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ABSTRACT 
 
If simulations could be coerced -- literally reshaped -- to conform to requirements different from those for which 
they were originally designed, many of the challenges facing the simulation community should become less 
daunting.  Success could foster reuse, enable linkages between multi-resolution models, and increase the chances of 
success for interoperability and composability.  We consider coercing as it applies to multi-resolution modeling.  
Given two simulations of the same phenomenon at different levels of detail, we explore coercing the lower 
resolution simplified simulation to produce results that correspond satisfactorily with the detailed high resolution 
simulation.  The product is a simulation possessing the speed of the low resolution simulation along with the desired 
accuracy of the high resolution simulation. 
  
Coercing involves a subject matter expert and optimization.  The subject matter expert selects simulation parameters 
and establishes constraints within which those parameters are allowed to vary without compromising the validity of 
the simulation.  Then, an optimization technique is employed to search through the possible parameter values and to 
select that set for which the simulation results most closely reflect the ideal; namely, conformance with new 
requirements stemming from the high resolution model. 
 
To explore the concept of coercing simulations, we selected a high resolution three-dimensional bicyclist simulation 
and a simple simulation of a particle moving in two-dimensional space as the low resolution simulation.  For these 
two simulations, we were able to modify, using optimization, the parameters of the low resolution simulation to 
follow a route that more accurately reflected the route traced by the three-dimensional bicyclist on a given course.  
We report on our coercing experience, providing detailed insight into the process we have designed for coercing, 
and we describe results.  Also, we discuss automating additional phases of the coercion process and their integration 
into our evolving coercion tool, SimEx.   
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INTRODUCTION 

 
Computer simulations, like all software, can be reused 
and combined with other simulations in order to 
address newer and larger problems.  An existing 
simulation may be reused with different parameters to 
model a similar phenomenon in a new setting, or a set 
of existing simulations may be joined to form a 
simulation of a more complicated phenomenon.  
Simulation reuse and composability both require a 
certain degree of flexibility.  A simulation may need to 
be adjusted to serve as a valid model of a new scenario 
or to meet the requirements of the other components in 
a federation of simulations.  
 
 
We address a semi-automated approach to coercing 
simulations that supports increased levels of flexibility.  
The primary goal of simulation coercion is to tune an 
existing simulation as closely as desired to a specified 
target.  In this context, tuning means changing 
parameter values and applying small code 
modifications to cause the simulation to produce 
different output.  This paper begins with a few 
conceptual examples of situations when simulation 
coercion would be useful, as well as a few examples of 
where simulation coercion has been applied in the past.  
Next, we outline our approach to simulation coercion, 
which uses a combination of subject matter expert 
insight and optimization techniques to drive a 
simulation toward a desired goal.  Then, we describe 
our experiment, in which we coerce a simple two-
dimensional model of a particle's movement to reflect 
the movement of a physically simulated three-
dimensional model of a bicyclist.  Lastly, we analyze 
some of the possible limitations to this approach to 
simulation coercion, and we identify areas that we 
would like to explore further. 
 
 

 
Examples 
 
Almost unavoidably, simulations are written with a set 
of implicit assumptions.  Consider a simulation of a car 
moving down a highway.  Ideally, everything about the 
simulated environment would be user-controlled, so 
that this simulation could be used to represent any 
possible driving situation.  More realistically, 
assumptions would probably be made about the 
weather or the road surface based on where the 
simulation designers actually expect the simulation to 
be used.  These assumptions are usually made to 
simplify software development or to improve the 
simulation's performance.  However, when the 
simulation developers are unaware of a potential use 
scenario (such as a different vehicle or road), the 
simulation may need to be modified or coerced to serve 
as a valid model.  
 
For another example where simulation coercion could 
be necessary, consider a traffic simulation composed of 
multiple interacting vehicle simulations.  To efficiently 
and correctly model flows of traffic that come together 
at a highway interchange, groups of cars could be 
simulated at multiple levels of resolution.  On the 
highway, cars could be modeled as groups with a 
specified size and average speed.  However, when a 
group approaches an intersection, the group would be 
disaggregated and modeled as individual cars, making 
it possible to model significant events such as traffic 
accidents between cars from different groups.  In this 
multi-resolution traffic simulation, the federation 
designers may specify that the rate at which groups of 
cars reach an intersection should not differ by more 
than a specified amount from the rate at which cars 
would arrive at the intersection if they were simulated 
individually.  If the existing model for a group of cars 
does not meet this requirement, it must be coerced to 
better reflect the behavior produced by simulating the 
cars individually. 
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Past Work 
 
In the computer graphics community, the problem of 
coercing an animated model to imitate the motion of 
another character is called motion retargeting.  This 
problem is analogous to the problem of trying to coerce 
a simulation to follow the behavior of a specified 
function or another simulation [Reynolds, 2002].  
Gleicher showed that motion retargeting problems can 
be solved using an optimization technique for graphics 
problems called spacetime constraints [Gleicher, 
1998].  With spacetime constraints, the animation 
designer specifies limitations on the movement of the 
animated figure and selects a characteristic of the 
movement that should be optimized, such as the 
amount of energy used in the movement.  Then, at 
discrete points along the object's path, this optimization 
problem is solved to determine the correct parameters 
for the character's motion at that point [Witkin and 
Kass, 1988]. 
 
Drewry, Reynolds, and Emanuel first applied this 
approach to the area of general-purpose simulations by 
studying two different models of carbon dioxide 
consumption in forests [Drewry et al., 2002].  The two 
simulations differed significantly in resolution: 
CANOAK models individual leaf layers in the canopy 
and uses a time step of one hour, while DOLY uses 
time steps of one month and does not model individual 
canopy layers separately.  With the help of several 
subject matter experts, three parameters to DOLY were 
selected and allowed to vary within specified ranges.  
Then, optimization was used to find values of these 
parameters for which DOLY produced monthly carbon 
dioxide consumption levels that were very close to the 
monthly average values produced by CANOAK.  In 
this manner, DOLY was coerced to behave in a manner 
similar to CANOAK. 
 
The study of simulation coercion can be compared to 
Davis and Bigelow's work on motivated metamodels 
[Davis and Bigelow, 2003].  Motivated metamodels are 
an extension of statistical metamodels, where a low-
resolution model of an existing simulation is created by 
using statistical regression to fit a linear or quadratic 
model to the input and output data of the original 
simulation.  Motivated metamodels improve on this by 
using subject matter expert insight to determine the 
form of the metamodel's equations, taking into account 
non-linear interactions of the simulation's parameters.  
This combination of insight and numerical techniques 
resembles the coercion process that is described in this 
paper. However, we are applying this technique to 
coerce a simulation, not to create an approximation of 
a simulation. 
 

SIMULATION COERCION 
 
This paper describes an experiment in simulation 
coercion.  As stated above, the objective of simulation 
coercion is to tune an existing simulation to perform as 
closely as desired to a specified target.  Ideally, we 
would accomplish this task without rewriting so much 
of the original simulation as to be actually writing a 
new simulation.  Simulation coercion may be necessary 
in order to reuse a simulation in a new setting, or it 
may be required to bring a low-resolution model into 
agreement with a high-resolution model of the same 
phenomenon.  In either case, the process of simulation 
coercion involves two significant participants, namely 
the subject matter expert and the simulationist.  Figure 
1 offers a graphical representation of the simulation 
coercion process and the roles played by the subject 
matter expert and the simulationist. 
 
The Subject Matter Expert’s Role 
 
The subject matter expert (SME) understands the 
fundamental phenomena being modeled and the 
simulation's representation of the phenomena. 
However, the SME does not need to be able to 
program, nor does the SME need to know or 
understand any implementation-specific details of the 
simulation. 
 
Given a simulation and a new requirement that the 
simulation must be coerced to meet, the SME and the 
simulationist observe the differences between the 
simulation's results and the desired results.  Using his 
or her knowledge of the underlying model, the SME 
characterizes the differences between the simulation's 
current behavior and behavior that would satisfy the 
new requirement.  Next, the SME selects one or more 
parameters to the model that could be allowed to vary 
in order to reduce these differences.  Often, these 
parameters are represented as constants in the program 
due to the assumptions of the simulation developers.  
Finally, the SME establishes constraints on how widely 
these parameters may be varied, depending on the 
importance of these parameters to the validity of the 
model. 
 
For example, consider coercing a traffic simulation to 
model traffic conditions in poor weather as opposed to 
the good weather that was assumed in the original 
simulation.  The average speed of a car under the new 
set of weather conditions may not be known, but the 
SME can automatically rule out speeds less than zero 
and speeds greater than the top speed of the vehicle.  
Once those bounds are established, the simulationist 
can use optimization to search for the best value for 
average vehicle speed under the new conditions.   
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 Analysis Phase Decision Phase Optimization Phase Evaluation Phase 
SME Activities Analyze differences 

between current 
simulation and 
desired results 

Select parameters to 
be decision variables 

(no activities) Analyze differences 
between optimal 
simulation and 
desired results 

Simulationist 
Activities 

Provide visualization 
tools (if necessary) 

Specify objective 
function 
 
Select optimization 
technique 

Run the optimization Analyze effectiveness 
of the optimization 
technique 

Objects Used Original simulation 
 
Desired results 

SME’s subjective 
description of 
differences 

Decision variables 
 
Objective function 
 
Optimization 
technique 

Candidate optimal 
simulation 
 
Desired results 

 
Figure 1.  The simulation coercion process 

 
 
 
The Simulationist’s Role 
 
While the SME is analyzing the gaps between the 
simulation output and the desired results, the 
simulationist contributes by providing tools and graphs 
to help the SME visualize the data.  The simulationist 
also converts the SME's description of the differences 
between the simulation's current behavior and target 
behavior into a computable objective function.  
Finding an optimal value for the objective function 
means minimizing the difference between the 
simulation and its desired output. 
 
Once the SME has identified parameters and 
constraints, the simulationist modifies the simulation to 
allow these parameters to vary and to enforce the 
specified constraints.  In the vocabulary of 
optimization, the parameters are called the decision 
variables of this optimization problem.  After the 
decision variables are selected, the simulationist selects 
an optimization technique to explore the possible 
values for these variables.  Available optimization 
techniques include gradient-based search, grid search, 
simulated annealing, and genetic algorithms.  In spite 
of their differences, each of these optimization 
techniques all involve the following steps: 
 

1. Select a new set of values for the decision 
variables 

2. Run the simulation 
3. Collect the simulation’s results 
4. Compute the value of the objective function 

5. Compare this value to previously-computed 
values for the objective function, and 

6. Return to step 1 and repeat the process.  The 
termination condition of this loop depends on 
the specific optimization algorithm being 
used. 

 
After the optimization has completed, the simulationist 
presents the optimal parameter values and the 
corresponding simulation output to the SME.  
Together, they may identify different parameters that 
should have been varied or constraints that should be 
changed.  The simulationist may also decide that 
changing the optimization technique or objective 
function would yield better results.  In either case, the 
simulationist repeats the optimization process for the 
latest set of parameters and constraints and the latest 
choice of objective function and optimization 
technique. 
 

DESIGN OF THE EXPERIMENT 
 
For this experiment in simulation coercion, we use a 
high-resolution, physically simulated model of a 
bicyclist and a low-resolution model of a particle 
moving across a flat surface.  Using the method 
described in Figure 1, we aim to coerce the low-
resolution simulation to follow the same path as the 
center of mass of the high-resolution bicyclist, given 
the same target path for both simulations to follow.  
This objective is reasonable because of the fact that the 
simulations already possess semantic similarities:  Both 
models take a target path as input, and both models
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Figure 2.  Diagram of the physically simulated bicyclist 

 
represent the movement of an entity that is trying to 
follow the path but that must operate within physical 
constraints, such as only being able to change heading 
by a certain amount in a certain period of time. 
 
The Simulations 
 
The high-resolution simulated bicyclist was published 
previously in the graphics literature [Hodgins et al., 
1995].  The bicyclist is modeled as twelve rigid 
segments connected by eleven joints, and the bicycle is 
modeled as five rigid segments connected by four 
joints 
[Brogan and Hodgins, 2002].  Figure 2 depicts the 
models for the bicycle and the human bicyclist, as well 
as indicating the degrees of freedom that are available 
in the models.  The simulation includes a navigation 
controller that specifies torques in each of the 
bicyclist's joints in order to make the center of mass of 
the bicyclist follow a given path as closely as possible 
at a nearly constant speed.  The simulation is 
sophisticated enough to include leaning into turns, 
anticipating curves, and even falling down. 
 
The low-resolution simulation is a simpler version of 
the bicyclist simulation, developed by Pascal Vicaire at 
the University of Virginia.  Since the simulated object 
is modeled as a single point moving across a two-
dimensional surface, we refer to it as the ``hockey puck 
simulation.''  Instead of simulating the hockey puck as 
a point mass that changes direction when forces are 
applied to it, the hockey puck model enforces limits on 
how sharply the hockey puck can turn within a given 
period of time.  The hockey puck travels at a constant 
speed, and the hockey puck's navigation controller 
changes the hockey puck's heading in response to 

upcoming curves in the path.  Like the bicyclist, the 
hockey puck does not follow a prescribed path exactly, 
but veers slightly off the path when it reacts to a curve 
too early or does not turn quickly enough. 
 
The Target Paths 
 
For this experiment, two different courses are used for 
the simulated bicyclists to follow.  The first course is a 
90-degree left turn, while the second course is a circuit 
involving a 45-degree left turn, a gentle 135-degree 
right turn, and then three successive 90-degree right 
turns, each sharper than the previous one.  These two 
different courses are selected to demonstrate the 
effectiveness of coercing the simulation for a single 
specific task as well as for a sequence that involves 
multiple tasks of different types.  The two target paths 
are shown in Figures 3 and 4. 
 
The Objective Function 
 
Optimization requires an objective function to quantify 
what is being minimized.  Because the goal of this 
experiment is to coerce the hockey puck simulation to 
follow the bicyclist simulation as closely as possible, 
the objective function needs to capture the difference 
between two curves.  As a result, the simulationist uses 
the root mean squared error as the objective function.  
For this experiment, the simulationist defines an 
objective function which samples 100 points along the 
paths traveled by the bicyclist and the hockey puck and 
averages the squared distance between each pair of 
points.  The square root of this average is an estimate 
of the root mean squared error. 
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Figure 3. The left-turn target path 

 
Simulation Parameters 
 
The second step of applying optimization to a problem 
is to decide which parameters of the simulation will be 
used as decision variables.  In the case of the hockey 
puck simulation and the bicyclist simulation, the SME 
selects the following three parameters as being 
relevant:  

• maximum rotation speed (MRS), a limit on 
the number of degrees per second that the 
hockey puck is allowed to turn, 

• maximum rotational acceleration (MRA), a 
limit on the number of degrees per second per 
second that the hockey puck is allowed to 
change turning speeds, and 

• lookahead factor, which specifies the position 
on the curve where the hockey puck's 
navigation controller begins to change the 
direction of the hockey puck in order to 
anticipate a turn. 

 
Optimization Technique 
 
The optimization technique used for this experiment is 
a modified form of grid search.  Stepping through the 
range of each of the two parameters by a discrete 
interval, the simulationist runs the hockey puck 
simulation and computes the objective function relative 
to the high-resolution bicyclist.  The size of the interval 
steps is not constant:  The SME hypothesizes that a 
lower lookahead value and a lower MRA would drive 
the hockey puck to behave more closely to the  

 

Figure 4. The looping target path 
 
icyclist. As a result, the discrete steps used are 

xperimental Iteration 

 certain amount of iteration is necessary in the 

n example of this occurred in our instance of this 

b
approximately equal to one percent of the parameter 
value at that point.  For example, for values of the 
MRA between 18 and 180, steps of size 1 are used, 
while between 180 and 1,800, steps of size 10 are used.  
If the SME were certain that the optimal parameter 
values are in the lower ranges, the simulationist could 
constrain the search and not try using the higher values 
at all.  However, the decision to use variable step sizes 
allows the simulationist to verify the SME's 
assumption that high parameter values are undesirable 
while spending most of the computational effort on the 
portion of the parameter space where the SME believes 
that the optimal result will be found. 
 
E
 
A
simulation coercion process.  By examining the 
optimization results, the SME may realize that a 
different set of decision variables should have been 
used.  Alternatively, the simulationist may discover 
that the current optimal solution yields a low objective 
function value but still does not meet the SME's 
subjective criteria for being ``similar to'' the bicyclist.  
In that case, the simulationist would want to refine the 
objective function to better reflect what the SME wants 
the simulation to do. 
 
A
experiment.  For the first iteration of the experiment, 
we selected the MRS and MRA as decision variables.  
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 MRA Lookahead Root Mean Squared Error 
90-degree left turn, default values 100000 deg/sec2 0.1 2.48 m 
90-degree left turn, optimal values 280 deg/sec2 0.01 2.24 m 
Looping course, default values 100000 deg/sec2 0.1 3.53 m 
Looping course, optimal values 1580 deg/sec2 0.008 2.32 m 

 
Table 1.  Results of simulation coercion applied to hockey puck simulation for two courses 

 

 
Figure 5.  Results for the left-turn target path 

 
However, we discovered that the limit on rotational 
speed had very little effect on the path of the hockey 
puck, since the hockey puck's turns were usually 
limited by the maximum rotational acceleration.  At the 
same time, we also observed that the main difference 
between the two simulations' paths was that the hockey 
puck was reacting to curves too early and turning 
inside of the path of the bicyclist.  In response to this, 
our SME identified the lookahead factor as another 
parameter that could be included in the optimization 
search.  As a result, the MRA and the lookahead factor  
were used as the decision variables for the final 
iteration of the experiment. 
 

EXPERIMENTAL RESULTS 
 

Using the root mean squared error as the objective 
function, grid search as the optimization technique, and 
the MRA and lookahead factor as decision variables, 
we ran the optimization search and obtained optimal 
values for the two selected simulation parameters.  
These results are summarized here in Table 1.  Figure 5 
and Figure 6 contain graphs of the default and optimal 
paths for the hockey puck, overlaid with the path of the 
high-resolution bicyclist. 

Figure 6.  Results for the looping target path 
 

 
ANALYSIS 

 
This experiment is an example of the process of 
simulation coercion.  Using the combined approach of 
parameter optimization and subject matter expert 
insight, we expect to be able to coerce existing 
simulations to solve a variety of problems.  The 
simulation coercion process can extend beyond the 
parameter manipulation used in this experiment to 
include other semi-automated techniques, such as 
modifying loop control structures or adding hooks into 
a program to monitor the values of variables at run-
time and constrain them from exceeding specified 
values [Waziruddin et al., 2003]. 
 
However, the simulation coercion process does have 
some remaining challenges.  First, optimization itself 
has limitations in the quality of results that it can 
produce in a limited amount of time.  Continuous 
parameters have an infinite number of values, and for 
complex simulations, a small change in one of the 
parameter values may lead to an unpredictable change 
in the simulation's behavior.  Exploring a large number 
of parameters and conducting a more detailed search of 
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the parameter space can increase the chances of finding 
a better set of parameter values, but they also increase 
the amount of computation required to carry out the 
search.  Numerous techniques exist for performing 
numerical optimization [Ólafsson and Kim, 2002], but 
the simulationist may not be able to determine the best 
optimization technique. 
 
More importantly, while the optimization provides 
parameter values that are guaranteed to give better 
results than the default values, there is no guarantee 
that the improved results are good enough for any 
specific application.  For example, by changing the 
hockey puck simulation's parameters, we were able to 
reduce the root mean squared error for the looping 
course down to 2.32 meters.  With a different 
optimization technique or a more finely grained search, 
better parameter values could probably be found.  
However, if we had a requirement to reduce the error 
below a given threshold, such as 2.0 meters, there is no 
guarantee that any value of the hockey puck 
simulation's parameters will reduce the error enough to 
meet that requirement. 
 
Lastly, our current approach only optimizes the 
performance of the simulation for a specific set of 
inputs.  In the case of the bicyclist simulation, the input 
to the system was the specified course, and the two 
different courses yielded different optimal values for 
the selected parameters.  The performance of the 
hockey puck improved with lower lookahead values 
and lower limits on its rotational acceleration on both 
courses, but there is no way to know if a course exists 
for which either a higher lookahead value or a higher 
MRA value would have been beneficial.  Optimizing 
the coerced simulation for a single set of inputs 
produces a set of parameter values that may or may not 
offer improvement for other sets of inputs. 
 

CONCLUSIONS 
 

Our semi-automated technique for simulation coercion 
attempts to force a simulation to produce results that 
are closer to a target goal.  In the case of the bicyclist 
simulation, our hypothesis was demonstrated to be 
promising:  Using simulation coercion, we discovered 
parameter values that drove the low-resolution hockey 
puck simulation to more closely follow the path of the 
high-resolution bicyclist simulation. 
 
By definition, optimization selects the best known 
parameter values for the given objective function.  This 
means that unless the default values are already 
optimal, this coercion technique will yield improved 
values for those parameters.  Also, this technique is 

relatively simple, and nothing about this technique is 
based on characteristics that are unique to the bicyclist 
simulation.  Therefore, optimization-based simulation 
coercion has the potential to improve the fit of any 
simulation to a specified objective. 
 
Future Work 
 
There are several areas where this work can be 
extended.  First, it would be beneficial to establish a set 
of criteria for identifying the limits of coercion in a 
specific simulation.  In a sense, any simulation can be 
coerced to behave like any other simulation, although it 
may be necessary to rewrite the entire simulation to 
achieve this.  However, we are interested in coercing 
simulations with a minimal amount of internal 
modification.  In addition, we would like to develop 
criteria to indicate when a simulation cannot be 
coerced enough to meet specific requirements, as well 
as providing guidance for how future simulations could 
be developed to be more easily coerced when needed. 
 
Second, the simulation coercion process can become 
more automated.  In this experiment, only the 
optimization step was automated, using scripts written 
by the simulationist for this particular application. 
Additional automated features could include tools for 
visualizing the behavior of the coerced simulation, 
tools for automatically collecting the simulation's 
output, and a package of optimization tools to give the 
simulationist a variety of options for how to try to 
coerce this simulation.  To this end, we are developing 
an application called SimEx (SIMulation EXplorer), 
which is designed to plug in to given simulations with 
relatively few modifications and which offers 
visualization, data collection, and optimization 
features.  However, note that we are still envisioning a 
semi-automated process instead of a fully automated 
one, because the subject matter expert's assistance is a 
necessary part of identifying and constraining the 
simulation parameters that must be modified. 
 
Finally, we are considering the problem of finding a 
generally applicable set of optimal simulation 
parameters for a given simulation.  One possible 
solution is to generate a wide variety of inputs to the 
simulation and to define the new objective function as 
the average value of the original objective function for 
each set of parameter values over all of the different 
input values.  Another solution is to find optimal 
parameter values for each member of a set of possible 
inputs.  For the bicyclist example, this would mean 
finding the optimal parameters for the hockey puck to 
imitate the bicyclist on a straight path, a gentle turn, a 
sharper turn, and an even sharper turn.  Then, when 
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presented with a new input, the simulation could use 
different values for the parameters for different phases 
of the new input, depending on which of the original 
input sets most closely matches the current section of 
the new input.  Using this technique to simulate a 
bicyclist riding along an unfamiliar path, the hockey 
puck simulation would use the set of parameters from 
the training path that most closely resembled the 
upcoming section of the new path. 
 
Given the possibilities for automating and expanding 
this process, we believe that simulation coercion is a 
powerful technique for solving problems in the areas of 
simulation reuse and multi-resolution modeling.  
Simulations can be semi-automatically tuned to validly 
represent new phenomena, even phenomena that 
violate the assumptions of the simulation's original 
developers.  Meanwhile, low-resolution simulations 
can be made to closely conform to their higher-
resolution counterparts. As the idea of simulation 
coercion is developed, future simulations can be 
designed with coercion in mind, which in turn will 
make existing simulation coercion techniques more 
effective and easier to apply.  
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