Interservice/Industry Training, Smulation, and Education Conference (I/ITSEC) 2003

Experimental Interest Management Architecturefor DCEE

Bill Helfinstine, Mark Torpey Gene Wagenbreth
Lockheed Martin Information Systems Information Sciences I nstitute
Burlington, MA Marina Del Rey, CA
Bill.Helfinstine@Imco.com, M ark.T or pey@|mco.com genew@isi.edu
ABSTRACT

The Distributed Continuous Experimentation Environment (DCEE) is a permanent simulation system and facility
that is being designed and assembled by the US Joint Forces Command (USJFCOM) to provide a capability to do
simulation-backed experimentation without incurring heavy integration and ramp-up costs. Among the several
thrusts of the DCEE system is the capability to do large-scale human-in-the-loop experiments in the spirit of the
Millennium Challenge 2002 experiment, as well as very detailed representations of joint urban operations scenarios.
Additionally, the DCEE system will be used in support of a number of smaller-scale experiments and training events,
such as Limited Objective and Multinational Experiments.

In order to provide a system that can scale to a richer and more expansive world, we need to increase the
computational power available to produce the environment. However, this leads to a classical problem of parallel
computation, where the communications requirements of the system become the bottleneck, and additional
computation adds no additional capacity to the system.

This paper describes the architecture that we have prototyped to address some of the problems of data
communications scalability. It discusses the interest management techniques that have been used in the past, and
how those experiences influenced the prototype design. It talks about the technology that provides finer resolution
interest management than simulations have had in the past while allowing better scalability. It explains the
limitations of the prototype system and discusses some possible approaches to addressing them. Finally, it describes
some likely future requirements of the DCEE system, and talks about how the architecture would have to change in
response.

ABOUT THE AUTHORS

BILL HELFINSTINE is a federation developer for the USIFCOM J9 Experiment Engineering Department and a
developer and integrator of JSAF (Joint Semi-Automated Forces), as well as primary maintainer and devel oper of the
RTI-s experimental RTI. He has worked in M&S for 9 years, with the last several in support of JFCOM-sponsored
exercises, culminating in Millennium Challenge 2002. He is a Staff Software Engineer at Lockheed Martin
Information Systems Advanced Simulation Center (LMIS-ASC) in Burlington MA. He received his B.S. in
Computer Science and Engineering at the Massachusetts I nstitute of Technology.

MARK TORPEY is afederation developer for the USIFCOM J9 Experiment Engineering Department and the lead
developer and integrator of JSAF (Joint Semi-Automated Forces). His 8 years of M& S experience have been largely
in support of JFCOM-sponsored exercises including Millennium Challenge 2002, Unified Vision 2001, and Attack
Operations 2000, as well as the DARPA STOW program. He is a Staff Software Engineer at Lockheed Martin
Information Systems Advanced Simulation Center (LMIS-ASC) in Burlington MA. Hereceived hisM.S. and B.Sin
Computer Science at the University of Massachusetts.

GENE WAGENBRETH is aparallel processing systems analyst with Information Sciences Institute in Marina Del
Rey CA. He has 30 years experience with a range of applications on parallel processors and supercomputers. He
received his B.S. in Mathematics and Computer Science at the University of Illinois at Urbana-Champaign.

Interservice/Industry Training, Smulation, and Education Conference (I/ITSEC) 2003

Experimental Interest Management Architecturefor DCEE

Bill Helfinstine, Mark Torpey
Lockheed Martin Information Systems
Burlington, MA
Bill.Helfinstine@Imco.com, M ark.T or pey@/mco.com

THE DCEE

The Distributed Continuous Experimentation
Environment (DCEE) is a facility and a capability
being designed and assembled by the US Joint Forces
Command (USJIFCOM) for exploration of concepts in
joint warfighting. (Ceranowicz et al 2003) One major
component of the DCEE is a permanent simulation
installation to provide the capability to do simulation-
backed experimentation without incurring the major
integration and ramp-up costs that previous
experiments have incurred.

The simulation capability that will be provided by the
DCEE is based on the Joint Experimentation
Federation (JEF) that was assembled for the
Millennium Challenge 2002 (MCO02) experiment.
(Ceranowicz et al 2002) This federation provides a
framework for the individua services to bring
simulation capabilities to a joint virtual world. It
provides concept developers the ability to experiment
with large-scale battles and situations in a platform-
level human-in-the-loop style.

However, the DCEE is not smply designed to be a
snapshot of the MCO2 version of the JEF; it is designed
to evolve and expand to encompass new capabilities
and fulfill new requirements as they arise. Therefore,
we must keep pushing the technology in advance of the
requirements, or the DCEE won't be used. The whole
point of the DCEE simulation system is to make it easy
and quick to set up a situation and smulate it, in a
brainstorming style, in order to bring Joint
Experimentation to its full potential.

The simulation component of the DCEE is
implemented as a High Level Architecture (HLA)
federation. (Dahmann et a 1997) It is an aggregation
of a number of ssimulation systems, each of which has a
particular focus on a different facet of the battlefield.
However, since many of the ssimulations that make up
the DCEE were originally designed to interoperate
using the DIS protocols, (IEEE 1998) they were
designed to support scenarios that are in the size range
that is supported by DIS—which typically has an upper

Gene Wagenbreth
Information Sciences I nstitute
Marina Del Rey, CA

genew@isi.edu

bound on the number of simulated platforms in the low
thousands. This leads to another issue for the DCEE,
that of providing a simulation capability that can handle
the progressively larger scenarios that the DCEE is
designed to handle.

SCALABILITY

One magjor thrust in the world of Joint Experimentation
is that of scalability. The simulated world of MCO02,
while larger than any others created previoudly, is not
big enough or detailed enough to play out the situations
that JFCOM wants to examine. The DCEE must be
able to provide a larger, more detailed environment,
both in terms of numbers of simulated actors, and the
simulated natural environment they interact within.

Table 1. Scalability Achievements Over Time

Object Max Objs Max Objs

Event Count Produced Consumed
PerFederate | PerFederate
STOW97 7000 400 500
J9901 40,000 5000 5000
AO00 160,000 20,000 50,000
MC02 50,000 30,000 30,000
SPP 1,500,000 15,000 70,000

As is shown in Table 1, the number of smulated
objects that make up large federations has been steadily
increasing, with the exception of MCO02, in which it was
more important to integrate a large number of new
models. The trend towards larger numbers of objects
will continue as we move forward, smply because the
simulations are not yet capable of portraying a full-
scale situation at full accuracy. With the increasing
capabilities of computers and networks, we believe that
we will be able to produce such a full-scale scenario,
but there are ill a large number of open issues
remaining, both in how to properly control such a
simulation, and in how to usefully use and observe such
asimulation.

Interservice/Industry Training, Smulation, and Education Conference (I/ITSEC) 2003

There are a number of factors that limit the size of the
simulation that we are able to produce in a system like
the DCEE. The computation cost of simulating the
objects that make up the world and the interactions
between them is the most straightforward of these
factors. The communications overhead of sharing these
objects between the various simulators introduces
another major cost. The final and most complex factor
is the effect of the objects simulated by other systems
on the local simulated objects.

The computational factor is a straightforward problem
to solve, simply by adding additional hardware to the
system. However, this solution is constrained due to
space restrictions and financial restrictions, and
therefore the system is limited in how large and how
quickly it can grow.

The communications factor is also constrained by the
amount of funding available to support the networking
hardware and services to run an exercise. Additionally,
there is a significant lead time requirement in order to
get networks provisioned and security requirements
fulfilled.

The cost of incoming data is still a major subject of
research. Each remote vehicle that is received by a
simulator adds load to that system. One technology
that is often used to reduce the load on a system is
interest management. This lets each simulator describe
what data might affect its simulation, and the
networking infrastructure filters the data that the system
needs to consider. While interest management helps an
enormous amount, there are cases where it fails simply
due to the amount of data requested. (Brunett &
Gottschalk 1997a)

SCALABLE PARALLEL PROCESSORS

In searching for a possible solution to the first two
pieces of the scalability dilemma, we turned to another
area of research that has been exploring the areas of
scalability and paraléelism. The scientific
supercomputing community has been exploring the
limits of scalability for many years. Furthermore, this
community has led to the creation of government-
owned and operated High Performance Computing
(HPC) centers, many of which are available for use
with little lead time.

The HPC centers provide a variety of types of systems,
most of which fall into the general category known as
Scalable Parallel Processors (SPPs). These systems are

defined by their large number of individual CPUs that
are connected by a high speed network.

One of the major types of systems run by the HPC
centers is the Beowulf cluster. (Sterling et a 1995)
Beowulf clusters have become popular systems in the
world of HPC systems because of their low cost for the
amount of power they provide. A typical configuration
of a Beowulf cluster is several hundred commodity PCs
running Linux connected with a multi-gigabit network,
with custom resource alocation and paralel machine
software running on them. Since these clusters are
similar to the systems the DCEE uses, we decided to
concentrate on using these systems to provide a huge
amount of computation and communication resources,
and thereby address the time, money, and space
restrictions on scalability in the DCEE.

INTEREST MANAGEMENT

The third piece of the scalability question is how to
handle the large quantities of data that we can now
generate using the capabilities of the SPP systems. We
have spent quite a bit of time optimizing the smulation
systems to reduce the load imposed by incoming data,
but there is an inherent polynomial factor in all
simulation systems, simply because vehicles interact
with nearby other vehicles, and therefore as vehicle
density increases, processing per vehicle increases as
well.

In particular, sensor processing is typically an O(n®
operation on vehiclesin alocal area. There have been
several attempts to mitigate this load through
alternative sensor approaches (McGarry & Torpey
1999) (Lorenzo et a 2000) (Kwak & Andrew 2002)
but these approaches require additional simulation
changes to support them. Due to the legacy nature of
many of the DCEE simulation models, these
approaches are difficult to implement, since they
require modifications to all the different modelsthat are
used. This also limits the flexibility of the system,
since new simulations have additional requirements
over their existing capabilities in order to interoperate
with the rest of DCEE.

So, it is still necessary to reduce the quantity of data
coming into each simulation to the minimum that they
need in order to operate correctly. In general, only the
individual simulator can determine what data is
interesting, and only at runtime, since the information
needed is based on the situation that the smulator is
modeling. Therefore, interest management is a
dynamic problem, and needs to react and adapt to

Interservice/Industry Training, Smulation, and Education Conference (I/ITSEC) 2003

changing data requirements by all the components of
the system.

This dynamic interest specification and handling is
performed by the Data Distribution Management
(DDM) functionality of the HLA. The HLA Run Time
Infrastructure (RTI) software provides an API to the
simulations that allows them to specify what data is
interesting in a dynamic fashion. The HLA provides a
generalized, abstract way to specify data and interest,
by representing data domains as multidimensional
spaces, and interest and data specifications as regions
within those spaces. (Morse & Steinman 1997) See
Figure 1 for a two-dimensional example of how DDM
represents interests and data based on overlap of
regions.

N

H
77

" [7
& Subscription Region z Publication Region

Figure 1. Subscription and Publication Overlap

There have been a number of different DDM designsin
several RTI implementations, each of which represents
spaces and regions in different ways. The most
scalable implementation we have found so far is a
statically-assigned grid representation that represents
spaces as multidimensional grids, and regions into
subsets of the grid. This leads to a fast mapping of
interest to grids without any communications and with a
simple algorithm. (Helfinstine et al 2001) See Figure
2 for an example of how Figure 1 would be represented
in afixed-gridded implementation.

o /’/9

" / /

W WA

P . 7/ /i/: S

7NN
NN

AR

4

\:\\:
NN
2o N

=
\ Subscription Region
N

o

Q:/

Publication Region
/l

Figure 2. Regions Snapped to a Grid

MULTICASTING

The main communications capability that is provided
by the HLA is a publish/subscribe capability that
delivers each message to multiple receivers. This
capability is often implemented using Internet Protocol
(IP) multicast, (Deering 1989) which provides support
for point-to-multipoint communications with dynamic
subscription changes, over a range of different
networking technologies.

However, this presents a problem when trying to run on
SPPs, which typically do not support IP multicast.
Depending on the type of SPP, it may not support IP at
al, since there are many ways to interconnect
processors that do not look like a traditional network.

However, SPPs do support message-passing
communications, either using IP, as Beowulf systems
do, or with some other technology. In order to provide
a dandardized means of doing message-based
communications, the HPC community has standardized
on the Message Passing Interface (MPI) as a common
API for building parallel programs that express their
parallelismin terms of messages. (MPI Forum 1995)

So, it became clear that we would need to build a
mechanism that would provide the many-to-many
semantics of multicasting while using a
communications technology that only supports point-to-
point. Furthermore, we also need to maintain our
existing capability to run the simulation in aLocal Area
Network (LAN) environment, since user interfaces and
other DCEE federates would not be supported by the
SPP.

Interservice/Industry Training, Smulation, and Education Conference (I/ITSEC) 2003

This led us to examine the work that was done for the
Synthetic Forces Express (SF Express) program which
investigated running the ModSAF simulation on SPP
systems in the 1997 timeframe. (Brunett & Gottschalk
1997b) This work demonstrated a fairly straightforward
way to provide an emulation of the capabilities of
multicast using router processes running on SPP nodes
to arbitrate the communications and do data duplication
and forwarding to appropriate receivers. (Brunett &
Gottschalk 1997a)

Another interesting body of work that uses a similar
networking architecture is being pursued by the
DARPA Active Networks program. (Dorsch et al
2002) In their system, software router processes
perform data routing to the appropriate recipients in a
similar fashion to the SF Express router nodes. This
project uses direct region matching to do filtering,
which is more precise, but less scalable as the number
of regionsincreases.

RTI-S

In order to construct a system that runs on an SPP and
supports HLA federations, we needed an RTI
implementation that would use router processes to
communicate within the federation. The particular
implementation that we used to form the basis of this
system is the RTI-s subset RTI implementation.
(Calvin et al 1997)

We chose this implementation for severa reasons. It
was available to us with source code, and is familiar to
us from its use in previous experiments, so it was easily
modifiable to use the new communications system we
were building. It has much less code than a full RTI
implementation, which makes it much easier to
understand and extend. It scales well, and has a fairly
small memory footprint. Finally, it has a very flexible
implementation of DDM, providing multiple static inset
grids that alow detailed tuning of interest
specifications. (Rak et al 1997)

COMMUNICATIONSARCHITECTURE

We put together a design for the communications
architecture based on the concept of stackable protocol
modules. We analyzed the existing RTI-s
communications code and refactored the functionality it
provided into several pieces.

The origina RTI-s network interface is composed of
the stream manager classes, which provide single-

sender to multiple-receiver message sending, receiving,
and subscription, and the message buffer class, which
provides an interface to messages. Below this
interface, the infrastructure provides message bundling,
to reduce the packet count by aggregating multiple
small messages into each packet, and fragmentation, to
split large messages into multiple packets and
reassemble them on receive. Finaly, it sends and
receives the actual packets using IP multicast.

Then, these main components of the communications
infrastructure were separated out into chained protocol
modules, and given a standardized interface to ease
extension and flexibility. We then added additional
modules that send and receive packets using point-to-
point TCP and point-to-point UDP. Finally, we added
a module that trandated generalized subscription
requests into a message that states the current list of
subscriptions, which is sent across the point-to-point
connection and remembered by the receiver. Figure 3
shows three possible configurations for an RTI
communications structure, with the three columns of
protocol modules below the stream manager.

In order to operate on SPP systems that use MPI as
their connectivity basis, we built an MPI send and
receive module. However, we were worried about the
fault-tolerance effects of MPI, and since we were
running on Beowulf clusters, which support IP
connectivity, we ended up using TCP for our prototype
events.

| RTI Ambassador and Federate Ambassador |

Federation Subscription Object Transport
Manager Manager Manager Manager

| Stream Manager |

| Bundler | | MulticastEmul | | MulticastEmul |
1 1 1 1 1 1

Ratelimit Bundler | | Bundler |
| or

or|

T I
Fragment | TCP conn |

| Ratelimit |

[1

Figure 3. Three Example Configurations of the RTI-s
Communications Infrastructure

Interservice/Industry Training, Smulation, and Education Conference (I/ITSEC) 2003

This general model of protocol modules has allowed us
to experiment with additional message transformations
depending on our needs. In this vein, we built a
module that compresses the data across a connection,
when our bandwidth is low and we have available CPU
time. For testing purposes, we also built a module that
simulates a lossy network, and which randomly drops
incoming or outgoing data with a specified loss rate.
We see this as a very convenient way of integrating
future data transformations as they become necessary.

ROUTER DESIGN

Once we had a way for the RTI to send and receive
data in a point-to-point fashion, we needed a router
implementation that would receive the data from each
federate and forward it to the clients that subscribed to
it. As an initial implementation, we built a simple
router process that reuses the RTI’s flexible connection
code, receiving the data and processing it in the same
fashion as the RTI. Figure 4 provides a diagram of a
router that is routing between three connections.

| Data Router |

| MulticastEmul |

| MulticastEmul | | MulticastEmul |
I I 1 1 1 1

| Bundler | and | Bundler | and | Bundler |

I I
| TCP conn |

| TCP conn |
v v

To node 1 To node 2

| Ratelimit |

To node 3

Figure 4. Simple Router Design Routing Between
Connections to Three Federates or Other Routers

In order to send messages to only those receivers that
want to receive it, each connection tracks what the
receiver's subscriptions are. Therefore, since each
connection has knowledge of what the receiver wants to
hear, it can filter outgoing data before it makes it
through the protocol chain. Since each side of each
connection knows thisinformation, if no listenersin the
system want to hear a particular piece of data, it won’'t
be sent out of the originating machine. This aggressive
source-side squelching of datais a very nice side-effect
of the router design.

However, in order to accomplish this, we need to send
subscription information across each link in both

directions. In the case of the router, it turns out to be
fairly smple-- a router’s interest is the union of all its
connections’ interests. Therefore, the two major things
that a router must do are to forward incoming messages
to all other connections, and update interest information
on all other connections when one connection changes.

TOPOLOGY

This simple router architecture is quite functional, but it
does have some significant problems. In particular, it
does not handle cycles in the graph of routers. Each
router expects to be able to forward al incoming
messages to all receivers. If one of those receiversis a
router that forwards a message to a router that has
already forwarded it once, the routers will send datain
aloop forever and overload the system. However, this
implies that these routers can only be set up in a tree
structure if we have more load than a single router can
handle. Thisisobviously not a scalable design.

Figure5. Simple Tree-Based Router Topology

Because of this, we aso built a second router
implementation based on the up/down fully-connected
mesh topology that was explored by the SF Express
project. Unfortunately due to schedule pressure, we
have not yet been able to test this design fully.

Figure 6. Triplet-Connected Mesh Topology

We believe that we need to investigate the topic of
topology more, and look into new ways to organize the
communications between the various components of
the federation. In particular, when Wide Area Network
(WAN) connections between multiple SPP systems are
introduced, being constrained to a tree structure can
result in very heavy data loads to one of the sites, which

Interservice/Industry Training, Smulation, and Education Conference (I/ITSEC) 2003

is a very expensive solution to a software limitation.
Further, WAN connections have a much lower
bandwidth than SPP interconnects or LAN connections,
and therefore it makes sense to investigate specialized
connection methods across WANSs, and different
tradeoffs in the design of the communications setup.

INTEREST MANAGEMENT IMPROVEMENTS

One of the results of this new messaging architecture
was that we began to run into limitations of the RTI-s
interest management infrastructure. In particular, we
wanted to expand the number of interest states from the
previous maximum of 3000 to 100000 or more.
Previoudy we were limited by the capabilities of 1P
multicast routers, which begin to fail after roughly 3000
multicast groups, but with our own router
implementation, we no longer are subject to these
limits. Since the efficacy of the static grid interest
management scheme is determined by the number of
interest states, the more states that are available, the
smaller the grid cells are. As the grid cells become
smaller, less unwanted data will be delivered to the
federate.

However, the existing code began to perform poorly,
due to the use of arrays of integers to represent the list
of interests of a particular subscription. In order to
scale the number of interest states up, we had to refit a
number of internal data types in RTI-s to be more
efficient, both in storage usage and in access time. In
particular, the list of interest states was changed to be
represented as a sparse hit vector implementation, with
a fixed-block-size representation. This provided a way
to quickly determine interest overlap as well as a fast
means of calculating the union of interestsin the router.
Further, it resulted in a compact representation that
could easily be sent over connections with afairly small
overhead.

Similar changes were made throughout the RTI code, in
many places where the assumption was that an array of
values with an entry for each interest state would be
acceptable, we had to change to a tree representation or
a hash table in order to not consume large amounts of
memory. Additional changes were required to provide
a means of associating objects with their interests in an
efficient fashion.

Finally, a centralized means of recording statistics
about data amounts and counts was added, in order to
be able to pinpoint pieces of the system and what was
causing slowdowns. With the existing RTI-s capability
to examine internal information, this allows a remote,

distributed debugging capability that was extremely
useful in monitoring the system asit ran.

PROTOTYPE EVENTS

We ran two prototype events, in which we
demonstrated that it is possible to generate enormous
numbers of vehiclesin avery large virtual environment,
using SPP systems. Both events were run using a
subset of the DCEE federation, composed of the JSAF
simulation GUIs, the JSAF simulator running aircraft,
ships, and ground combatants, and the JSAF clutter
simulator providing background and civilian traffic.

In December 2002, we were able to generate over
1,000,000 vehicles, using a terrain that covered the
entire Pacific Rim. The simulation ran on the
University of Southern California's Beowulf cluster,
and operators and observers were located at Joint
Forces Command in Suffolk, Virginia, as well as at
Information Sciences Institute in Los Angeles. We
were able to use 50,000 interest states to provide a
fairly precise specification of interests, in several
geographically disparate simulated locations.

In March 2003, we ran an even larger event, generating
over 1,500,000 vehicles on the same terrain database,
but located in different areas with more terrain detail.
We ran on the Huinalu Beowulf cluster at the Maui
High Performance Computing Center and the ASC
Beowulf cluster at Wright-Patterson AFB, with
observers in Suffolk and Los Angeles again. We also
increased the number of interest states to 100,000
without adverse effect.

Both of these events were focused on testing the
functionality of the new system, and showed that we
can indeed generate a very large smulated
environment. They also demonstrated that we have
quite a bit of additional work that we can do, in order to
make the system viable for the end users. In particular,
WAN latencies and inefficiencies in the simulation’s
control protocols combine to make the user interfaces
very sluggish. The tree nature of the routers also
became a point of failure when the system was under its
heaviest loads. We suffered a number of router failures
due to data overload, and we are still working to
address these.

FUTURE REQUIREMENTS

We till face a number of issues that we need to resolve
in order to make the use of SPP systems possible for

Interservice/Industry Training, Smulation, and Education Conference (I/ITSEC) 2003

DCEE. The events that we have run so far show major
promise, but have not yet demonstrated that we are able
to fulfill the DCEE's flexibility and ease-of-use
requirements yet.

The first major requirement is that we need to make it
much easier for non-experts to acquire time on SPPs
and execute the system on them. It currently isafairly
involved process that takes several people to
accomplish. This is a major project that is already
underway. (Williams & Tran 2003) An initial version
of the MARCI launch and control system was tested at
the March event, and it is undergoing further
development and refinement.

Another major requirement is that we must have a way
for simulations running on SPP systems to participate
in the DCEE federation. The primary reason we cannot
simply plug the SPP systems into the DCEE is that the
DCEE uses the enhanced version of RTI-NG devel oped
for Millennium Challenge 2002, (Hyett & Wouerfel
2003) and the SPP uses RTI-s with point-to-point
routers. Since they use different RTI implementations,
they run in two separate HLA federations, and we need
to build a federation gateway that will alow us to
bridge data back and forth between the two federations.
This is not an easy task (Granowetter 2003) but we
believe that we can build such a gateway as long as its
scope is restricted to the DCEE and similar federations.
Thisis another ongoing major project.

An additional issue that we are beginning to investigate
is how the SPP will help analysts do After Action
Review of the huge amounts of data that can be
produced by simulations running on an SPP. A
distributed logging and query system is currently being
designed to attempt to address this requirement.

One of the most important areas that we need to
investigate is the issue of control. As we scale up
scenarios to the desired sizes, it becomes more and
more difficult to control the simulation and make sure it
behaves in a proper fashion. We need to look into
schemes that reduce the amount of operator control that
is required to run a simulation. This would have an
additional benefit for DCEE as well, since any
technique that reduces the number of personnel
involved will be of incredible utility.

CONCLUSIONS
The use of Scalable Parallel Processor systems has a

great deal of promise in building larger and more
detailed virtual environments, both for experimentation

and for many other uses of simulation. We are
integrating the use of SPP systems into the DCEE, and
we believe that it will provide an extremely valuable
asset in the DCEE environment.

The use of software interest management routers to
provide data distribution gives us a great deal of
flexibility in building a scalable system and providing
the building blocks to more detailed dataflow control
and management.

There are many additional dimensions that are worth
exploring, both in better integration into DCEE, and
additional technical exploration to discover new ways
to apply the SPP assets to the problems of DCEE and
similar human-in-the-loop simulation systems.

REFERENCES

Brunett, S. & Gottschalk, T. (1997a). An Architecture
for Large ModSAF Simulations Using Scalable
Parallel Processors, Center for Advanced Computing
Research Technical Report CACR-155.

Brunett, S. & Gottschalk, T. (1997b). Scalable
ModSAF Simulations With More Than 50,000
Vehicles Using Multiple Scalable Parallel
Processors, Center for Advanced Computing
Research Technical Report CACR-156.

Calvin, J., Chiang, C., McGarry, S., Rak, S., Van Hook,
D., & Salisbury, M. (1997). Design, Implementation,
and Performance of the STOW RTI Prototype (RTI-
s), Proceedings of the Spring 1997 Smulation
Interoperability Workshop, Paper 97S-SIW-019.

Ceranowicz, A., Torpey, M., Helfinsting, B., Evans, J.,
& Hines, J. (2002). Reflections on Building the Joint
Experimental Federation, Proceedings of the 2002
Interservice/Industry Training, Smulation and
Education Conference.

Ceranowicz, A., Dehncke, R., Cerri, T., & Blank, J.,
(2003). Moving toward a Distributed Continuous
Experimentation, Submitted to the 2003
Interservice/Industry Training, Smulation and
Education Conference.

Dahmann, J., Fujimoto, R., & Weatherly, R. (1997).
The Department of Defense High Level Architecture,
Proceedings of the 1997 Winter Simulation
Conference.

Interservice/Industry Training, Smulation, and Education Conference (I/ITSEC) 2003

Deering, S. (1989). Host Extensions for 1P
Multicasting, IETF Network Working Group, RFC
1112.

Dorsch, M., Kostas, T., & Skowronski, V. (2002).
Reducing Bandwidth Requirements of Distributed
Simulations, Proceedings of the Fall 2002
Smulation Interoperability Workshop, Paper 02F-
SIW-118.

Granowetter, L. (2003). RTI Interoperability Issues -
API Standards, Wire Standards, and RTI Bridges,
Proceedings of the Spring 2003 Smulation
Interoperability Workshop, Paper 03S-SIW-063.

Helfinstine, B., Wilbert, D., Torpey, M., & Civinskas,
W. (2001). Experienceswith Data Distribution
Management in Large-Scale Federations,
Proceedings of the Fall 2001 Smulation
Interoperability Workshop, Paper 01F-SIW-032.

Hyett, M. & Wuerfel, R. (2003). Connectionless Mode
and User Defined DDM in RTI-NG V6, Proceedings
of the Spring 2003 Smulation I nteroperability
Workshop, Paper 03S-SIW-102.

|EEE (1998). IEEE Standard for Distributed
Interactive Smulation - Application Protocols, |EEE
Std 1278.1A-1998.

Kwak, D. & Andrew, E. (2002). Technical Challenges
for Joint Synthetic Battlespace (JSB), Proceedings of
the Fall 2002 Simulation Interoperability Workshop,
Paper 02F-SIW-075.

Lorenzo, M., Morse, K., Riggs, B., & Rizik, P. (2000).
Sensor Simulation Scalability Using Composable
Component Federates, Proceedings of the Fall 2000
Smulation Interoperability Workshop, Paper 00F-
SIW-090.

McGarry, S. & Torpey, M. (1999). Back to Basics:
Balancing Computation and Bandwidth, Proceedings
of the Fall 1999 Smulation Interoperability
Workshop, Paper 99F-SIW-188.

Morse, K. & Steinman, J. (1997). Data Distribution
Management in the HLA: Multidimensional Regions
and Physically Correct Filtering, Proceedings of the
Soring 1997 Smulation Interoperability Workshop,
Paper 97S-SIW-052.

MPI Forum (1995). MPI: A Message Passing
Interface Sandard, Version 1.1.

Rak, S., Salisbury, M., MacDonald, R. (1997).
HLA/RTI Data Distribution Management in the
Synthetic Theater of War, Proceedings of the Fall
1997 Smulation Interoperability Workshop, Paper
97F-SIW-119.

Sterling, T., Becker, D., Savarese, D., Dorband, J.,
Ranawake, U., & Packer, C. (1995). Beowulf: A
Parallel Workstation for Scientific Computation,
Proceedings of the 24th International Conference on
Parallel Processing.

Williams, R. & Tran, J. (2003). Supporting Distributed
Simulation on Scalable Parallel Processor Systems,
Submitted to the 2003 Inter service/Industry Training,
Simulation and Education Conference.

