Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2003

Data Distribution for Mobile Augmented Reality in Simulation and Training

Dennis Brown' Yohan Baillot® Simon J. Julier’ David Armoza'
dbrown@ait.nrl.navy.mil baillot@ait.nrl.navy.mil julier@ait.nrl.navy.mil armoza@ait.nrl.navy.mil
Joshua J. Eliason® Mark A. Livingston' Lawrence J. Rosenblum' Pat Garrity*
jeliasl@evl.uic.edu markl@ait.nrl.navy.mil rosenblum@ait.nrl.navy.mil Pat_Garrity@peostri.army.mil

'Advanced Information Technology, Naval Research Laboratory, Washington, DC 20375
’ITT Advanced Engineering and Sciences, Alexandria, VA 22303
*Electronic Visualization Laboratory, University of Illinois at Chicago, Chiacgo, IL
*U.S. Army Research, Development, and Engineering Command, Orlando, FL

ABSTRACT

The Battlefield Augmented Reality System (BARS) is a mobile augmented reality system that displays head-up
battlefield intelligence information to a dismounted warrior. BARS consists of a wearable computer, a wireless
network, and a tracked see-through Head Mounted Display (HMD). The computer generates graphics that, from the
user's perspective, appear to exist in the surrounding environment. For example, a building could be augmented to
show its name, a plan of its interior, icons to represent reported hazard locations, and the names of adjacent streets.

The full power of mobile augmented reality systems is realized when these systems are connected to one another, to
immersive virtual environments, and to remote information servers. These connections are made through wireless
devices that cannot guarantee connectivity and may have highly constrained bandwidth. Based on these constraints,
we present a robust event-based data distribution mechanism for mobile augmented reality and virtual
environments. It is based on replicated databases, pluggable networking protocols, and communication channels.

For use in simulation and training exercises, we have been working with U.S. Army RDECOM to create an
interface between this data distribution mechanism and a Semi-Automated Forces (SAF) system. With this interface,
the BARS user appears as a dismounted warrior in the SAF system—the BARS user's position and orientation are
fed to the SAF system, and the state from the SAF system is sent back to the BARS user's display. Connected to a
SAF system, BARS technology creates a training system that works in a real location (as compared to a virtual
reality simulation) to make simulated forces appear to exist in and interact with the real world.

ABOUT THE AUTHORS

DENNIS BROWN is a Computer Scientist at the Naval Research Laboratory. He received his B.A. in Computer
Science from Rice University and his M.S. in Computer Science from the University of North Carolina at Chapel
Hill. He works on the Battlefield Augmented Reality System (BARS) and multi-modal virtual reality projects. His
research interests include ubiquitous computing, specifically, novel user interfaces and data distribution. He is a
member of IEEE.

YOHAN BAILLOT is a computer and electrical engineer of ITT Industries at the Naval Research Laboratory. He
received an M.S. in electrical engineering in 1996 from ISIM, France, and an M.S. in computer science in 1999
from the University of Central Florida. His research interests are in computer graphics, 3D displays, tracking,
vision, mobile augmented reality and wearable computers. Baillot is a member of the IEEE Computer Society.

SIMON J. JULIER is a Research Scientist for ITT Industries at the Naval Research Laboratory. He received a
D.Phil. from the Robotics Research Group, Oxford University, UK. He is a technical lead on the Battlefield
Augmented Reality System (BARS) project. His research interests include mobile augmented reality and large-scale
distributed data fusion.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2003

DAVID ARMOZA is a Computer Scientist at the Naval Research Laboratory, where he works in the area of
Distributed Simulation. His current research involves use of the US Navy’s Joint Semi-Automated Forces (JSAF)
simulation system and distributing stand-alone tools with DMSO’s High Level Architecture (HLA). He received a
BS in Computer Science from the University of Maryland, and a MS in Computer Science from The Johns Hopkins
University.

JOSHUA J. ELIASON is a graduate student at the Electronic Visualization Laboratory, University of Illinois at
Chicago. He received a BFA in 1999 from the University of Wisconsin-Madison. He is an intern on the Battlefield
Augmented Reality System (BARS) project at the Naval Research Laboratory. His research interests include human
factors in augmented and virtual reality, computer graphics, animation, and film production.

MARK A. LIVINGSTON is a Research Scientist in the Virtual Reality Laboratory at the Naval Research
Laboratory, where he works on the Battlefield Augmented Reality System (BARS). He received a Ph.D. from the
University of North Carolina at Chapel Hill, where he helped develop a clinical augmented reality system for both
ultrasound-guided and laparoscopic surgical procedures, focusing on tracking subsystems. His current research
focuses on vision-based tracking algorithms and on user perception in augmented reality systems. Livingston is a
member of IEEE Computer Society, ACM, and SIGGRAPH, and is a member of the VR2004 conference
committee.

LAWRENCE J. ROSENBLUM is Director of VR Systems and Research at the Naval Research Laboratory (NRL)
and Program Officer for Visualization and Computer Graphics at the Office of Naval Research (ONR). Rosenblum
received his Ph.D. in mathematics from The Ohio State University. He is on the Editorial Board of IEEE CG&A
and J. Virtual Reality and the Advisory Board of the IEEE Transactions on Visualization and Computer Graphics.
He was the elected Chairman of the IEEE Technical Committee on Computer Graphics from 1994-1996 and is
currently a TC Director. He is a founder and steering committee member of the IEEE Visualization and IEEE VR
Conference Series. Elected a Senior Member of the IEEE in 1994, Rosenblum is also a member of the IEEE
Computer Society, ACM, SIGGRAPH, and the AGU.

PAT GARRITY is a principal investigator at U.S. Army Research, Development, and Engineering Command
(RDECOM), Simulation Technology Center. He currently works in the Dismounted Embedded Training
Technologies (DEST) enterprise area conducting R&D in the area of dismounted soldier embedded training &
simulation. Prior to his involvement with tech base division at RDECOM, he worked as the Project Director for the
Advanced Concepts Research Tools (ACRT) program in PM STI at STRICOM. His current interests include
Human-In-The-Loop (HITL) networked simulators, virtual and augmented reality, and embedded training
applications. He earned his B.S. in Computer Engineering from the University of South Florida in 1985 and his
M.S. in Simulation Systems from the University of Central Florida in 1994.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2003

Data Distribution for Mobile Augmented Reality in Simulation and Training

Yohan Baillot’
baillot@ait.nrl.navy.mil

Dennis Brown'
dbrown@ait.nrl.navy.mil

Mark A. Livingstonl

markl@ait.nrl.navy.mil

Joshua J. Eliason®
jeliasl@evl.uic.edu

David Armoza'
armoza@ait.nrl.navy.mil

Simon J. Julier’
julier@ait.nrl.navy.mil
Lawrence J. Rosenblum' Pat Garrity*
rosenblum@ait.nrl.navy.mil

'Advanced Information Technology, Naval Research Laboratory, Washington, DC 20375
’ITT Advanced Engineering and Sciences, Alexandria, VA 22303
*Electronic Visualization Laboratory, University of Illinois at Chicago, Chiacgo, IL
*U.S. Army Research, Development, and Engineering Command, Orlando, FL

INTRODUCTION

Distributed Virtual Reality (VR) technology is used in
many immersive training and simulation environments,
and there is ongoing research and development in
improving the fidelity of these simulators (Stytz,
1996). However, current technology cannot perfectly
replicate the sensory experience provided by the real
world. Augmented Reality (AR), in which virtual
reality techniques are added to the user’s real world
experience, is a promising alternative. This paper
explains one approach to using AR for embedded
training and, specifically, how data is distributed and
shared.

Research on the Battlefield Augmented Reality System
(BARS) (Julier et al. 2000a, Livingston et al. 2002) has
focused on the problem of developing information
systems able to provide users with “situation
awareness”—data about the environment and its
contents. The centerpiece of BARS is a mobile
augmented reality system that displays head-up
battlefield intelligence information to a dismounted
warrior. It consists of a wearable computer, a wireless
network, and a tracked see-through Head Mounted
Display (HMD). The computer generates graphics that,
from the user's perspective, appear to exist in the
surrounding environment. For example, a building
could be augmented to show its name, a plan of its
interior, icons to represent reported hazard locations,
and the names of adjacent streets.

In an effort sponsored by the Naval Research
Laboratory and the Embedded Training for
Dismounted Soldiers (ETDS) Science and Technology
Objective (STO) (Dumanior et al. 2002) at U.S. Army
RDECOM, the BARS team is developing an embedded
training system for Military Operations in Urban

Terrain (MOUT) scenarios. The BARS system for
embedded training (BARS-ET) allows the user to train
in the real world with real and simulated forces. It
combines the fidelity of a real MOUT training
environment with the convenience of simulated forces.
Similar but distinct efforts at using AR for embedded
training are currently underway within the same STO,
including MARCETE (Kirkley et al. 2002), which
places an emphasis on working with SCORM datasets,
and VICTER (Barham et al. 2002), which fits within
the limitations of the current Land Warrior system
(Natick Soldier Center 2001).

In its capacity as a situation awareness tool, BARS
supports a consistent information space. Therefore,
data objects tend to be less complicated (for example,
they are not articulated) and updates occur less
frequently than in all-virtual environments.
Furthermore, BARS has to deal with state information
from a variety of sources for a variety of purposes.
These include information dissemination (distributing
the virtual object database), system configuration, and
even system control through a “remote control”
handheld computer. Furthermore, network connectivity
can be poor. Given these constraints, a robust, flexible,
and generalized event-based networking infrastructure
for data distribution has been developed (Brown et al.
2003). The mechanism builds upon three techniques:
distributed databases, pluggable transport protocols,
and a high-level management technique known as
channels. The mechanism supports the use of “bridge”
applications allow BARS to share data with external
information systems.

In this paper, the BARS networking system is
summarized and its use for embedded training is
described.

Pat_Garrity@peostri.army.mil

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2003

PROBLEM STATEMENT

The Battlefield Augmented Reality System (BARS) is
a collaborative mobile augmented reality system
designed to improve the situation awareness and the
coordination between a team of mobile users.
Improving situation awareness means that each user
obtains a better understanding of the environment
through enhanced sensory perception. The types of
data include the names of buildings, routes, objectives,
and the locations of other users. While short-range
radio communications can accomplish much of this,
the passive and natural display paradigm of augmented
reality makes the internalization of the information by
an individual faster and easier.

The hardware of a prototype wearable system is shown
in Figure 1. It consists of a wearable computer, a
display and a tracking system. The computer is
responsible for generating 3D graphics and spatialized
audio in real-time. It can be implemented using an
embedded PC with high-end graphics and sound cards
or a laptop with built-in high-end graphics. The
generated graphics are shown on an optical see-
through head mounted display. Prototypes have been
developed using both the Sony Glasstron™ and the
Microvision Nomad™ retinal displays. The tracking
system determines the position and orientation of the
user’s head. Position is measured using a Global
Positioning System (GPS) receiver. Orientation is
determined using a solid-state inertial navigation
system. Wireless 802.11b networking is used for data
distribution and GPS corrections. A camera can be
used for tracking and sending video reports to a base
station. The user operates the system using a cordless

gy GPSAntenna Camgra
| — ; :

' 'rh-mrnugllf &
" Display v
A

Wireless .

input Device SoH

Battery * ~J” warabi
Confute

Figure 1. The BARS Wearable System

mouse and a wrist keyboard. When a future system
based on BARS research is used in real operations,
communication will likely happen over the US
military's hardened communication systems of that
time. However, it is probable that any deployed system
will still be vulnerable to connectivity and bandwidth
complications in urban areas, and the design reflects
that consideration.

The BARS mobile user sees computer graphics
superimposed on or next to the real objects they are
intended to augment, in addition to status information
such as compass direction and messages from other
users. Figure 2 shows a view using the system, in
which another BARS wuser is augmented and is
following a virtual path.

Figure 2. Sample view through BARS display,
showing building information and the location of
another BARS user.

This application introduces a number of characteristics
that impact the distribution of information and events
between users:
e The objective is to provide relevant
information, not a consistent virtual world.
The BARS environment is populated by a set
of objects that are self-contained entities and
other types of discrete data. Each object can
be relatively simple, representing a building
type and location, an avatar to symbolize
another user, the location of a hazard, and so
on. It is not necessary to transmit complicated
geometric objects or behaviors—only
semantic information. The latency in the
update of an object or an entity is a secondary
consideration.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2003

e Data distribution between users can be
heterogeneous. Different users might perform
different tasks and thus have different
information requirements.

e The distribution system should facilitate
collaboration between users. In addition to
environmental data, the distribution system
must support the propagation of meta-data
such as task assignments, objectives, and
personalized messages.

e Users should have the ability to create reports
and update entities in the database. For
example, a user might observe that an
environmental feature (such as a vehicle) is
not where the database indicates it should be.
The user should have the ability to move the
object to its correct location.

e Network connectivity is unreliable. As a user
traverses a terrain, reception strength and
bandwidth may vary.

BARS EVENT DISTRIBUTION SYSTEM

First, some terms will be defined as they are used in
this discussion. A session consists of one or more
applications, or program instances, which may exist in
any number on one or more machines on a network.
Each application uses a core set of libraries to maintain
a local database of objects and communicate over a
network. Applications may also include modules to
read data from sensors, draw the augmented display,
and perform other tasks, depending on the purpose of
the application. The local database is a copy of a
master database that is shared between all applications
on the network. The distribution system is responsible
for selectively replicating the master database in all
applications.

The distribution system is based entirely on the
concept of events. Events are used to instantiate objects
(in effect, transmit a view of a database between
systems), update existing objects, and to provide other
non-database status information such as a new
objective for an individual user.

The event distribution system is based on three
components: replicated object repositories, event
transporters, and communication channels. These
components will be described, as will bridge
applications, which communicate with outside virtual
and augmented reality systems.

Replicated Object Repositories

All of the data for a scenario is stored in an object
repository. The data consists of the mostly static
models of the physical surroundings (buildings, streets,
points of interest, etc), dynamic avatars that represent
users and other entities, and objects created to
communicate ideas, such as reports of enemy locations,
routes for users to follow, and digital ink. This
repository is replicated in whole or in part for each
application.

When an application starts, it loads an initial set of
objects from a number of sources, including data files,
other applications already running on the network, and
files specified on the command line. The initial set of
objects typically consists of street labels, landmarks,
building information, and other terrain-like
information, as well as an initial set of objectives,
routes, and phase markers for the current task. Since a
BARS user is initially given a database to start, and
everything else in the wearable BARS system is self-
contained, the user will have a working AR system
even if all network connectivity is lost during an
operation.

Although network limitations may hamper wireless
communications for the mobile users, there are few
limitations on the base users. Base users are those that
use stationary systems and are not mobile, such as
users at fixed command centers. Their applications run
on stationary VR systems such as a desktop computers,
3D workbenches, and immersive VR rooms. Using the
same distribution system, they can have high levels of
detail and interaction by taking advantage of the
increased bandwidth for replicating more objects and
seeing change events at a higher frequency.

Event Transportation

The heart of the event transportation system is the
Object and Event Manager. The Object and Event
Manager is responsible for dispatching events within
an application and distributing those events to remote
applications.

When the Object and Event Manager receives an
event, it places it on an asynchronous event queue. An
event dispatching thread delivers the event to all the
listeners that are subscribed to receive the specified
event type. The event dispatching mechanism
maintains two sets of data—the set of wvalid
event/listener pairs, and the set of listeners registered
for each event type. Because the event system is based
on the Java Abstract Window Toolkit event model

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2003

(Sun Microsystems 2003), the Reflection Application
Programming Interface is leveraged to achieve these
steps. Each event type is implemented in its own class.
For each event class type, a listener interface is
defined. When an object is registered with the object
and event manager, its interface is queried and it is
registered to receive all event types for which its
interface is compatible. Therefore, it is possible to
dynamically extend the set of event and listener types
at runtime.

The following is an example of the life of an event
within a BARS application that tracks a user’s position.
The user's position is updated by calling a method in
the user object to set its pose based on data gathered
from tracking devices. In turn, this method creates an
event that encapsulates the change in pose. The event
is enqueued at the event dispatcher. The dispatcher
sends the event to all listeners, including the initial
object itself, as well as other system components (such
as the graphics system, which updates the viewpoint).
Note that the object's pose isn't set until it receives the
event back from the dispatcher (the alternative is to set
the position at the same time the event is sent)—this
way, the order of events is preserved. Figure 3 shows
the flow of events within an application.

The propagation of events within a single application
instance has been described. This event mechanism
was extended to allow many separate applications to
trade events by creating Event Transporters. Event
Transporters allow Object and Event Managers in
different application instances to send and receive
events over Internet Protocol (IP). Figure 4 shows the
flow of events between applications. If an event is
tagged as distributed, an Event Transporter serializes
the event and broadcasts it to other applications. The

BARS Application

BARS Database Objects BARS System Objects

BARS Database Renderer
Object 1 Object Manager

and

BARS Database \Event Dispatcher Filter
Object 2 T~
L

Event Queue

~N

Event Transporter

AN

BARS Database Objects BARS System Objects

BARS Database) Renderer
Object 1 Object Manager

and

BARS Database \\Event Dispatcher Filter
Object 2 -~
\ Event Queue .

Figure 3. Event distribution within an application.
Arrows show event movement.

Event Transporters in remote applications synthesize
the event object and dispatch it on those applications'
event queues. The system uses several types of
transporters based on IP multicast, the Lightweight
Reliable Multicast Protocol (LRMP) from INRIA (Liao
1998), and a combination protocol called the
Selectively Unreliable Multicast Protocol (SUMP) that
combines I[P multicast and LRMP. Typically,
application instances use SUMP on the local network.
To communicate outside of the local network (where
multicast is typically filtered out) a TCP/IP transporter
and bridge are used (described later in the Bridges
subsection). Because of the connectionless nature of IP
multicast, the distribution is robust in that the network
connection can be unreliable and the user application
will still function, although without network updates at
some times.

As events are created, they are tagged “reliable” or
“unreliable” designating how they should be sent.
Object creation and deletion are always sent reliably.
Object changes are sent reliably or unreliably based

BARS Application

BARS Database Objects BARS System Objects

BARS Database Renderer
Object 1 Object Manager
and

[\(Event Dispatcher

BARS Database
Object 2 fa
[~

Event Queue

~N

Event Transporter

//

‘ Multicast Group ‘

Figure 4. Event distribution between applications. Arrows show event movement.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2003

first on whether the modification is relative to other
each one is important, so those are sent reliably. Non-
relative changes, such as the constant updates of a
user’s position, are mostly sent unreliably since if one
were missed, the next would overwrite it anyway.
Periodically, these non-relative changes are sent
reliably. This policy makes the assumption that the
implementation of IP networking in a real operation
may drop IP packets often, making reliable multicast
expensive, and so events are not sent reliably unless
they are thought to be truly necessary.

Channels

The problem with the event distribution mechanism
described above is that all events for all objects would
be broadcast to every single application. Creating
copies of every object for every user and updating
those replicas would swamp the network with
information that would be irrelevant for many users.
To overcome this problem, the database is only
partially replicated in each application instance.

In creating this replication mechanism, the uses of
BARS drove the policies. One condition to consider is
that a mobile user can only see so much and deal with
information in a relatively small radius, so a spatial
area-of-interest mechanism was considered. It is not
necessarily the case that a mobile user only cares about
objects that can be seen from his or her current position
in the real world; for example, the BARS mobile
application includes an overhead map mode in which
the user can zoom out to an arbitrary height to observe
objects within a huge radius around the current
position. However, it seems that there would be few
situations in which a mobile user would request for
objects farther away, at the horizon for example, so for
most situations, a simple area-of-interest mechanism is
reasonable.

Another condition is the type of information which is
being distributed. Even if some objects are near to a
mobile user, they may not be important and might only
cause distraction. Alternatively, the objects may indeed
be too far away to be seen, but very important, such as
with possible sniper locations. For these cases, a
simple area-of-interest mechanism isn't sufficient. In an
earlier paper (Julier et al. 2000b), a filtering
mechanism for mobile augmented reality was
described. This filtering mechanism operates on the
local object database within an application instance. It
does not show users objects in which they have no
interest in order to reduce display clutter. In practice, it
simply hides objects from the user—it does not
actually control whether or not the application instance

changes, or not. Relative changes have an ordering and
holds replicas of these objects or receives events
related to these objects.

Keeping these situations in mind, channels have been
developed. The term is overloaded in the literature, but
in this system, a channel is a set of related objects. It is
implemented as an instance of an event transporter and
a multicast group designated for that transporter. An
application can join an arbitrary number of channels
and create new channels, until all available multicast
groups are allocated. Figure 5 shows a single
application using two channels.

BARS Application

BARS Database Objects BARS System Objects

BARS Database Renderer
Object 1 Object Manager

and

BARS Database \Evem Dispatcher Eilter
Object 2 -~
L»
o
. 4 Event Queue

Channel 1

Channel 2
Multicast Group 1

Multicast Group 2

Figure 5. Event distribution using two channels.
Arrows show event movement.

One example of a channel is a set of objects in a
certain spatial area. As users move from location to
location, they can join and leave channels based on
spatial areas. Another example is the set of hazardous
objects; while in the previous example, the application
instance would replicate only objects nearby, the
hazardous objects channel could cover a larger area,
but only include those hazards. Also, BARS
incorporates several interaction modules that produce
subsequent objects. For example, one interaction
module is principally responsible for real-time,
interactive geometric construction (Baillot et al. 2000).
It allows users to collaboratively place points and build
new objects from those points; in this case, the
intermediate points would not be visible to other users
because they are placed in a channel only joined by the
constructing users. Other users would only see the final
objects. Another interaction module lets a user draw
digital ink for interpretation by a multimodal

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2003

interaction system—this ink is turned into new objects
or user interface commands. In this case, the
application instance of the user drawing the ink would
be placed in a separate channel, joined by the
application to interface with the multimodal system.
The ink is placed in this channel so that other users
would not see these sketches out of context.

Bridges

As the multimodal example illustrates, some of the
BARS applications communicate with other systems.
These applications are called bridges. Bridges join
both the BARS distribution system and an external
system. They translate object creation and change
events between BARS and external systems. By
maintaining tables linking BARS objects and these
external objects, those objects can be represented in
BARS and vice-versa. Two systems with which BARS
can communicate are the Columbia Mobile Augmented
Reality System (Hollerer et. al. 1999) and the Oregon
Graduate Institute's Quickset multimodal interface
(Pittman et al. 1996).

USING BARS FOR EMBEDDED TRAINING

We have discussed how the BARS wearable systems
and their operators can communicate with each other,
with central data repositories, and with external
information systems. Although BARS was originally
designed for providing situation awareness during
operations, its components can be reused for training in
real environments by augmenting the real world with
simulated forces and other factors.

BARS for embedded MOUT training (BARS-ET)
works as follows:

e Simulated forces are rendered on the display,
so as the user looks around the real MOUT
facility, forces appear to exist in the real
world (within current graphics limitations)
even though they do not truly exist. At the
same time, fellow real trainees remain visible.

e Spatialized audio is sent through the
headphones to replicate the aural cues that the
simulated forces would make if they were
real. These sounds include footsteps,
shouting, helicopters, and so on. Since the
sound is spatialized, the user can determine
the location of the simulated force by
listening, like in the real world.

e Interaction with the simulated forces is very
limited at this time. Real and virtual forces
can shoot at each other.

e Simulated forces are controlled through
various means and are distributed to the
trainees using the BARS distribution system.

There are several technical challenges to this task, even
with all of the work already completed for BARS,
which will be explained further.

Rendering Simulated Forces Realistically

The simulated forces need to appear on the user’s
display to give the illusion that they exist in the real
world. There are several inherent problems: model
fidelity, lighting to match the real environment, and
occlusion by real objects.

Model fidelity is controlled by the modeler and is
limited by the power of the machine running the
application. Although models that can be rendered in
real time still look computer generated, just like in VR-
based simulations, the limited AR model representation
capabilities are adequately realistic for embedded
simulation and training. AR actually has an advantage
over VR with respect to rendering: the AR graphics
system does not need to draw an entire virtual world,
only the augmented forces, so they could potentially be
more detailed than those in VR-based simulations.

Lighting the rendered forces is a problem our team has
not approached yet. This task would require knowing
the lighting conditions of the real environment in
which the model would appear, and changing the
renderer’s light model to match. Another limitation is
the display itself, as it is very sensitive to outside light,
and even if the image is rendered with perfect lighting,
it still might not appear correctly on the display.

The problem of occlusion of simulated objects by real
objects, more than lighting or model complexity, is the
one that would most likely ruin the immersion of
training using AR. Imagine using an AR training
system and seeing a simulated force, which is supposed
to be behind a building, rendered in front of the
building. This property is actually a feature of BARS
—it gives the user a way to see through walls.
However, today’s dismounted warriors cannot see
through walls, and so in the AR-based trainer, they
should not see simulated forces that should be
occluded by real objects.

The occlusion problem is solved by using a model of
the training environment. Techniques for creating
environmental models for AR have been previously
published (Julier et al. 2001). In the AR system for
operations, it is known where the user is looking and

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2003

the system can draw an augmenting model of buildings
and features superimposed on the real features. In AR
for training, this same model is rendered in flat black.
On the computer display, these black features will
occlude the parts of the simulated forces the user
should not see. However, since black is the “see
through” color on the AR display, the user will still see
the real world, along with the correct non-occluded
parts of the simulated forces. This solution was
introduced for indoor applications by State et al (1996)
and applied to outdoor models by Piekarski and
Thomas (2002) for use in outdoor AR gaming. Figure
6 shows a sequence of images demonstrating this
technique. Figure 6A shows the real-world scene with
no augmentation. In figure 6B, the same scene is
shown but with simulated forces simply drawn over the
scene at their locations in the world—there is no
occlusion. It is hard to tell if all of the forces are
intended to be in front of the building, or if they are
just drawn there due to limitations of the system.
Figure 6C shows the simulated forces occluded by a
gray model, however, the model also occludes some of
the real world. Finally, figure 6D shows the scene
rendered using a black model, which serves two
purposes: it occludes the simulated forces properly
and, since it is the “see through” color, allows the user
to see the real world instead of the gray model.

Inserting Aural Cues

Since the system already has a 3D world model, and
the locations of the user and the simulated forces are
known, existing 3D sound libraries are used to provide
spatialized audio. Sound streams are simply attached to
simulated forces and the audio library is updated with
the positions of those forces and with the user’s
listening attitude. Open-air headphones naturally mix
the sounds of the real world with the computer-
generated sounds.

Interacting With Simulated Forces

The simulated forces can be controlled in several ways
including simple animation scripts. However, the
animations are not reactive and tend to create a simple
“shooting gallery” type of simulation. They can also be
controlled by users of immersive VR simulations that
participate on the same network as the AR user.
Finally, they can be controlled through Semi-
Automated Force (SAF) systems.

BARS communicates with outside information systems
using bridge applications, as described in the previous
section. By creating a bridge application between
BARS and a SAF system, the years of work already

Figure 6. Stages in the development of AR models for
embedded training.

put into simulating forces for both non-immersive and
immersive VR-based training can be leveraged, and the
user interact with those forces in a real training
environment.

Figure 7 shows a set of BARS applications for an
embedded training scenario: two trainees using
wearable systems, a trainee using an immersive VR
system, an observer using a VR system, and a bridge
synchronizing the entities in BARS and a connected
SAF system. The bridge converts SAF entities into
BARS entities and vice-versa. It keeps those entities
updated on each side of the bridge as they change by
converting BARS events into DIS or HLA packets and
vice-versa. The bridge is not a simple filter for
converting these events; it must maintain internal state
information in order to convert the events and packets
properly. In addition to sharing entity information, the
system allows BARS users to engage the simulated
forces and allows the simulated forces to retaliate.

FUTURE WORK

We plan to pursue refinement of the BARS-SAF
interface to exploit advanced SAF functionality such as
DISAF human articulation, rather than static human
models that are positioned similar to toy soldiers.

We also anticipate exploring a mixture of AR
techniques that we developed for situation awareness
in real operations with the AR techniques for training.
While this would no longer mimic the real world
(since, for example, we can’t really see through walls),

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2003

we hope that in the future, real operations will use
BARS or one of its descendents. By inserting the
enhanced AR capabilities into the training system, we
can test which capabilities are most useful and refine
them in a controlled environment.

AR Wearable
System
AR Wearable BARS Network
System

of Applications

Bridge
Application

j f entity state information

External SAF System

Figure 7. Sharing information between BARS and an
external SAF system using a bridge application.

REFERENCES

Barham, P., B. Plamondon, P. Dumanoir, & P. Garrity
(2002). “VICTER: An Embedded Virtual Simulation
System for Land Warrior.” Proceedings of the 23"
Army Science Conference, Orlando, FL, USA.

Brown, D., Y. Baillot, S.J. Julier, & M.A. Livingston
(2003). “An Event-Based Data Distribution
Mechanism for Collaborative Mobile Augmented
Reality and Virtual Environments,” Proceedings of
the 2003 IEEE Virtual Reality Conference, Los
Angeles, CA, USA.

Dumanoir, P., P. Garrity, V. Lowe, & B. Witmer

(2002). “Embedded Training for Dismounted
Soldiers (ETDS),” Proceedings of the 2002
Interservice/Industry Training, Simulation, and

Education Conference, Orlando, FL, USA.

Hollerer, T., S. Feiner, T. Terauchi, G. Rashid, & D.
Hallaway (1999). “Exploring MARS: Developing
Indoor and Outdoor User Interfaces to a Mobile
Augmented Reality System,” in Computers and
Graphics 23 (6), Elsevier Publishers, Dec 1999, pp.
779-785.

Julier, S., Y. Baillot, D. Brown, & L. Rosenblum
(2000). “BARS: Battlefield Augmented Reality
System,” NATO Symposium on Information
Processing Techniques for Military Systems,
October 2000, Istanbul, Turkey.

Julier, S., M. Lanzagorta, S. Sestito, L. Rosenblum, T.
Hollerer, & S. Feiner (2000). “Information Filtering
for Mobile Augmented Reality,” Proceedings of the
2000 IEEE International Symposium on Augmented
Reality, Germany.

Julier, S., Y. Baillot, M. Lanzagorta, L. Rosenblum, &
D. Brown (2001). Urban Terrain Modeling For
Augmented Reality Applications. In M. Abdelgurfi
(Ed.), 3D Synthetic Environment Reconstruction (pp.
118-138), Dordrecht, The Netherlands: Kluwer
Academic Publishers.

Kirkley, S., J. Kirkley, S.C. Borland, T. Waite, P.
Dumanior, P. Garrity, & B. Witmer (2002).
“Embedded Training with Mobile AR,” Proceedings
of the 23" Army Science Conference, Orlando, FL,
USA.

Liao, T (1998). Light-weight Reliable Multicast
Protocol. Internet Draft retrieved June 9, 2003 from
http://webcanal.inria.fr/lrmp/draft-liao-lrmp-00.txt

Livingston, M.A., L.J. Rosenblum, S.J. Julier, D.
Brown, Y. Baillot, J.E. Swan II, J.L. Gabbard, & D.
Hix (2002). “An Augmented Reality System for
Military Operations in Urban Terrain,” Proceedings
of the 2002 Interservice/Industry Training,
Simulation, and Education Conference, Orlando,
FL, USA.

Natick Soldier Center (2001). Operational
Requirements Document for Land Warrior.
Retrieved June 6, 2003, from

http://www.natick.army.mil/soldiet/ WSIT/LW_ORD
.PDF

Piekarski, W. & B. H. Thomas (2002). “ARQuake: The
Outdoor Augmented Reality Gaming System,” ACM
Communications, Vol. 45, pp. 36-38.

http://webcanal.inria.fr/lrmp/draft-liao-lrmp-00.txt
http://www.natick.army.mil/soldier/WSIT/LW_ORD.PDF
http://www.natick.army.mil/soldier/WSIT/LW_ORD.PDF

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2003

Pittman, J., I. Smith, P. Cohen, S. Oviatt, & T. Yang
(1996). “Quickset: A multimodal interface for
military simulations,” Proceedings of the 6"
Conference on Computer-Generated Forces and
Behavioral Representation, Orlando, FL, USA.

State, A. M. A. Livingston, G. Hirota, W. F. Garrett,
M. C. Whitton, E. D. Pisano MD, and H. Fuchs
(1996). “Technologies for Augmented Reality
Systems: Realizing Ultrasound-Guided Needle

Biopsies,” SIGGRAPH 96 Conference Proceedings.
Aug 1996. pp. 439-446.

Stytz, M.R. (1996). “Distributed Virtual Environments,”
IEEE Computer Graphics And Applications, May
1996, pp. 19-31.

Sun Microsystems, Inc. (2003). Java API
Documentation. Retrieved June 9, 2003 from
http://java.sun.com/docs

http://java.sun.com/docs

