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ABSTRACT

If simulations could be coerced -- literally reshaped -- to conform to requirements different from those for which
they were originally designed, many of the challenges facing the simulation community should become less
daunting. Success could foster reuse, enable linkages between multi-resolution models, and increase the chances of
success for interoperability and composability. We consider coercing as it applies to multi-resolution modeling.
Given two simulations of the same phenomenon at different levels of detail, we explore coercing the lower
resolution simplified simulation to produce results that correspond satisfactorily with the detailed high resolution
simulation. The product is a simulation possessing the speed of the low resolution simulation along with the desired
accuracy of the high resolution simulation.

Coercing involves a subject matter expert and optimization. The subject matter expert selects simulation parameters
and establishes constraints within which those parameters are allowed to vary without compromising the validity of
the simulation. Then, an optimization technique is employed to search through the possible parameter values and to
select that set for which the simulation results most closely reflect the ideal; namely, conformance with new
requirements stemming from the high resolution model.

To explore the concept of coercing simulations, we selected a high resolution three-dimensional bicyclist simulation
and a simple simulation of a particle moving in two-dimensional space as the low resolution simulation. For these
two simulations, we were able to modify, using optimization, the parameters of the low resolution simulation to
follow a route that more accurately reflected the route traced by the three-dimensional bicyclist on a given course.
We report on our coercing experience, providing detailed insight into the process we have designed for coercing,
and we describe results. Also, we discuss automating additional phases of the coercion process and their integration
into our evolving coercion tool, SimEx.
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INTRODUCTION

Computer simulations, like all software, can be reused
and combined with other simulations in order to
address newer and larger problems. An existing
simulation may be reused with different parameters to
model a similar phenomenon in a new setting, or a set
of existing simulations may be joined to form a
simulation of a more complicated phenomenon.
Simulation reuse and composability both require a
certain degree of flexibility. A simulation may need to
be adjusted to serve as a valid model of a new scenario
or to meet the requirements of the other components in
a federation of simulations.

We address a semi-automated approach to coercing
simulations that supports increased levels of flexibility.
The primary goal of simulation coercion is to tune an
existing simulation as closely as desired to a specified
target. In this context, tuning means changing
parameter values and applying small code
modifications to cause the simulation to produce
different output. This paper begins with a few
conceptual examples of situations when simulation
coercion would be useful, as well as a few examples of
where simulation coercion has been applied in the past.
Next, we outline our approach to simulation coercion,
which uses a combination of subject matter expert
insight and optimization techniques to drive a
simulation toward a desired goal. Then, we describe
our experiment, in which we coerce a simple two-
dimensional model of a particle's movement to reflect
the movement of a physically simulated three-
dimensional model of a bicyclist. Lastly, we analyze
some of the possible limitations to this approach to
simulation coercion, and we identify areas that we
would like to explore further.

Examples

Almost unavoidably, simulations are written with a set
of implicit assumptions. Consider a simulation of a car
moving down a highway. Ideally, everything about the
simulated environment would be user-controlled, so
that this simulation could be used to represent any
possible driving situation. More realistically,
assumptions would probably be made about the
weather or the road surface based on where the
simulation designers actually expect the simulation to
be used. These assumptions are usually made to
simplify software development or to improve the
simulation's performance. However, when the
simulation developers are unaware of a potential use
scenario (such as a different vehicle or road), the
simulation may need to be modified or coerced to serve
as a valid model.

For another example where simulation coercion could
be necessary, consider a traffic simulation composed of
multiple interacting vehicle simulations. To efficiently
and correctly model flows of traffic that come together
at a highway interchange, groups of cars could be
simulated at multiple levels of resolution. On the
highway, cars could be modeled as groups with a
specified size and average speed. However, when a
group approaches an intersection, the group would be
disaggregated and modeled as individual cars, making
it possible to model significant events such as traffic
accidents between cars from different groups. In this
multi-resolution traffic simulation, the federation
designers may specify that the rate at which groups of
cars reach an intersection should not differ by more
than a specified amount from the rate at which cars
would arrive at the intersection if they were simulated
individually. If the existing model for a group of cars
does not meet this requirement, it must be coerced to
better reflect the behavior produced by simulating the
cars individually.
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Past Work

In the computer graphics community, the problem of
coercing an animated model to imitate the motion of
another character is called motion retargeting. This
problem is analogous to the problem of trying to coerce
a simulation to follow the behavior of a specified
function or another simulation [Reynolds, 2002].
Gleicher showed that motion retargeting problems can
be solved using an optimization technique for graphics
problems called spacetime constraints [Gleicher,
1998]. With spacetime constraints, the animation
designer specifies limitations on the movement of the
animated figure and selects a characteristic of the
movement that should be optimized, such as the
amount of energy used in the movement. Then, at
discrete points along the object's path, this optimization
problem is solved to determine the correct parameters
for the character's motion at that point [Witkin and
Kass, 1988].

Drewry, Reynolds, and Emanuel first applied this
approach to the area of general-purpose simulations by
studying two different models of carbon dioxide
consumption in forests [Drewry et al., 2002]. The two
simulations differed significantly in resolution:
CANOAK models individual leaf layers in the canopy
and uses a time step of one hour, while DOLY uses
time steps of one month and does not model individual
canopy layers separately. With the help of several
subject matter experts, three parameters to DOLY were
selected and allowed to vary within specified ranges.
Then, optimization was used to find values of these
parameters for which DOLY produced monthly carbon
dioxide consumption levels that were very close to the
monthly average values produced by CANOAK. In
this manner, DOLY was coerced to behave in a manner
similar to CANOAK.

The study of simulation coercion can be compared to
Davis and Bigelow's work on motivated metamodels
[Davis and Bigelow, 2003]. Motivated metamodels are
an extension of statistical metamodels, where a low-
resolution model of an existing simulation is created by
using statistical regression to fit a linear or quadratic
model to the input and output data of the original
simulation. Motivated metamodels improve on this by
using subject matter expert insight to determine the
form of the metamodel's equations, taking into account
non-linear interactions of the simulation's parameters.
This combination of insight and numerical techniques
resembles the coercion process that is described in this
paper. However, we are applying this technique to
coerce a simulation, not to create an approximation of
a simulation.

SIMULATION COERCION

This paper describes an experiment in simulation
coercion. As stated above, the objective of simulation
coercion is to tune an existing simulation to perform as
closely as desired to a specified target. Ideally, we
would accomplish this task without rewriting so much
of the original simulation as to be actually writing a
new simulation. Simulation coercion may be necessary
in order to reuse a simulation in a new setting, or it
may be required to bring a low-resolution model into
agreement with a high-resolution model of the same
phenomenon. In either case, the process of simulation
coercion involves two significant participants, namely
the subject matter expert and the simulationist. Figure
1 offers a graphical representation of the simulation
coercion process and the roles played by the subject
matter expert and the simulationist.

The Subject Matter Expert’s Role

The subject matter expert (SME) understands the
fundamental phenomena being modeled and the
simulation's  representation of the phenomena.
However, the SME does not need to be able to
program, nor does the SME need to know or
understand any implementation-specific details of the
simulation.

Given a simulation and a new requirement that the
simulation must be coerced to meet, the SME and the
simulationist observe the differences between the
simulation's results and the desired results. Using his
or her knowledge of the underlying model, the SME
characterizes the differences between the simulation's
current behavior and behavior that would satisfy the
new requirement. Next, the SME selects one or more
parameters to the model that could be allowed to vary
in order to reduce these differences. Often, these
parameters are represented as constants in the program
due to the assumptions of the simulation developers.
Finally, the SME establishes constraints on how widely
these parameters may be varied, depending on the
importance of these parameters to the validity of the
model.

For example, consider coercing a traffic simulation to
model traffic conditions in poor weather as opposed to
the good weather that was assumed in the original
simulation. The average speed of a car under the new
set of weather conditions may not be known, but the
SME can automatically rule out speeds less than zero
and speeds greater than the top speed of the vehicle.
Once those bounds are established, the simulationist
can use optimization to search for the best value for
average vehicle speed under the new conditions.
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Figure 1. The simulation coercion process

The Simulationist’s Role

While the SME is analyzing the gaps between the
simulation output and the desired results, the
simulationist contributes by providing tools and graphs
to help the SME visualize the data. The simulationist
also converts the SME's description of the differences
between the simulation's current behavior and target
behavior into a computable objective function.
Finding an optimal value for the objective function
means minimizing the difference between the
simulation and its desired output.

Once the SME has identified parameters and
constraints, the simulationist modifies the simulation to
allow these parameters to vary and to enforce the
specified constraints. In the vocabulary of
optimization, the parameters are called the decision
variables of this optimization problem. After the
decision variables are selected, the simulationist selects
an optimization technique to explore the possible
values for these variables. Available optimization
techniques include gradient-based search, grid search,
simulated annealing, and genetic algorithms. In spite
of their differences, each of these optimization
techniques all involve the following steps:

1. Select a new set of values for the decision
variables

2. Run the simulation

Collect the simulation’s results

4. Compute the value of the objective function

W

5. Compare this value to previously-computed
values for the objective function, and

6. Return to step 1 and repeat the process. The
termination condition of this loop depends on
the specific optimization algorithm being
used.

After the optimization has completed, the simulationist
presents the optimal parameter values and the
corresponding simulation output to the SME.
Together, they may identify different parameters that
should have been varied or constraints that should be
changed. The simulationist may also decide that
changing the optimization technique or objective
function would yield better results. In either case, the
simulationist repeats the optimization process for the
latest set of parameters and constraints and the latest
choice of objective function and optimization
technique.

DESIGN OF THE EXPERIMENT

For this experiment in simulation coercion, we use a
high-resolution, physically simulated model of a
bicyclist and a low-resolution model of a particle
moving across a flat surface. Using the method
described in Figure 1, we aim to coerce the low-
resolution simulation to follow the same path as the
center of mass of the high-resolution bicyclist, given
the same target path for both simulations to follow.
This objective is reasonable because of the fact that the
simulations already possess semantic similarities: Both
models take a target path as input, and both models



Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2003

Shoulde r=3D

Figure 2. Diagram of the physically simulated bicyclist

represent the movement of an entity that is trying to
follow the path but that must operate within physical
constraints, such as only being able to change heading
by a certain amount in a certain period of time.

The Simulations

The high-resolution simulated bicyclist was published
previously in the graphics literature [Hodgins et al.,
1995]. The bicyclist is modeled as twelve rigid
segments connected by eleven joints, and the bicycle is
modeled as five rigid segments connected by four
joints

[Brogan and Hodgins, 2002]. Figure 2 depicts the
models for the bicycle and the human bicyclist, as well
as indicating the degrees of freedom that are available
in the models. The simulation includes a navigation
controller that specifies torques in each of the
bicyclist's joints in order to make the center of mass of
the bicyclist follow a given path as closely as possible
at a nearly constant speed. The simulation is
sophisticated enough to include leaning into turns,
anticipating curves, and even falling down.

The low-resolution simulation is a simpler version of
the bicyclist simulation, developed by Pascal Vicaire at
the University of Virginia. Since the simulated object
is modeled as a single point moving across a two-
dimensional surface, we refer to it as the ““hockey puck
simulation." Instead of simulating the hockey puck as
a point mass that changes direction when forces are
applied to it, the hockey puck model enforces limits on
how sharply the hockey puck can turn within a given
period of time. The hockey puck travels at a constant
speed, and the hockey puck's navigation controller
changes the hockey puck's heading in response to

upcoming curves in the path. Like the bicyclist, the
hockey puck does not follow a prescribed path exactly,
but veers slightly off the path when it reacts to a curve
too early or does not turn quickly enough.

The Target Paths

For this experiment, two different courses are used for
the simulated bicyclists to follow. The first course is a
90-degree left turn, while the second course is a circuit
involving a 45-degree left turn, a gentle 135-degree
right turn, and then three successive 90-degree right
turns, each sharper than the previous one. These two
different courses are selected to demonstrate the
effectiveness of coercing the simulation for a single
specific task as well as for a sequence that involves
multiple tasks of different types. The two target paths
are shown in Figures 3 and 4.

The Objective Function

Optimization requires an objective function to quantify
what is being minimized. Because the goal of this
experiment is to coerce the hockey puck simulation to
follow the bicyclist simulation as closely as possible,
the objective function needs to capture the difference
between two curves. As a result, the simulationist uses
the root mean squared error as the objective function.
For this experiment, the simulationist defines an
objective function which samples 100 points along the
paths traveled by the bicyclist and the hockey puck and
averages the squared distance between each pair of
points. The square root of this average is an estimate
of the root mean squared error.
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Figure 3. The left-turn target path
Simulation Parameters

The second step of applying optimization to a problem
is to decide which parameters of the simulation will be
used as decision variables. In the case of the hockey
puck simulation and the bicyclist simulation, the SME
selects the following three parameters as being
relevant:

e maximum rotation speed (MRS), a limit on
the number of degrees per second that the
hockey puck is allowed to turn,

e maximum rotational acceleration (MRA), a
limit on the number of degrees per second per
second that the hockey puck is allowed to
change turning speeds, and

e lookahead factor, which specifies the position
on the curve where the hockey puck's
navigation controller begins to change the
direction of the hockey puck in order to
anticipate a turn.

Optimization Technique

The optimization technique used for this experiment is
a modified form of grid search. Stepping through the
range of each of the two parameters by a discrete
interval, the simulationist runs the hockey puck
simulation and computes the objective function relative
to the high-resolution bicyclist. The size of the interval
steps is not constant: The SME hypothesizes that a
lower lookahead value and a lower MRA would drive
the hockey puck to behave more closely to the
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Figure 4. The looping target path

bicyclist. As a result, the discrete steps used are
approximately equal to one percent of the parameter
value at that point. For example, for values of the
MRA between 18 and 180, steps of size 1 are used,
while between 180 and 1,800, steps of size 10 are used.
If the SME were certain that the optimal parameter
values are in the lower ranges, the simulationist could
constrain the search and not try using the higher values
at all. However, the decision to use variable step sizes
allows the simulationist to verify the SME's
assumption that high parameter values are undesirable
while spending most of the computational effort on the
portion of the parameter space where the SME believes
that the optimal result will be found.

Experimental Iteration

A certain amount of iteration is necessary in the
simulation coercion process. By examining the
optimization results, the SME may realize that a
different set of decision variables should have been
used. Alternatively, the simulationist may discover
that the current optimal solution yields a low objective
function value but still does not meet the SME's
subjective criteria for being *'similar to" the bicyclist.
In that case, the simulationist would want to refine the
objective function to better reflect what the SME wants
the simulation to do.

An example of this occurred in our instance of this
experiment. For the first iteration of the experiment,
we selected the MRS and MRA as decision variables.
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MRA Lookahead Root Mean Squared Error
90-degree left turn, default values 100000 deg/sec’ 0.1 248 m
90-degree left turn, optimal values 280 deg/sec’ 0.01 2.24 m
Looping course, default values 100000 deg/sec’ 0.1 353 m
Looping course, optimal values 1580 deg/sec’ 0.008 2.32m

Table 1. Results of simulation coercion applied to hockey puck simulation for two courses
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Figure 5. Results for the left-turn target path

However, we discovered that the limit on rotational
speed had very little effect on the path of the hockey
puck, since the hockey puck's turns were usually
limited by the maximum rotational acceleration. At the
same time, we also observed that the main difference
between the two simulations' paths was that the hockey
puck was reacting to curves too early and turning
inside of the path of the bicyclist. In response to this,
our SME identified the lookahead factor as another
parameter that could be included in the optimization
search. As a result, the MRA and the lookahead factor
were used as the decision variables for the final
iteration of the experiment.

EXPERIMENTAL RESULTS

Using the root mean squared error as the objective
function, grid search as the optimization technique, and
the MRA and lookahead factor as decision variables,
we ran the optimization search and obtained optimal
values for the two selected simulation parameters.
These results are summarized here in Table 1. Figure 5
and Figure 6 contain graphs of the default and optimal
paths for the hockey puck, overlaid with the path of the
high-resolution bicyclist.
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Figure 6. Results for the looping target path

ANALYSIS

This experiment is an example of the process of
simulation coercion. Using the combined approach of
parameter optimization and subject matter expert
insight, we expect to be able to coerce existing
simulations to solve a variety of problems. The
simulation coercion process can extend beyond the
parameter manipulation used in this experiment to
include other semi-automated techniques, such as
modifying loop control structures or adding hooks into
a program to monitor the values of variables at run-
time and constrain them from exceeding specified
values [Waziruddin et al., 2003].

However, the simulation coercion process does have
some remaining challenges. First, optimization itself
has limitations in the quality of results that it can
produce in a limited amount of time. Continuous
parameters have an infinite number of values, and for
complex simulations, a small change in one of the
parameter values may lead to an unpredictable change
in the simulation's behavior. Exploring a large number
of parameters and conducting a more detailed search of
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the parameter space can increase the chances of finding
a better set of parameter values, but they also increase
the amount of computation required to carry out the
search. Numerous techniques exist for performing
numerical optimization [Olafsson and Kim, 2002], but
the simulationist may not be able to determine the best
optimization technique.

More importantly, while the optimization provides
parameter values that are guaranteed to give better
results than the default values, there is no guarantee
that the improved results are good enough for any
specific application. For example, by changing the
hockey puck simulation's parameters, we were able to
reduce the root mean squared error for the looping
course down to 2.32 meters. With a different
optimization technique or a more finely grained search,
better parameter values could probably be found.
However, if we had a requirement to reduce the error
below a given threshold, such as 2.0 meters, there is no
guarantee that any value of the hockey puck
simulation's parameters will reduce the error enough to
meet that requirement.

Lastly, our current approach only optimizes the
performance of the simulation for a specific set of
inputs. In the case of the bicyclist simulation, the input
to the system was the specified course, and the two
different courses yielded different optimal values for
the selected parameters. The performance of the
hockey puck improved with lower lookahead values
and lower limits on its rotational acceleration on both
courses, but there is no way to know if a course exists
for which either a higher lookahead value or a higher
MRA value would have been beneficial. Optimizing
the coerced simulation for a single set of inputs
produces a set of parameter values that may or may not
offer improvement for other sets of inputs.

CONCLUSIONS

Our semi-automated technique for simulation coercion
attempts to force a simulation to produce results that
are closer to a target goal. In the case of the bicyclist
simulation, our hypothesis was demonstrated to be
promising: Using simulation coercion, we discovered
parameter values that drove the low-resolution hockey
puck simulation to more closely follow the path of the
high-resolution bicyclist simulation.

By definition, optimization selects the best known
parameter values for the given objective function. This
means that unless the default values are already
optimal, this coercion technique will yield improved
values for those parameters. Also, this technique is

relatively simple, and nothing about this technique is
based on characteristics that are unique to the bicyclist
simulation. Therefore, optimization-based simulation
coercion has the potential to improve the fit of any
simulation to a specified objective.

Future Work

There are several areas where this work can be
extended. First, it would be beneficial to establish a set
of criteria for identifying the limits of coercion in a
specific simulation. In a sense, any simulation can be
coerced to behave like any other simulation, although it
may be necessary to rewrite the entire simulation to
achieve this. However, we are interested in coercing
simulations with a minimal amount of internal
modification. In addition, we would like to develop
criteria to indicate when a simulation cannot be
coerced enough to meet specific requirements, as well
as providing guidance for how future simulations could
be developed to be more easily coerced when needed.

Second, the simulation coercion process can become
more automated. In this experiment, only the
optimization step was automated, using scripts written
by the simulationist for this particular application.
Additional automated features could include tools for
visualizing the behavior of the coerced simulation,
tools for automatically collecting the simulation's
output, and a package of optimization tools to give the
simulationist a variety of options for how to try to
coerce this simulation. To this end, we are developing
an application called SimEx (SIMulation EXplorer),
which is designed to plug in to given simulations with
relatively few modifications and which offers
visualization, data collection, and optimization
features. However, note that we are still envisioning a
semi-automated process instead of a fully automated
one, because the subject matter expert's assistance is a
necessary part of identifying and constraining the
simulation parameters that must be modified.

Finally, we are considering the problem of finding a
generally applicable set of optimal simulation
parameters for a given simulation. One possible
solution is to generate a wide variety of inputs to the
simulation and to define the new objective function as
the average value of the original objective function for
each set of parameter values over all of the different
input values. Another solution is to find optimal
parameter values for each member of a set of possible
inputs. For the bicyclist example, this would mean
finding the optimal parameters for the hockey puck to
imitate the bicyclist on a straight path, a gentle turn, a
sharper turn, and an even sharper turn. Then, when
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presented with a new input, the simulation could use
different values for the parameters for different phases
of the new input, depending on which of the original
input sets most closely matches the current section of
the new input. Using this technique to simulate a
bicyclist riding along an unfamiliar path, the hockey
puck simulation would use the set of parameters from
the training path that most closely resembled the
upcoming section of the new path.

Given the possibilities for automating and expanding
this process, we believe that simulation coercion is a
powerful technique for solving problems in the areas of
simulation reuse and multi-resolution modeling.
Simulations can be semi-automatically tuned to validly
represent new phenomena, even phenomena that
violate the assumptions of the simulation's original
developers. Meanwhile, low-resolution simulations
can be made to closely conform to their higher-
resolution counterparts. As the idea of simulation
coercion is developed, future simulations can be
designed with coercion in mind, which in turn will
make existing simulation coercion techniques more
effective and easier to apply.
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