensen, C. S. and Snodgrass R. T. "Semantics of Time-
Varying Information" in Information System. 21:4. pp.
311-352. 1996

Jones, R. M, Laird, J. E., Nidlsen, P. E., Coulter, K. J.,
Kenny, P., & Koss, F. V.: "Automated Intelligent Pilots
for Combat Flight Simulation.” Al Magazine,
20(1):27-41. 1999

Kiessel, J., Nielsen, P., Beard, J. Failure Recovery: A
Software Engineering Methodology for Robust Agents.
Proceedings of the SELMAS Conference, 2002.

Laird, JE., Newell, A., Rosenbloom, P.S.: "Soar: An
Architecture for General Intelligence." Artificial
Intelligence, 47, 289-325. 1991.

Lenat, D. B.: From 2001 to 2001: Common Sense and
the Mind of HAL.
http://www.cyc.com/halslegacy.html

Newell, A.: Unified Theories of Cognition, Harvard
University Press, Cambridge, Massachusetts, 1990.

Nielsen, P., Beard, J.,, Kiessel, J, and Beisaw, J.
Robust Behavior Modeling, Proceedings of the 11th
CGF Conference, 2002.

Rosenbloom, P.S., Laird, JE., Newell, A. (eds.). The
Soar Papers. Research in Integrated Intelligence. The
MIT Press. Cambridge, MA. 1993.

Snodgrass, R.T. and Ahn, I. "Temporal Databases" in
IEEE Computer 19:9 pp. 35-42. 1986.

Toyama, K., Hager, G.D.: "If a First You Don't
Succeed..." Proceedings of the Fourteenth National
Conference on Artificial Intelligence (AAAI-97), pp.
3-9. 1997.

Trafton, J., Kirschenbaum, S., Tsui, T., Miyamoto, R.,
Ballas, J., and Raymond, P. "Turning Pictures into
Numbers: Extracting and Generating Information from
Complex Visualizations' International Journal of
Human Computer Studies. 2003.

http://www.cyc.com/halslegacy.html

