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ABSTRACT

In recent years, government agencies have displayed a growing interest in the prospect of detecting the activity of
clandestine organizations. The clandestine organization and the government agencies who oppose them are an
example of asymmetric warfare, which comesin contrast to traditional notions of armed conflict involving force-on-
force scenarios where opposing sides can be measured according to force size, weapon assets, etc. We present an
approach to the problem of detecting the execution of mission plans by the unconventional side in asymmetric
warfare. The problem is to find threatening patterns of action in a data collection characterized as massive,
relational, incomplete, noisy, and corrupt. In this paper we describe Sibyl: a system embodying a case-based
reasoning (CBR) approach to automated plan detection. Sibyl features a“ spanning case base” that covers the space
of theoretical scenarios. Each case is used in a state-space search algorithm to adapt case elements to the data. Sibyl
also features a graphical programming language that allows analysts to draw patterns to be found in an evidence
database. We describe experimental results obtained for the Russian mafia domain used by DARPA’s Evidence
Extraction and Link Discovery (EELD) program.
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INTRODUCTION

In recent years, law enforcement and government
agencies have displayed a growing interest in the
prospect of detecting the activity of clandestine
organizations. Terrorist organizations and organized
crime are two such examples where members evade
detection wherever possible so as to avoid mitigation
of their efforts. Other than overtly illegal acts, most
actions taken by members on behalf of the organization
appear harmless. Actions such as phone calls, bank
transactions, and fertilizer purchases are in and of
themselves innocuous, yet when linked together the
activities could constitute a threat. If law enforcement
or government agencies are empowered with tools that
recoghize potential threats such as the construction of a
bomb, they could potentialy preempt a harmful plan
before it comes to fruition.

The clandestine organization and the government
agencies who oppose them are an example of
asymmetric forces. Asymmetric warfare has seen
increased attention in recent years, and comes in
contrast to traditional notions of armed conflict
involving force-on-force scenarios where each
opposing side can be characterized according to
doctrine, command and control structure, force size,
weapon assets, etc. Opposing asymmetric forces have
differing organization, ideology, support, and goals.

The government agencies that oppose clandestine
organizations typically have three operationa
components: (1) recognition and collection of data, (2)
data analysis and hypothesis formation, and (3)
operational planning and execution. Data analysis and
hypothesis formation is our focus here, particularly the
discovery of a clandestine organization’s plans. In this
case, we worked in the domain of Russian organized
crime. As part of the DARPA Evidence Extraction and
Link Discovery (EELD) program, we used a simulator
that takes as input a domain theory of how Russian
mafias operate and proceeds to generate test data
Hierarchical task networks were used in part to
describe the domain theory. Severa simulation
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parameters are available to adjust quantity of data,
noise, observability, corruption, and compl exity.

PROBLEM DESCRIPTION

Other than the fact that clandestine organizations try to
evade detection, there exist three significant obstacles
any approach to detection will confront:

1. Massive data: The size of data is substantial. It
breaks down into primary and secondary pieces of
evidence. Primary evidence comes from news
sources or intelligence agencies as relevant
infformation. The size of primary evidence is
eclipsed by secondary evidence, which is latent
data such as phone numbers, street addresses,
phone calls, and bank transactions.

2. Noise: Almost all secondary data is irrelevant, yet
the parts that are relevant are absolutely necessary
to recognize an asymmetric plan.

3. Incomplete information: Much of what we would
consider to be relevant data is missing. As it is,

successful mitigation of clandestine activity
requires plan recognition before complete
realization.

Despite these obstacles, one important regularity we
identify is that the organization’s behavior is ultimately
goal-driven. The behavior is structured, occurs over a
long duration (months to years), and involves several
people. Thus, the behavior isthelogical execution of a
plan which motivates our approach.

SCOPE & SIBYL

The CBR system we developed, called Sibyl, was
tested in the context of a bigger system called SCOPE,
which stands for Socio-Culturally Oriented Planning
Environment (Eilbert et a., 2002). SCOPE seeks to
improve upon the human anaysis process by
automatically linking evidence from a number of
sources into graphs, and formulating hypotheses
correlating these graphs to underlying plans. Sibyl was
used as a CBR technique to generate these hypotheses.
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Figure 1. SCOPE - Sibyl architecture.

Figure 1 shows the architecture used in SCOPE which
is a synthesis of cognitive modeling and CBR
technology. @ The relevant knowledge/data bases
(shown in circles) available to a SCOPE model (or an
analyst) include:

e A set of known facts about the current activity,
mainly about breaks in the terrorist organization’s
secrecy, and the relations among those facts
(situation information);

e A catalog of organizations and general information
about each of them such as historica and
theoretical knowledge about how organizations
train, acquire financing, communicate, plan, and
operate, as well as information concerning
religious, ethnic, and cultural factors that may
impact their operations. (organization
information);

e A set of misson plan templates (MPTs) that
capture the invariance in the planning process
associated with a particular domain;

e A casebase; and

e Intermediate hypotheses that SCOPE builds and
maintains until queried by an analyst.

Input to the SCOPE system comes as report data from
some type of evidence extraction mechanism which
organizes data into a representation understood by
SCOPE. From there, the evidence is channeled into a
current body of evidence, situation information, and
organization information. Mission plan templates
(MPTs), authored by the analyst, are used to represent
the anayst's knowledge of how clandestine
organizations operate. Along with the case base and
body of available evidence, Sibyl’s Case Adapter maps
a new case or MPT to the evidence thereby forming a
new hypothesis. It is then evaluated and forwarded to
the Hypothesis Manager, which manages al active
hypotheses.  The Sibyl module matches current
evidence to plans in its case base as well as already-
existing hypotheses, generating plausible hypotheses
about possible current organization plans.

SCOPE provides mechanisms for reasoning about and
combining these different sources of information. The



Interservice/lndustry Training, Smulation, and Education Conference (I/ITSEC) 2003

architecture used in SCOPE is a synthesis of cognitive
modeling and CBR technologies. The fundamental
data passed between the SCOPE modules are
hypotheses about the organization’s plan. One SCOPE
module, the Relative Probability Assigner & Tracker,
is based on a cognitive model of an intelligence analyst
conducting situational logic (Heuer, 1999), which is
built using the iIGEN toolset (Le Mentec et al., 1999).
This module acts as SCOPE's primary controller. It
also encodes the information in MPTs within a set of
cognitive tasks, and has the meta-cognitive ability to
spawn and track “what if” hypotheses about plausible
mission plans. The cognitive model module reasons
about how plausible hypotheses about plan
components fit together, given the organizational and
cultural congtraints. It will also manage the active
hypotheses related to MPTs taking into account the
uncertainty in the evidence and sensitivity of the
hypotheses.

By combining and exchanging of hypotheses between
the iGEN and Sibyl modules, the SCOPE system takes
advantage of their complementary strengths and
weaknesses while generating hypotheses on mission
plan execution. Sibyl needs a bigger portion of the
complete evidence graph, but is not sensitive to
misconceptions an analyst may have as embodied in an
MPT. iGEN can function with an evidence graph that
instantiates a much smaller portion of a mission plan
than Sibyl; however it is quite sensitive to pattern
description errors that may get into an MPT.

APPLICATION DESCRIPTION

Because the traditional CBR approach of computing a
feature vector from the input data does not suggest an
obvious representation for our problem, our strategy
was to form a spanning case base covering the full
range of possible plans. Using a domain theory and
simulator, we generate nearly all of the mission plans
for activity possible in the domain. Detecting plansin
the evidence data amounts to a search through the case
memory for the case that is consistent with a subset of
data. We match the entire case base against evidence.
Hence, the CBR phase of adaptation is paramount
while retrieval is secondary; in fact, there is no
indexing. This approach is the core technology basis
for Sibyl.

The immediate consequence of employing a spanning
case base is a massive case base. To make our
approach practical, we used the Cyc ontology to reduce
the case size by abstracting event types. For example,
sending an email could be equivalent to a phone

conversation. By abstracting case elements, it was
possible to condense millions of cases into hundreds.

Having reduced the case base size, we focused on the
creation of fast mapping techniques. We match a
stored case against the evidence taking into account
that (i) actors in the case are not the same as in the
evidence (e.g., people in the case are different from
people in the evidence), (ii) events in a case can be
fulfilled by different events in the evidence (e.g., a
meeting and a phone call can have the same purpose),
and (iii) not all the relationships in the case have to be
known in the evidence (i.e., evidence is incomplete).

Case and Evidence Representation

A case describes how a particular event (e.g., contract-
kill, phone call, wire transfer) took place. Events are
described in terms of subevents and properties
associated with the event. Every object in the
representation (e.g., events, event property values) has
a type, and types are organized by the Cyc ontology.
Events are linked by subevent relationships and by
common actors (e.g., the same person making a bank
deposit and a phone call). Events have associated
spatio-temporal  properties: where and when they
occurred. The value of these properties admits various
degrees of uncertainty (e.g., @ murder event happened
somewhere in Europe on May 2000). We can think of
a case as a directed graph where nodes represent
objects in the case (e.g., events, people, telephone
numbers, bank accounts) and edges represent
relationships between objects.

Figure 2 shows a partial example of a case involving a
murderForHire case (UID6166). A hit contractor
(UID5312) made a phone cal (UID6136) to a
middleman (UID5317) to arrange a murder. Then the
contractor paid (UID6141) by doing a wire transfer
(UID6139) from his account (UID5306) to the
middleman’s bank account (UID5294). The
middleman eventually hires the perpetrator (UID5321),
who observed (UID6151) the victim (UID5160) before
performing the murder (UID6153).

The evidence is a database of reported events. In
general this database is incomplete. For example, a
murder event can be reported where the killer is not
known. A PlanningToDo-Something event can be
reported without reporting its subevents. whether the
persons planning to do something met or talked on the
phone.
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Figure 2: An example case.

Search Algorithm

We use a best-first search algorithm to match cases
against the evidence. A search stateisatuple <c,r,m>
where cisacase, r isalist of edgesin c that need to be
considered for a match, and mis a set of pairs, each
pair consisting of a graph node in ¢ and a node in the
evidence. Let f, be a one-to-one function for node
pairsin msuch that f.,(@)=a’ whereaisanodein c and
a' is a node in evidence. The set of pairs has an
associated weight indicating node similarities. A
heuristic evaluation function F assesses the quality of
the mapping m by assigning m a real number, where
higher values of m are better.

The initial states of the search have the form <c,e.,@>
where e is a list of all the edges appearing in case c.
The initial order in e; is important for the performance
of the algorithm as Sibyl processes edges sequentialy
(we later present our heuristic to order €.). The basic
best-first search algorithm we useis asfollows:

1. Letinitial states H = {<cy,€.0,9>, <C1,6.1,9>,
<C,,€¢0,>, ..., <Cp,€cn,d>} Where n is the
number of cases in the case base.
Identify best hypothesis h = <c,r,m> from H.
If ris empty, h is the best hypothesis. Stop.
Generate successors S from h.
LetH=H-{h}YSs.
Go to 2.

oghwn

We derive the successors of a state <c,r,m> by
considering the first edge einr. Either m aready pairs
the two nodes in g, or pairings for those nodes need to
be generated and added to m. Each directed edge is a
tuple <s,d,|> where sis the source, d is the destination,
and | isthe label. Next is the procedure for generating
SUCCESSOrS:

Procedure GENERATE-SUCCESSORS (state <c,r,m>)
Let the first of r be edge <a,b,I>
if (a and b are in the domain of f;;))

if edge <f,(a),fm(b),I> is inconsistent with evidence

return @
else
return { <c, r — {<a,b,I>}, m>}
}
else
{

Letr=r—{<ab,>}

Lets ={<c,r,m>}

For each edge <a',b’,I> in evidence matching
<a,b,I>

{
Let m’ be a new copy of m with
fw(@) =a and f(b) = b’
s=s U {<c,rm>}
}
return s

}
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Since the evidence is generally incomplete (e.g.,
usualy the perpetrator in a murder is not known), not
all the edges in a case require a counterpart in the
evidence. The state <c,r’,m> is a possible successor
for <c,r,m>. In this case, the edge <ab,|> is not
required to hold in the evidence. The heuristic
evaluation function will penalize this state but the state
will remain in the search queue.

Next we describe the main aspects of the above
algorithm: detecting inconsistent mappings, evaluating
the goodness of a state, generating match candidates,
and pruning the search space.

Inconsistent Mappings

Since the evidence is incomplete, we cannot generaly
check whether an arbitrary relationship is fase (i.e, it
does not hold in the evidence) or is missing from the
evidence. There are, however, instances where an edge
<f.(a),fn(b),]> could not exist in the evidence,
allowing mapping m to be deemed inconsistent. For
example, the victim of a murder is always unique and
usualy identified, and so it is possible to consider a
mapping inconsistent if it posits a second victim for the
same murder. In contrast, the attendees of a meeting
are not unique and usually unidentified (i.e., a report
can indicate that a meeting took place but the report
may not indicate al the participants). In these
instances, it is not possible to decide whether a
mapping is inconsistent.

State Evaluation Function

Our state value heurigtic is a function of the number
and similarity of matches. The function is made up of
the following parameters associated with a state
<c,r,m>:

e nisthe number of edgesin case graph c

u is the number of case edges unmatched

v isthe number of case edges matched to evidence
w isthe average pair similarity in m

o and B respectively weigh how much importance
is given to the quality of the matches associated
with the evidence explored so far and how much
importance is given to the search progress so far.

The form of the state evaluation function is:
u+v

F(<C,r,m>)=a(V—U)+ﬁ\NT (1)

Generating Match Candidates

Generating match candidates always occurs in the
context of explaining the case edge associated with a
state <c,r,m>. The candidates for a case node are

evidence nodes of the same exact type that preserve a
given set of labelsto m. A match m preserves a case
edge <ab,|> if an edge <f.(a),fn(b),I> holds in the
evidence. Nodes in a pairwise mapping must be of the
same type, thus there will also exist edges <a,t;,isa>,
<fn(a),ty,isa>, <btyisa>, and <fy(b),txisa> where t;
and t, are types such as Person or EmailSending, and
the isa label denotes the type relationship. The set of
labels that must be preserved include subEvent,
accountHolder, agentPhoneNumber, and to-generic.
Not all the edges in a case must be preserved, since
evidenceisin general incomplete.

Consider the problem of matching case node UID;
representing an email sending event as edge <UIDy,
EmailSending, isa>. Suppose in addition that it is
known that UID; is a subevent of a
planningToDoSomething event UID, (edges <UIDy,
UID,, subEvent> and <UID,,
planningToDoSomething, isa>). Moreover, it is the
case that UID, has already been mapped: f(UID,)
exists. Since we want to preserve the subEvent
relationship, the match candidates for UID; will be all
evidence nodes x such that edges <x, f(UID,),
subEvent> and <x, EmailSending, isa> exist in the
evidence.

Pruning Heuristics

The size of the match candidate set determines the
branching factor of the search. The smaller the set the
better. As early as possible, it is important to prune
search paths leading to inconsistent hypotheses. In
addition to preserving a certain link, other pruning
heuristicsinclude:

e Mappings are one-to-one relationships. remove
from candidates those evidence nodes already in
the range of f.

e Matching should preserve temporal constraints: if
event #1 occurs before event #2 in the case, then
fn(event #1) should occur before f(event #2) in
the evidence.

Temporal Reasoning

Each event e has an interval [Ib(e), ub(e)] where Ib is
lower bound, ub is upper bound, delimiting when the
event must have occurred. A subevent of e occurs in
the time window of his parent: if e, is subevent of e,
then [Ib(ey), ub(e))] < [Ib(e,), ub(ez)]. A mapping mis
consistent if it preserves al temporal relationships
between events known in a case. If case events e; and
& have arelationship R where [Ib(e;), ub(e))] R [Ib(ey),
ub(e)], and f(e)) and f.(e) are defined, then the
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evidence must have the same relationship [Ib(fn(ey)),
ub(fm(€r))] R[1b(fm(€2)), ub(fm(€))]-

Sibyl uses the above condition to prune the set of
match candidates for events in a case. For example,
suppose the following:

<meeting32, planning35, subEvent>
<meeting33, planning35, subEvent>
ub(meeting32) < Ib(meeting33)
ub(meeting33) < ub(planning35)
fm(planning35) and f,(meeting32) are defined

A candidate evidence node x for meeting33 must
satisfy

ub(f(meeting32)) < Ib(x) and ub(x) < ub(f.(planning35))

In practice, as the matching process maps additional
related events, the temporal constraints become much
more stringent.

Ordering the Case Evidence

Recall that the initial states of the search have the form
<c,e, 2> where e; isalist of al the edges comprising
case c¢. During the search, the list is explored
sequentially. The initial order of edges is important for
the performance of the algorithm. For example, it
would be unwise to start the search matching a phone
cal event, which will have a massive number of
possible matches in the evidence, rather than to start
the search matching a murder event, which has fewer
possible matches and provides more information about
the key actorsin the case (e.g., the victim or the person
following the victim before the murder).

In our current application, the user manually specifiesa
partial order in which events in a case should be
considered, with key events types having highest
priority. These events offer tend to constrain the
number of viable match candidates. The algorithm
“grows’ a single connected graph by continually
selecting immediate edges based on the user's
specification. The order in which edges are added to
the graph isthe order of €.

Abstracting the Case Representation

So far for the case-matching algorithm, a case node
must be matched to an evidence node of the same type.
This turns out to be too restrictive as the number of
distinct cases would be in the millions. Two cases
could be identical except for one single event, perhaps

a phone cdl in one, and an email in the other. To
shrink the size of the case base, we abstracted events
using the “isa’ relationship in Cyc. Edge labels were
renamed to be abstracted types. Thus, a phone call and
email would be renamed to be a generic “contact”
event. Using abstracted labels allowed us to shrink the
size of the case base into the hundreds.

Matching a Case Base to the Evidence

Earlier we discussed the search procedure and method
for generating new states. When applied with a case
base, we want to let all cases have an opportunity to
match against the evidence. We therefore employ a
round-robin timeout approach such that during a round
Sibyl uses the best state originating from each case in
the case base. For each state chosen, either a match is
found, or, more frequently, atime limit halts the search
for the time being until the next round.

After around ends, the time limit for the next round is
increased and the parameters of the heuristic functions
are changed: o (representing the quality of the match)
is decreased and B (representing the depth of the
search) is increased. The term B/a is proportional to
the number of case edges that are alowed to be
skipped before backtracking. When no matches have
been found, our round-robin policy attributes the
situation to a lack of evidence supporting edges in a
case. Consequently, the policy increments B/o to
increase the chances of finding a match.

EVALUATION

We evaluated SCOPE system as part of DARPA’S
EELD year 2002 evaluation. The evaluation software
was available to al participants. A total of fourteen
evidence databases were used (see Table 1), each with
a Bayesian and task network generated version.
Because we imported the task network data directly
into Sibyl, and because the iGEN portion used the task
network for knowledge engineering purposes, we only
tested SCOPE on the task network datasets. In Table
1, Size refers to the number of valid threats in the
evidence. A threat is a “valid” behavior pattern that is
present in the evidence. Observability refers to how
complete the evidence is. Connectivity measures the
degree up to which the same people/events are part of
different threats. Corruption refers to how accurate
the evidence is; e.g., whether middieman and killer
roles are swapped for two people. Noise refers to
evidence that might be useful, but are not.
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Table 1: Test data set characterization.
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For each dataset, the output of our application was
given a score (a real number between 0.0 and 1.0, the
smaller the better) representing the overall match
quality. The scoring metric factors false negatives (not
reporting cases that should be reported) and false
positives (reporting threats that do not exist).

Only the IGEN scores were submitted for formal
evaluation. For our own evaluation purposes, Sibyl
and iGEN were separately tested. Figure 3 shows the
scoring results for our application, broken into Sibyl
and iGEN scores. On the normalized socia cost
metric, Sibyl scored zero on three of the fourteen
datasets provided, indicating a perfect mapping, and
scored greater than zero and less than 0.05 on four
others, indicating a near-perfect mapping. iGEN
scored zero on three, and greater than zero and less
than 0.05 on five others.

Normalized Social Cost TB Data

Normalized Social Cost

Ei@g

Dataset

Figure 3: Evaluation results for task-based data sets.

In general, the lower the dataset’s observahility, or the
higher the corruption, the harder it isto detect aplanin
the evidence; cf, datasets 3, 4, 10 and 11. Sibyl's
pruning heuristics and the order of a case’s edges favor

high-level events (e.g., planning a murder) over low-
level events (e.g., making a phone call). The heuristics
will prune valid search paths in the presence of high-
level noise. Figure 3 suggests how SCOPE can benefit
from threat hypotheses generated using Sibyl (e.qg.,
datasets 3 and 8). When integrated with iGEN, Sibyl
will contribute as a hypothesis generation module, and
iGEN will manage hypotheses from modules like
Sibyl.

In summary, athough the evaluation does not allow
one to draw any general conclusions, we nevertheless
feel our results are promising.

RELATED WORK

There has been increasing work in CBR that uses
graph-based representations. Perhaps the most closely
related is the Caper system (Sanders et al., 1997) which
searches for subgraphs within a semantic network.
Similar to Sibyl, there is no a priori indexing, or
construction of afeature vector.

Bergman & Stahl (1998) use object-oriented “class
hierarchies” to model the similarity and differences
between objects. Because this method relies on objects
being thought of as distinct entities, it is unclear how it
applies to our problem as, for example, a person in a
case has severa relationships to other persons and
events. Indeed, a person’srelevance is a product of the
person’s actions and relationships to other people. Itis
simply not possible to judge similarity through a
myopic lens. The myriad connections among
associated people and events must be considered.

Messmer & Bunke (1995) detail an algorithm that
constructs a decision tree to determine subgraph
isomorphism in polynomial time. The approach will
not scale with our problem as the tree is exponentia in
the size of the input in worst case. As wdll, the
matching is aform of exact matching.

Gentner & Forbus (1991) describe the MAC/FAC
system which is a model of analogica reminding.
Matches are made between structuraly similar
concepts and verified in the SME portion of FAC.
Wolverton & Hayes-Roth (1994) also explore
analogical retrieval, but focus on successive revision of
heuristics to guide search.

Though Sibyl shares a graph representation similar to
all of the above work, Sibyl’s differences with all these
approaches is driven by the nature of input data
Because of the novel nature of the data, the search
mechanism must work by adapting its cases to the data.
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This is in contrast to the related systems that handle
small amounts of input datato search over alarger case
base or semantic network.

CONCLUSION

We have described a CBR approach to plan detection
that handles input data characterized as relational,
massive, noisy, incomplete, and corrupted. The nature
of the data demanded a new perspective on case
retrieval and adaptation. Case retrieval, typicaly
emphasized in the literature, was non-existent in Sibyl
as cases were never indexed. Indexing would have
required some processing on the input to construct a
feature vector. This is an untenable task for two
reasons. First, any fragment of evidence could be
somehow relevant, but to determine its relevance, more
evidence must be considered. What is important here
is the relationship between fragments. Only together
can they form a threatening pattern.  Second,
considering al input evidence is out of the question.

Case adaptation was our focus. We started with a
strong domain theory of mission plan execution, and
concentrated on mapping complete cases to the
evidence. Because no case is preferred over another
initially, the case base needed to be condensed from
millions into hundreds. This was achieved by
abstraction of isa types using the Cyc ontology. Cases
were mapped using a search heuristic that traded off
mapping quality with search progress.  Pruning
heuristics, such as temporal ordering, were used to
limit the search space.

The combination of Al search techniques and domain
dependent pruning heuristics made our case adaptation
algorithm effective for DARPA’'s EELD year 1
evaluation.
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