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ABSTRACT

Realistic behaviors for computer-generated forces (CGF) are as crucial as realistic graphics and terrain to the creation
of high-quality military simulations.  While a variety of simulation-building and 3D-modeling tools exist to help
with the construction of the latter, the development of CGF behaviors still typically requires programming code to
be written, either in a standard language such as C++ or Java or in a custom scripting language.  As a result, the
subject matter experts (SMEs) with the tactical or operational knowledge about how CGF should behave are seldom
able to directly specify that behavior for a simulation, because they lack the necessary programming skill.  The
researchers therefore set out to develop an approach to simulation behavior authoring that minimizes the amount of
programming required while still allowing the creation of sophisticated behaviors.  Two key observations guided
this effort.  First, there exist already a variety of largely visual “languages” for describing complex sequences of
actions and conditions – such as flowcharts, finite-state machines, and decision trees – that are either familiar to or
quickly understandable by non-programmers.  Second, CGF behaviors, particularly at a tactical or operational level,
can often be adequately specified using such lightweight procedural representations.  The end result was a behavior
authoring methodology that is founded on a lightweight, visual, procedural approach to modeling CGF behaviors.
This methodology, which is embodied in a graphical editor and runtime engine, is intended to allow non-
programmers to participate more directly in the behavior authoring process.  It is also designed to encourage good
development practices such as reuse and top-down design, to which end it borrows several elements of object-
oriented programming, including the notion of behavioral polymorphism.  This paper describes the basic authoring
methodology and underlying behavior representation.  Examples are drawn from the Counter-Strike simulation
testbed constructed by the researchers.
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INTRODUCTION

Realistic behaviors for computer-generated forces (CGF)
are as crucial as realistic graphics and terrain to the
creation of high-quality military simulations.  While a
variety of simulation-building and 3D-modeling tools
exist to help with the construction of the latter, the
development of CGF behaviors still typically requires
programming code to be written, either in a standard
language such as C++ or Java or in a custom scripting
language.  As a result, the subject matter experts
(SMEs) with the tactical or operational knowledge
about how CGF should behave are seldom able to
directly specify behaviors for a simulation, because they
lack the necessary programming skills.  Instead, they
must provide detailed specifications of the desired
behavior to simulation programmers, who then translate
it into code.  This multi-stage development process
leads to slower simulation development and a greater
chance for errors in the translation process, which lead
in turn to higher development costs.  Giving SMEs the
capacity to directly author CGF behaviors therefore has
the potential to streamline the simulation development
process and improve CGF quality as well.

With this goal in mind, the researchers set out to
develop a behavior authoring approach that minimizes
the amount of programming required while still
allowing the creation of sophisticated behaviors.  Two
key observations guided this effort.  First, there exist
already a variety of largely visual “languages” for
describing complex sequences of actions and
conditions, such as flowcharts, finite-state machines,
and decision trees, that are either familiar to or quickly
understandable by non-programmers.  Using such a
language as the basis for a behavior representation
would have the advantage of flattening the learning
curve for behavior authors and also of avoiding
unnecessary proliferation of terminology and
formalisms.

Second, although cognitive architectures like SOAR
and ACT-R provide powerful and flexible frameworks
for modeling general human behavior, only a fraction of
their capability is needed to capture many reasonably
complex real-world behaviors.  CGF behaviors,
particularly at a tactical or operational level, can often

be adequately specified using lightweight procedural
representations such as those mentioned above.
Because developing behaviors in a cognitive
architecture requires a level of technical skill that the
average SME is unlikely to possess (at least without
special training), it is therefore preferable to make use
of these lightweight representations whenever possible
to maximize the SME’s ability to view and manipulate
behaviors.

This research culminated in a behavior authoring
methodology that is founded on a lightweight, visual,
procedural approach to modeling CGF behaviors.  This
methodology, which is embodied in a graphical editor
and runtime engine, is intended to allow non-
programmers to participate more directly in the
behavior authoring process.  It is also designed to
encourage good development practices such as reuse and
top-down design, to which end it borrows several
elements of object-oriented programming.  The
methodology has been used to create behaviors for a
number of simulation domains, ranging from the game
Pac-Man to a full-fledged tactical simulation for
training naval Tactical Action Officers.

This paper describes the basic authoring methodology
and its underlying behavior representation.  Examples
are drawn from the Counter-Strike domain that was
used as a primary testbed (described below).  The
results of several informal evaluations of the
methodology are also presented.

COUNTER-STRIKE TESTBED

To serve as a testbed for the behavior representation
methodology, the researchers implemented a set of
automated players for the popular multiplayer game
Counter-Strike, which is a freely-available add-on, or
“mod”, for the commercial first-person shooter Half-
Life (Counter-Strike, 2003).  Counter-Strike depicts a
urban hostage-rescue scenario in which one team of
soldiers attempts to infiltrate an enemy base and rescue
the hostages held within, who are guarded by a team of
opposing soldiers.  These soldiers are typically
controlled by human players, but it is also possible to
construct computer-controlled players, known as “bots,”
that can play against humans or other bots.
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Counter-Strike was chosen as the testbed for several
reasons.  First, it offered a 3D world that was
continuous in both time and space, which provided a
rich and challenging environment for automated players
to act in and respond to.  Second, it presented an
interesting domain with opportunities for complex
tactics and team coordination between entities.  Finally,
the Counter-Strike source code has been made available
to the public, which greatly simplified the task of
interfacing the runtime engine to the game.

The researchers developed a custom C++ interface to
the game that allowed the bots to interact with the
game engine in exactly the same manner as a human
player.  This permitted them to focus on authoring
realistic behaviors rather than on low-level
implementation details.  Once the interface was
complete, it was possible to construct behaviors for two
opposing teams of three bots each in approximately
four person-weeks.  The resulting automated teams were
capable of successfully completing their objectives of
either rescuing the hostages or preventing them from
being rescued.  In addition, they performed competently
when pitted against moderately skillful human players.

BEHAVIOR REPRESENTATION

The underlying representation for behaviors in this
methodology is an augmented version of the basic
finite-state machine called a behavior transition
network, or BTN.  Like a finite-state machine, a BTN
consists of a collection of nodes connected by
conditional transitions.  Each node describes an action
to be performed by the simulated entity running that
behavior.  The entity executes only a single node in the
BTN at a time; this node is designated the current
node.  The current node changes when the conditions
attached to one of its outgoing transitions become
satisfied.  Hence, a BTN essentially describes a
sequence of actions and decisions that define how an
entity will act in the simulation.

The set of actions available for use by a behavior author
is determined by the nature of the simulation for which
the behavior is being created.  For example, a tactical
MOUT simulation for individual soldiers is not likely
to have actions related to controlling radar systems or
firing torpedoes.  In addition, actions will not be
available for real-world capabilities that are simply not
modeled in the simulation (e.g., fatigue or illness).
Note that actions need not always be physical:  an
action can also perform a perceptual or mental task.

Figure 1. The CombatPatrol Behavior Transition Network.
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Figure 2.  Behavior Editor Screenshot.

Figure 1 shows an example of a behavior created for
Counter-Strike.  Nodes are shown as rectangles, and
transitions are depicted as chains of ovals and arrows.
The text labels indicate the action or condition
associated with each node or transition, respectively.
The numbers in circles next to transitions indicate the
order in which the outgoing transitions from a given
node are checked.  This BTN describes a fairly simple
combat patrol behavior that causes a simulated soldier
to move toward a specified destination, keeping an eye
out for enemy soldiers.  If an enemy is seen or heard,
the entity will engage and attempt to kill him; if
injured, the entity will take cover.

While the basic structure of behavior transition
networks is similar to that of finite-state machines,
BTNs include a number of extensions to the standard
finite-state machine model.  For instance, BTNs can
store information in local variables, enabling transition
conditions to refer both to the current and previous state
of an entity.  The representation also provides
mechanisms for inter-entity communication between

BTNs, allowing for coordinated team behaviors.  In
addition, BTNs can be hierarchical and polymorphic;
this aspect will be described in more detail in the
section on object-oriented authoring.

VISUAL AUTHORING

Constructing behaviors using the BTN representation is
done entirely via a graphical editing tool (see Figure 2).
There is no scripting or programming language
involved at any level.  The objective is to provide a
“canvas” on which a SME can intuitively and rapidly
sketch out a behavior.  Once an initial behavior has
been roughed out, the author can then iteratively refine
it until it matches his mental model of how a given
simulated entity should act.  The graphical
representation allows SMEs to see a behavior’s logic at
a glance, and quickly spot obvious flaws, bugs or other
difficulties that might be more difficult to find in a
textually- or code-defined behavior.
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This process is facilitated by the consistent and
pervasive use of standard direct-manipulation user
interface idioms such as drag-and-drop and right-click
context menus.  For instance, the user can assemble a
behavior by simply dragging the desired actions and
conditions from the left-hand catalog pane onto the
right-hand “behavior canvas” and then drawing the
necessary connections between them.

The Runtime Engine

While the graphical editor permits users to create and
manipulate behaviors, the resulting BTNs are merely
static specifications.  The accompanying runtime
engine, however, can use these behavior specifications
to control CGF within a simulation (see Figure 3).  A
thin C++ interface must be implemented to integrate
the runtime engine with the simulation.

Simulator

Authoring Runtime

Runtime
Engine

Interface

Behavior
Editor

Predicate &
Action

Declarations

Behavior
Library

Predicate &
Action

Definitions

Figure 3.  Components of Authoring System

The combination of the editor and runtime engine
permit the SME to edit a behavior and then
immediately see the effect of the change in the
simulation.  This can reduce the time required to fine-
tune behaviors so that they perform exactly as desired.
A built-in interactive debugging system provides
additional assistance with finding and fixing problems.

OBJECT-ORIENTED BEHAVIORS

As the behaviors developed for a given simulation grow
in number and increase in complexity, there is likely to
be a substantial amount of functional duplication
among them.  Not only is this a waste of development
effort, but it also generally produces hard-to-maintain
behaviors, since a change to one behavior may need to
be manually replicated across many others.  To combat
this problem, the researchers borrowed the principle of
decomposability from object-oriented programming.
The result was the notion of hierarchical BTNs , in
which a node can refer to another BTN instead of a
simple action.  By allowing BTNs to be nested in this
manner, a complex behavior can be broken up into an
assembly of many smaller sub-behaviors.  

This decomposition yields simpler and more readable
BTNs.  More importantly, it permits functional units
to be re-used across multiple behaviors without
duplication.  When a sub-behavior needs modification,
the author need only change it in a single location in
order to have that change automatically affect all of the
behaviors that invoke the sub-behavior.  A third benefit
is the ability to take a top-down authoring approach,
starting with the highest-level, most abstract behavior
and gradually adding more and more detailed sub-
behaviors.  Such an approach is particularly useful
when the low-level details of a behavior have not yet
been worked out, but the general outline is well-
understood.

Hierarchical BTNs rely on a stack-based execution
model, where an entity’s initial behavior is at the
bottom of the stack.  Each time a behavior node
invokes another behavior, a new level is pushed on top
of the stack containing the newly-invoked BTN. When
a hierarchical BTN finishes execution, it is popped
from the stack.  Every BTN on the stack maintains its
own current node, but only the BTN at the topmost
level is executed.  

For example, in the Counter-Strike testbed, the
hostage-rescue CGF have a high-level behavior
RescueHostages that describes the entire plan for
rescuing the hostages: finding the captors’ headquarters,
breaking into the headquarters, freeing the hostages, and
escorting them to safety (see Figure 4).  Each of these
sub-goals has a corresponding sub-behavior, which may
in turn have its own sub-sub-behaviors.

Figure 4. Example of Behavior Stack.

Note that although only the topmost BTN on the stack
is actually executed, outgoing transition conditions are
checked for every current node in every BTN on the
stack, starting with the bottom.  If a condition is
satisfied in a BTN below the top of the stack (say
EnterHeadquarters), all of the BTNs above it are
discarded, and execution continues with the newly
topmost BTN.  This transition mechanism permits a
kind of prioritization among behaviors whereby a high-
level behavior such as RescueHostages can effectively
override its sub-behaviors if an important situation
arises (for example, a sudden enemy attack).

For cases where a high-level behavior needs to
temporarily interrupt the performance of a lower-level
sub-behavior, the author may designate a transition as

EnterHeadquarters()

SetExplosives()

RescueHostages()
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an interrupt transition.  When such a transition is
traversed, it does not cause the BTNs above it on the
stack to be discarded but instead simply pushes the
newly-invoked behavior on top of the stack, regardless
of where on the stack the invoking node lies.  Once the
interrupting behavior has terminated, it is popped from
the stack and execution resumes with the previous
topmost behavior.  In Counter-Strike, for example, a
soldier may be following a route to the hostage location
when he suddenly receives enemy fire.  An interrupt
transition allows him to take cover and return fire until
the enemy is neutralized, at which point he can pick up
where he left off along his route.

Behavioral Polymorphism

As the behavior library grows, it often becomes
desirable to create behaviors that differ only slightly
from existing behaviors.  Because of the references
made in a behavior to other behaviors as part of a
behavior hierarchy, these minor changes introduced at
an abstract level often entail changes in lower-level
behaviors.  For example, a user may decide to model
the morale and fatigue of an opposing force and have
those attributes affect behavior.  Thus, when the force is
in conflict with friendly forces, the CombatPatrol()
behavior would dispatch a specialized version of a
behavior based on, say, low morale and high fatigue.
The invoked behavior would be named something
a l o n g  t h e  l i n e s  o f
“Combat_LowMorale_HighFatigue().”  Most likely,
this behavior’s sub-behaviors will also need specialized
versions as well.  The unfortunate result is a bigger
behavior library with no particular way for the user to
simplify it through refactoring.

To handle the growth of the behavior library while at
the same time simplifying the construction of
specialized behaviors, the representation was extended
with the concept of polymorphism from object-oriented
programming.  In this extended representation, a single
behavior can now possess multiple versions.  Exactly
which version gets invoked depends on a set of
hierarchical entity descriptors defined by the author.  In
this case, “Morale” and “Fatigue” descriptors are
introduced, each with the possible values shown in
these two trees:

Morale Fatigue

highlow highlow medium

Figure 5. Polymorphic Descriptor Hierarchies

A user specializes, or indexes, a behavior graph by
associating it with exactly one node per tree.  
In this example, there are twelve possible
specializations.

Each entity possesses a set of descriptors as well.  In
the case of the opposing force, that entity has “low”
morale and “high” fatigue.  Behavior selection for an
entity proceeds by always picking the most specific
version according to the degree of match between the
entity and behavior indices. For example, if there is a
behavior version of CombatPatrol() indexed with “low”
morale and “high” fatigue, then that version will be
selected for the opposing force.  Note that if no more
specific match can be found, the “default” behavior
indexed by the root of the descriptor tree (e.g.,
“Morale”) will be selected.  

Although here a total of twelve behavior specializations
may be defined (counting the roots), in practice not all
of these will actually be used.  The descriptor tree
affords the ability to selectively customize behavior
through the structured tree hierarchies.  In the above
example, if a user wants to define only one version of
the CombatPatrol() behavior, it would be indexed
using the two roots.  The opposing force would use
this version of the behavior because a more specific
version cannot be found.  If the user wants to define a
special case relevant only when morale is low, then he
indexes the behavior by picking “low” from the first
tree, and the root for the second.  The opposing force
would then use this version instead.

Entities may change their descriptors at any time.  This
change affects all behavior invocations from that point
on.  For example, an opposing force that switches its
morale from low to high and its fatigue from high to
medium would select a different version of the
CombatPatrol() behavior, and hence would perform
differently in the simulation.  Changes to an entity’s
descriptors do not, however, affect any behavior that
that entity might already be executing.

AUTHORING EXAMPLE

While the visual behavior authoring methodology
described in this paper had been applied to a variety of
simulation applications, the set of behaviors developed
for the Counter-Strike testbed was substantially larger
and more complex than any the researchers had
previously authored.  At the same time, the domain
was not well understood, which made it difficult to
completely specify in advance the full range of
behavioral capabilities that would be needed to create
competent automated players.  As a result, a highly
iterative and incremental approach to authoring was
taken.
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The researchers began by sketching out a set of two or
three very high-level behaviors that would serve as an
outline for the entities’ behavior.  These behaviors
contained no concrete actions themselves, but were
instead composed of slightly lower-level behaviors
whose details we had not yet defined.  Once this top-
level skeleton was roughly complete, the process was
repeated at the next lower level, and this top-down
decomposition was recursively continued until the
behaviors were fleshed out to the level of concrete
actions.  At this point, it was possible to start testing
the bots within the game environment and making
refinements to the behaviors.

During the process of authoring a first draft of the
behaviors, it was found that the initial vocabulary of
actions that had been defined was insufficient.  This
vocabulary was based on the primitive interactions that
were naturally suggested by the human player’s
interface to the game – jump, turn, shoot, reload, etc. –
rather than any anticipation of the concrete actions
required to implement the target behaviors.  After a first
pass through the authoring process, the list of actions
was therefore revised and expanded considerably.  In
most cases, this was simply to add new capabilities to
the bots, but sometimes actions were eliminated or
even broken into several finer-grained actions.

The authoring process up to this point had essentially
produced behaviors for two distinct entities, one
rescuing soldier and one guarding soldier.  To introduce
more variation on the teams, the basic set of behaviors
was extended polymorphically using “Team,” “Role,”
and “Attack Style” descriptors (among others).  This
approach made it easy to add new varieties of bots
simply by specializing one or two behaviors.  This
phase of the authoring process can be thought of as a
lateral expansion or broadening of the behavior set, as
contrasted with the top-down authoring phase, which is
focused on completing the chain from abstract
behaviors to concrete in-game actions.

EVALUATION

This approach has been validated with usability studies
conducted in previous research.  In a project conducted
for the Navy (Stottler and Vinkavich, 2000), the
researchers adapted the technology to provide Navy
instructors with a tool for creating intelligent agent-
based behaviors for use in a tactical simulation trainer.
Subject matter experts used the visual behavior
definition environment provided by the tool to specify
software agents to control enemy platforms as well as
simulated team members within the simulation.  A
usability study was conducted with the end users, who
reported quick authoring times and overall satisfaction
as a result of the ability to author and modify

simulation behaviors without relying on programmers.
Another common response was that without this
option, they simply could not have devoted the time to
learn to use a more complex tool, and would therefore
have been forced to rely on a collaborative
implementation process with programmers.

An informal study was also recently performed in
which a version of the BTN graphical editor customized
for the popular computer game Neverwinter Nights™
was made available on the Web (Neverwinter Nights,
2002).  Neverwinter Nights™ features a C-like
scripting language that knowledgeable players can use
to create their own game content.  The modified editor
was intended to make scripting possible for players
with little or no programming experience.  The
researchers collected feedback from over a dozen users,
including  samples of scripts developed using our tool.
This feedback indicated that users with no knowledge
of C programming were quickly able to learn to use the
tool to create complicated scripts that would have
otherwise been beyond their means.

In addition, use of the behavior editor on in-house
simulation projects has enabled the researchers to reduce
the time required to define complex finite state machine
logic by as much as seventy percent compared to
standard code-based implementations.  More
significantly, once the FSMs had been created in the
visual tool, modifications to their logic required
approximately ten percent of the time that would have
been needed to make similar changes in code.  This
indicates that even for programmers, the use of visual
authoring environments can result in substantial time
savings.

RELATED WORK

The notion of having a visual representation or
description of behavior is not new.  One important
issue to distinguish is the use of a visual representation
for communication purposes versus implementation.
The use of graphs to communicate some design or
behavior is pervasive.

While much of our early runtime architecture work was
based on AI robotic literature (Loyall and Bates, 1991;
Firby, 1987; Georgeff and Lanksy, 1987), the visual
representations AI researchers have employed in their
articles are overwhelmingly graph-based (some
examples are Tate, 1977 and Sacerdoti, 1977), which
has influenced the way we portray behavior.

UML state charts are the most well-recognized standard
for formally describing the states in which a software
object can be (Fowler, 2000).  
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A number of commercially available object-oriented
analysis and design tools, such as Rational Rose and
Together, offer a visual interface for the creation of
UML state chart diagrams.  These tools, however, were
never intended to execute the actual state charts created
by the user.  This confines their applicability to
requirements and design specification.

For actual visual-to-implementation work, there has
been past work in the military simulation field, perhaps
starting with ModSAF (Calder et al, 1993).  Von der
Lippe et al. (2000) describe the CBT project which
employs a similar visual representation, but focused on
command and control for teams of entities.  Thus, the
behavior definition is of a composite behavior.
Specialization of behavior happens through “behavior
roles” so that a set of entities may be participating in
the same mission, each with its own role in the
simulation.

In the robotics field, MacKenzie et al. (1997) describe
the MISSIONLAB system that allows an end user to
specify the behavior of multiple robots.  The user does
this visually using hierarchical state and transition
links.

CONCLUSION

This paper has presented a lightweight visual approach
to authoring behaviors for computer-generated forces.
This approach has the potential to put behavior
authoring capability in the hands of subject matter
experts who lack the programming skill necessary to
use existing simulation behavior systems.  Of course,
very complex behaviors, especially those that are
largely mental or abstract in nature, are not so easily
captured by procedural representations, and in such
cases the additional modeling infrastructure furnished
by cognitive architectures is called for.  Further work
must be done to determine when each technique is most
appropriate.
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