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ABSTRACT 

 
The Distributed Continuous Experimentation Environment (DCEE) is a permanent simulation system and facility 
that is being designed and assembled by the US Joint Forces Command (USJFCOM) to provide a capability to do 
simulation-backed experimentation without incurring heavy integration and ramp-up costs.  Among the several 
thrusts of the DCEE system is the capability to do large-scale human-in-the-loop experiments in the spirit of the 
Millennium Challenge 2002 experiment, as well as very detailed representations of joint urban operations scenarios.  
Additionally, the DCEE system will be used in support of a number of smaller-scale experiments and training events, 
such as Limited Objective and Multinational Experiments.  
 
In order to provide a system that can scale to a richer and more expansive world, we need to increase the 
computational power available to produce the environment.  However, this leads to a classical problem of parallel 
computation, where the communications requirements of the system become the bottleneck, and additional 
computation adds no additional capacity to the system. 
 
This paper describes the architecture that we have prototyped to address some of the problems of data 
communications scalability.  It discusses the interest management techniques that have been used in the past, and 
how those experiences influenced the prototype design. It talks about the technology that provides finer resolution 
interest management than simulations have had in the past while allowing better scalability.  It explains the 
limitations of the prototype system and discusses some possible approaches to addressing them.  Finally, it describes 
some likely future requirements of the DCEE system, and talks about how the architecture would have to change in 
response.  
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THE DCEE 

 
The Distributed Continuous Experimentation 
Environment (DCEE) is a facility and a capability 
being designed and assembled by the US Joint Forces 
Command (USJFCOM) for exploration of concepts in 
joint warfighting.  (Ceranowicz et al 2003) One major 
component of the DCEE is a permanent simulation 
installation to provide the capability to do simulation-
backed experimentation without incurring the major 
integration and ramp-up costs that previous 
experiments have incurred. 
 
The simulation capability that will be provided by the 
DCEE is based on the Joint Experimentation 
Federation (JEF) that was assembled for the 
Millennium Challenge 2002 (MC02) experiment.  
(Ceranowicz et al 2002) This federation provides a 
framework for the individual services to bring 
simulation capabilities to a joint virtual world.  It 
provides concept developers the ability to experiment 
with large-scale battles and situations in a platform-
level human-in-the-loop style. 
 
However, the DCEE is not simply designed to be a 
snapshot of the MC02 version of the JEF; it is designed 
to evolve and expand to encompass new capabilities 
and fulfill new requirements as they arise.  Therefore, 
we must keep pushing the technology in advance of the 
requirements, or the DCEE won’ t be used.  The whole 
point of the DCEE simulation system is to make it easy 
and quick to set up a situation and simulate it, in a 
brainstorming style, in order to bring Joint 
Experimentation to its full potential. 
 
The simulation component of the DCEE is 
implemented as a High Level Architecture (HLA) 
federation.  (Dahmann et al 1997) It is an aggregation 
of a number of simulation systems, each of which has a 
particular focus on a different facet of the battlefield.  
However, since many of the simulations that make up 
the DCEE were originally designed to interoperate 
using the DIS protocols, (IEEE 1998) they were 
designed to support scenarios that are in the size range 
that is supported by DIS—which typically has an upper 

bound on the number of simulated platforms in the low 
thousands.  This leads to another issue for the DCEE, 
that of providing a simulation capability that can handle 
the progressively larger scenarios that the DCEE is 
designed to handle. 
 
 

SCALABILITY 
 
One major thrust in the world of Joint Experimentation 
is that of scalability.  The simulated world of MC02, 
while larger than any others created previously, is not 
big enough or detailed enough to play out the situations 
that JFCOM wants to examine.  The DCEE must be 
able to provide a larger, more detailed environment, 
both in terms of numbers of simulated actors, and the 
simulated natural environment they interact within. 
 

Table 1. Scalability Achievements Over Time 
 

Event 
Object 
Count 

Max Objs 
Produced 

PerFederate 

Max Objs 
Consumed 
PerFederate 

STOW97 7000 400 500 
J9901 40,000 5000 5000 
AO00 160,000 20,000 50,000 
MC02 50,000 30,000 30,000 
SPP 1,500,000 15,000 70,000 
 
As is shown in Table 1, the number of simulated 
objects that make up large federations has been steadily 
increasing, with the exception of MC02, in which it was 
more important to integrate a large number of new 
models.  The trend towards larger numbers of objects 
will continue as we move forward, simply because the 
simulations are not yet capable of portraying a full-
scale situation at full accuracy.  With the increasing 
capabilities of computers and networks, we believe that 
we will be able to produce such a full-scale scenario, 
but there are still a large number of open issues 
remaining, both in how to properly control such a 
simulation, and in how to usefully use and observe such 
a simulation. 
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There are a number of factors that limit the size of the 
simulation that we are able to produce in a system like 
the DCEE.  The computation cost of simulating the 
objects that make up the world and the interactions 
between them is the most straightforward of these 
factors.  The communications overhead of sharing these 
objects between the various simulators introduces 
another major cost.  The final and most complex factor 
is the effect of the objects simulated by other systems 
on the local simulated objects. 
 
The computational factor is a straightforward problem 
to solve, simply by adding additional hardware to the 
system.  However, this solution is constrained due to 
space restrictions and financial restrictions, and 
therefore the system is limited in how large and how 
quickly it can grow.   
 
The communications factor is also constrained by the 
amount of funding available to support the networking 
hardware and services to run an exercise.  Additionally, 
there is a significant lead time requirement in order to 
get networks provisioned and security requirements 
fulfilled.   
 
The cost of incoming data is still a major subject of 
research.  Each remote vehicle that is received by a 
simulator adds load to that system.  One technology 
that is often used to reduce the load on a system is 
interest management.  This lets each simulator describe 
what data might affect its simulation, and the 
networking infrastructure filters the data that the system 
needs to consider.  While interest management helps an 
enormous amount, there are cases where it fails simply 
due to the amount of data requested.  (Brunett & 
Gottschalk 1997a) 
 
 

SCALABLE PARALLEL PROCESSORS 
 
In searching for a possible solution to the first two 
pieces of the scalability dilemma, we turned to another 
area of research that has been exploring the areas of 
scalability and parallelism.  The scientific 
supercomputing community has been exploring the 
limits of scalability for many years.  Furthermore, this 
community has led to the creation of government-
owned and operated High Performance Computing 
(HPC) centers, many of which are available for use 
with little lead time. 
 
The HPC centers provide a variety of types of systems, 
most of which fall into the general category known as 
Scalable Parallel Processors (SPPs).  These systems are 

defined by their large number of individual CPUs that 
are connected by a high speed network. 
 
One of the major types of systems run by the HPC 
centers is the Beowulf cluster.  (Sterling et al 1995) 
Beowulf clusters have become popular systems in the 
world of HPC systems because of their low cost for the 
amount of power they provide.  A typical configuration 
of a Beowulf cluster is several hundred commodity PCs 
running Linux connected with a multi-gigabit network, 
with custom resource allocation and parallel machine 
software running on them.  Since these clusters are 
similar to the systems the DCEE uses, we decided to 
concentrate on using these systems to provide a huge 
amount of computation and communication resources, 
and thereby address the time, money, and space 
restrictions on scalability in the DCEE. 
 
 

INTEREST MANAGEMENT 
 
The third piece of the scalability question is how to 
handle the large quantities of data that we can now 
generate using the capabilities of the SPP systems.  We 
have spent quite a bit of time optimizing the simulation 
systems to reduce the load imposed by incoming data, 
but there is an inherent polynomial factor in all 
simulation systems, simply because vehicles interact 
with nearby other vehicles, and therefore as vehicle 
density increases, processing per vehicle increases as 
well.   
 
In particular, sensor processing is typically an O(n2) 
operation on vehicles in a local area.  There have been 
several attempts to mitigate this load through 
alternative sensor approaches (McGarry & Torpey 
1999) (Lorenzo et al 2000) (Kwak & Andrew 2002) 
but these approaches require additional simulation 
changes to support them.  Due to the legacy nature of 
many of the DCEE simulation models, these 
approaches are difficult to implement, since they 
require modifications to all the different models that are 
used.  This also limits the flexibility of the system, 
since new simulations have additional requirements 
over their existing capabilities in order to interoperate 
with the rest of DCEE. 
 
So, it is still necessary to reduce the quantity of data 
coming into each simulation to the minimum that they 
need in order to operate correctly.  In general, only the 
individual simulator can determine what data is 
interesting, and only at runtime, since the information 
needed is based on the situation that the simulator is 
modeling.  Therefore, interest management is a 
dynamic problem, and needs to react and adapt to 
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changing data requirements by all the components of 
the system. 
 
This dynamic interest specification and handling is 
performed by the Data Distribution Management 
(DDM) functionality of the HLA.  The HLA Run Time 
Infrastructure (RTI) software provides an API to the 
simulations that allows them to specify what data is 
interesting in a dynamic fashion.  The HLA provides a 
generalized, abstract way to specify data and interest, 
by representing data domains as multidimensional 
spaces, and interest and data specifications as regions 
within those spaces.  (Morse & Steinman 1997)   See 
Figure 1 for a two-dimensional example of how DDM 
represents interests and data based on overlap of 
regions. 
 

 
 

Figure 1. Subscription and Publication Overlap 
 
There have been a number of different DDM designs in 
several RTI implementations, each of which represents 
spaces and regions in different ways.  The most 
scalable implementation we have found so far is a 
statically-assigned grid representation that represents 
spaces as multidimensional grids, and regions into 
subsets of the grid.  This leads to a fast mapping of 
interest to grids without any communications and with a 
simple algorithm.  (Helfinstine et al 2001)  See Figure 
2 for an example of how Figure 1 would be represented 
in a fixed-gridded implementation. 
 

 
 

Figure 2. Regions Snapped to a Grid 
 
 

MULTICASTING 
 
The main communications capability that is provided 
by the HLA is a publish/subscribe capability that 
delivers each message to multiple receivers.  This 
capability is often implemented using Internet Protocol 
(IP) multicast, (Deering 1989) which provides support 
for point-to-multipoint communications with dynamic 
subscription changes, over a range of different 
networking technologies. 
 
However, this presents a problem when trying to run on 
SPPs, which typically do not support IP multicast.  
Depending on the type of SPP, it may not support IP at 
all, since there are many ways to interconnect 
processors that do not look like a traditional network.   
 
However, SPPs do support message-passing 
communications, either using IP, as Beowulf systems 
do, or with some other technology.  In order to provide 
a standardized means of doing message-based 
communications, the HPC community has standardized 
on the Message Passing Interface (MPI) as a common 
API for building parallel programs that express their 
parallelism in terms of messages.  (MPI Forum 1995)  
 
So, it became clear that we would need to build a 
mechanism that would provide the many-to-many 
semantics of multicasting while using a 
communications technology that only supports point-to-
point.  Furthermore, we also need to maintain our 
existing capability to run the simulation in a Local Area 
Network (LAN) environment, since user interfaces and 
other DCEE federates would not be supported by the 
SPP. 
 

Subscription Region Publication Region 

Subscription Region Publication Region 
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This led us to examine the work that was done for the 
Synthetic Forces Express (SF Express) program which 
investigated running the ModSAF simulation on SPP 
systems in the 1997 timeframe.  (Brunett & Gottschalk 
1997b) This work demonstrated a fairly straightforward 
way to provide an emulation of the capabilities of 
multicast using router processes running on SPP nodes 
to arbitrate the communications and do data duplication 
and forwarding to appropriate receivers.  (Brunett & 
Gottschalk 1997a) 
 
Another interesting body of work that uses a similar 
networking architecture is being pursued by the 
DARPA Active Networks program.  (Dorsch et al 
2002) In their system, software router processes 
perform data routing to the appropriate recipients in a 
similar fashion to the SF Express router nodes.  This 
project uses direct region matching to do filtering, 
which is more precise, but less scalable as the number 
of regions increases.   
 
 

RTI-S 
 
In order to construct a system that runs on an SPP and 
supports HLA federations, we needed an RTI 
implementation that would use router processes to 
communicate within the federation.  The particular 
implementation that we used to form the basis of this 
system is the RTI-s subset RTI implementation.  
(Calvin et al 1997)  
 
We chose this implementation for several reasons.  It 
was available to us with source code, and is familiar to 
us from its use in previous experiments, so it was easily 
modifiable to use the new communications system we 
were building.  It has much less code than a full RTI 
implementation, which makes it much easier to 
understand and extend.  It scales well, and has a fairly 
small memory footprint.  Finally, it has a very flexible 
implementation of DDM, providing multiple static inset 
grids that allow detailed tuning of interest 
specifications.  (Rak et al 1997) 
 
 

COMMUNICATIONS ARCHITECTURE 
 
We put together a design for the communications 
architecture based on the concept of stackable protocol 
modules.  We analyzed the existing RTI-s 
communications code and refactored the functionality it 
provided into several pieces.  
 
The original RTI-s network interface is composed of 
the stream manager classes, which provide single-

sender to multiple-receiver message sending, receiving, 
and subscription, and the message buffer class, which 
provides an interface to messages.  Below this 
interface, the infrastructure provides message bundling, 
to reduce the packet count by aggregating multiple 
small messages into each packet, and fragmentation, to 
split large messages into multiple packets and 
reassemble them on receive.  Finally, it sends and 
receives the actual packets using IP multicast. 
 
Then, these main components of the communications 
infrastructure were separated out into chained protocol 
modules, and given a standardized interface to ease 
extension and flexibility.  We then added additional 
modules that send and receive packets using point-to-
point TCP and point-to-point UDP.  Finally, we added 
a module that translated generalized subscription 
requests into a message that states the current list of 
subscriptions, which is sent across the point-to-point 
connection and remembered by the receiver.  Figure 3 
shows three possible configurations for an RTI 
communications structure, with the three columns of 
protocol modules below the stream manager. 
 
In order to operate on SPP systems that use MPI as 
their connectivity basis, we built an MPI send and 
receive module.  However, we were worried about the 
fault-tolerance effects of MPI, and since we were 
running on Beowulf clusters, which support IP 
connectivity, we ended up using TCP for our prototype 
events. 
  
 

 
 
Figure 3. Three Example Configurations of the RTI-s 
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This general model of protocol modules has allowed us 
to experiment with additional message transformations 
depending on our needs.  In this vein, we built a 
module that compresses the data across a connection, 
when our bandwidth is low and we have available CPU 
time.  For testing purposes, we also built a module that 
simulates a lossy network, and which randomly drops 
incoming or outgoing data with a specified loss rate.  
We see this as a very convenient way of integrating 
future data transformations as they become necessary. 
 
 

ROUTER DESIGN 
 
Once we had a way for the RTI to send and receive 
data in a point-to-point fashion, we needed a router 
implementation that would receive the data from each 
federate and forward it to the clients that subscribed to 
it.  As an initial implementation, we built a simple 
router process that reuses the RTI’s flexible connection 
code, receiving the data and processing it in the same 
fashion as the RTI.  Figure 4 provides a diagram of a 
router that is routing between three connections. 
 

 
 

Figure 4.  Simple Router Design Routing Between 
Connections to Three Federates or Other Routers 

 
In order to send messages to only those receivers that 
want to receive it, each connection tracks what the 
receiver’s subscriptions are.  Therefore, since each 
connection has knowledge of what the receiver wants to 
hear, it can filter outgoing data before it makes it 
through the protocol chain.  Since each side of each 
connection knows this information, if no listeners in the 
system want to hear a particular piece of data, it won’ t 
be sent out of the originating machine.  This aggressive 
source-side squelching of data is a very nice side-effect 
of the router design. 
 
However, in order to accomplish this, we need to send 
subscription information across each link in both 

directions.  In the case of the router, it turns out to be 
fairly simple-- a router’s interest is the union of all its 
connections’  interests.  Therefore, the two major things 
that a router must do are to forward incoming messages 
to all other connections, and update interest information 
on all other connections when one connection changes.   
 
 

TOPOLOGY 
 
This simple router architecture is quite functional, but it 
does have some significant problems.  In particular, it 
does not handle cycles in the graph of routers.  Each 
router expects to be able to forward all incoming 
messages to all receivers.  If one of those receivers is a 
router that forwards a message to a router that has 
already forwarded it once, the routers will send data in 
a loop forever and overload the system.  However, this 
implies that these routers can only be set up in a tree 
structure if we have more load than a single router can 
handle.  This is obviously not a scalable design. 
 

 
 

Figure 5. Simple Tree-Based Router Topology 
 
Because of this, we also built a second router 
implementation based on the up/down fully-connected 
mesh topology that was explored by the SF Express 
project.  Unfortunately due to schedule pressure, we 
have not yet been able to test this design fully. 
 

 
 

Figure 6. Triplet-Connected Mesh Topology 
 
We believe that we need to investigate the topic of 
topology more, and look into new ways to organize the 
communications between the various components of 
the federation.  In particular, when Wide Area Network 
(WAN) connections between multiple SPP systems are 
introduced, being constrained to a tree structure can 
result in very heavy data loads to one of the sites, which 
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is a very expensive solution to a software limitation.  
Further, WAN connections have a much lower 
bandwidth than SPP interconnects or LAN connections, 
and therefore it makes sense to investigate specialized 
connection methods across WANs, and different 
tradeoffs in the design of the communications setup. 

 
 

INTEREST MANAGEMENT IMPROVEMENTS 
 
One of the results of this new messaging architecture 
was that we began to run into limitations of the RTI-s 
interest management infrastructure.  In particular, we 
wanted to expand the number of interest states from the 
previous maximum of 3000 to 100000 or more.  
Previously we were limited by the capabilities of IP 
multicast routers, which begin to fail after roughly 3000 
multicast groups, but with our own router 
implementation, we no longer are subject to these 
limits.  Since the efficacy of the static grid interest 
management scheme is determined by the number of 
interest states, the more states that are available, the 
smaller the grid cells are.  As the grid cells become 
smaller, less unwanted data will be delivered to the 
federate.   
 
However, the existing code began to perform poorly, 
due to the use of arrays of integers to represent the list 
of interests of a particular subscription.  In order to 
scale the number of interest states up, we had to refit a 
number of internal data types in RTI-s to be more 
efficient, both in storage usage and in access time.  In 
particular, the list of interest states was changed to be 
represented as a sparse bit vector implementation, with 
a fixed-block-size representation.  This provided a way 
to quickly determine interest overlap as well as a fast 
means of calculating the union of interests in the router.  
Further, it resulted in a compact representation that 
could easily be sent over connections with a fairly small 
overhead. 
 
Similar changes were made throughout the RTI code, in 
many places where the assumption was that an array of 
values with an entry for each interest state would be 
acceptable, we had to change to a tree representation or 
a hash table in order to not consume large amounts of 
memory.  Additional changes were required to provide 
a means of associating objects with their interests in an 
efficient fashion.   
 
Finally, a centralized means of recording statistics 
about data amounts and counts was added, in order to 
be able to pinpoint pieces of the system and what was 
causing slowdowns.  With the existing RTI-s capability 
to examine internal information, this allows a remote, 

distributed debugging capability that was extremely 
useful in monitoring the system as it ran. 
 
 

PROTOTYPE EVENTS 
 
We ran two prototype events, in which we 
demonstrated that it is possible to generate enormous 
numbers of vehicles in a very large virtual environment, 
using SPP systems.  Both events were run using a 
subset of the DCEE federation, composed of the JSAF 
simulation GUIs, the JSAF simulator running aircraft, 
ships, and ground combatants, and the JSAF clutter 
simulator providing background and civilian traffic. 
  
In December 2002, we were able to generate over 
1,000,000 vehicles, using a terrain that covered the 
entire Pacific Rim.  The simulation ran on the 
University of Southern California’s Beowulf cluster, 
and operators and observers were located at Joint 
Forces Command in Suffolk, Virginia, as well as at 
Information Sciences Institute in Los Angeles.  We 
were able to use 50,000 interest states to provide a 
fairly precise specification of interests, in several 
geographically disparate simulated locations. 
 
In March 2003, we ran an even larger event, generating 
over 1,500,000 vehicles on the same terrain database, 
but located in different areas with more terrain detail.  
We ran on the Huinalu Beowulf cluster at the Maui 
High Performance Computing Center and the ASC 
Beowulf cluster at Wright-Patterson AFB, with 
observers in Suffolk and Los Angeles again.  We also 
increased the number of interest states to 100,000 
without adverse effect.  
 
Both of these events were focused on testing the 
functionality of the new system, and showed that we 
can indeed generate a very large simulated 
environment.  They also demonstrated that we have 
quite a bit of additional work that we can do, in order to 
make the system viable for the end users.  In particular, 
WAN latencies and inefficiencies in the simulation’s 
control protocols combine to make the user interfaces 
very sluggish.  The tree nature of the routers also 
became a point of failure when the system was under its 
heaviest loads.  We suffered a number of router failures 
due to data overload, and we are still working to 
address these. 
 
 

FUTURE REQUIREMENTS 
 
We still face a number of issues that we need to resolve 
in order to make the use of SPP systems possible for 
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DCEE.  The events that we have run so far show major 
promise, but have not yet demonstrated that we are able 
to fulfill the DCEE’s flexibility and ease-of-use 
requirements yet. 
 
The first major requirement is that we need to make it 
much easier for non-experts to acquire time on SPPs 
and execute the system on them.  It currently is a fairly 
involved process that takes several people to 
accomplish.  This is a major project that is already 
underway.  (Williams & Tran 2003)  An initial version 
of the MARCI launch and control system was tested at 
the March event, and it is undergoing further 
development and refinement. 
 
Another major requirement is that we must have a way 
for simulations running on SPP systems to participate 
in the DCEE federation.  The primary reason we cannot 
simply plug the SPP systems into the DCEE is that the 
DCEE uses the enhanced version of RTI-NG developed 
for Millennium Challenge 2002, (Hyett & Wuerfel 
2003) and the SPP uses RTI-s with point-to-point 
routers.  Since they use different RTI implementations, 
they run in two separate HLA federations, and we need 
to build a federation gateway that will allow us to 
bridge data back and forth between the two federations.  
This is not an easy task (Granowetter 2003) but we 
believe that we can build such a gateway as long as its 
scope is restricted to the DCEE and similar federations.  
This is another ongoing major project. 
 
An additional issue that we are beginning to investigate 
is how the SPP will help analysts do After Action 
Review of the huge amounts of data that can be 
produced by simulations running on an SPP.  A 
distributed logging and query system is currently being 
designed to attempt to address this requirement.   
 
One of the most important areas that we need to 
investigate is the issue of control.  As we scale up 
scenarios to the desired sizes, it becomes more and 
more difficult to control the simulation and make sure it 
behaves in a proper fashion.  We need to look into 
schemes that reduce the amount of operator control that 
is required to run a simulation.  This would have an 
additional benefit for DCEE as well, since any 
technique that reduces the number of personnel 
involved will be of incredible utility.  

 
 

CONCLUSIONS 
 
The use of Scalable Parallel Processor systems has a 
great deal of promise in building larger and more 
detailed virtual environments,  both for experimentation 

and for many other uses of simulation.  We are 
integrating the use of SPP systems into the DCEE, and 
we believe that it will provide an extremely valuable 
asset in the DCEE environment. 
 
The use of software interest management routers to 
provide data distribution gives us a great deal of 
flexibility in building a scalable system and providing 
the building blocks to more detailed dataflow control 
and management.  
 
There are many additional dimensions that are worth 
exploring, both in better integration into DCEE, and 
additional technical exploration to discover new ways 
to apply the SPP assets to the problems of DCEE and 
similar human-in-the-loop simulation systems. 
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