Interservice /Industry Training, Simulation, and Education Conference (I/ITSEC) 2003

A Graphical Interface for Managing Multiple Unmanned Aerial Vehicles

Charles J. Cohen, Ph.D. & Ron Hay
Cybernet Systems Corporation
Ann Arbor, MI 48108
ccohen@cybernet.com, rhay@cybernet.com

ABSTRACT

The control and/or command of multiple Uninhabited Air Vehicles (UAVs) within an actual or simulated
operational theater requires an interface that allows the user to direct the actions of these UAVs in real-time. The
user must, at the very least, have the capability to issue commands that apply to whole UAV groups (“swarms”), as
well as the ability to narrow commands to a few or even a single UAV. The user must have the ability to create
UAYV groups, select and assign targets, and interactively generate and assign routes.

This paper describes an innovative interface for operators to control multiple UAVs in a combat situation. Coupled
with the latest off-the-shelf input and output hardware, the software will be an intuitive, real-time, graphical, 3D
environment that enhances situation awareness as much as possible without perceptual overload. This system will
also be fully compatible with the Mixed Initiative Control for Automa-teams (MICA) Open Experimental Platform
(OEP) multiple UAV scenario system.

To control multiple UAVs, there are specific command requirements for the UAVMI system. Relevant issues
include:
1. Where and how exactly does the UAV’s autonomy interface with the higher level commands coming from the
UAVMI? The solution is to create (or adopt an existing) command language for the individual UAVs.
2. Define a libray of “swam-level commands”. These are commands that affect groups of UAVs.
3. Address the issue of how “swam-level commands” translate into commands to individual UAVs. For
example: if the swarm-level command is for group A to attadk enemy group E, then what exactly should a;
(one UAV in group A) do? Attadk e;? Attad the closest element in group E? What if that target is already
covered by a;?

The areas addressed include group and individual commands, path genemtion, relative posture, seledion methods,
viewpoint navigation, and infomation displays.

ABOUT THE AUTHORS

Dr. Charles J. Cohen has been working in the fields of image processing, robotics, human-computer interaction, and
artificial intelligence for over a decade. At Cybernet, he has been the project manager for many projects for the
United States Armed Forces (Air Force, Navy, and Army), National Aeronautics and Space Administration, and
other government agencies. His projects include work on simulation, training, real-time optical pose determination,
robotics, virtual reality, object identification, feature and body tracking, and human performance evaluation.

Dr. Cohen’s main areas of interest is gesture recognition and massive number of agent network architectures and
systems, which he is developing and integrating for the Army and Air Force.

Mr. Ron Hay is a lead developer in Cybernet’s Virtual Reality group, specializing in graphics programming (using
both OpenGL and DirectX). The core technology for the Virtual Reality group is the OpenSkies Simulation
System. OpenSkies has been through several iterations of development over the past four years, and includes a
complete, standalone HLA implementation of great sophistication, standalone components for panel development,
physics simulation, scenegraph API, scenario development and deployment, and collision detection. It has been
used for everything from a first-year Naval pilot trainer, to a massive-multiplayer game, to an astronomy education
tool. Mr. Hay has acted as one of the primary developers for the system since its birth.

Interservice /Industry Training, Simulation, and Education Conference (I/ITSEC) 2003

A Graphical Interface for Managing Multiple Unmanned Aerial Vehicles

Charles J. Cohen, Ph.D. & Ron Hay
Cybernet Systems Corporation
Ann Arbor, MI 48108
ccohen@cybernet.com, rhay@cybernet.com

BACKGROUND

Typical interfaces for controlling multiple UAVs have
focused on surveillance applications or longer-term
mission planning. Such interfaces are not sufficiently
real-time for implementing short-term combat tactics
and decision-making (see Francis, 2003). Furthermore,
these interfaces are similar to paper-based mission
planning approaches in that they are inherently 2-
dimensional. This is a serious shortcoming when the
autonomous forces being commanded are airborne and
require 3-dimensions of direction, especially with
regards to data overload and information camouflage
(see Stark, 2003).

We are developing an Uninhabited Air Vehicle
Management Interface (UAVMI) system centered on a
3-dimensional graphical representation of the
geographic space. The operator is able to move a 3D
cursor around within a geographic volume, selecting
groups, paths, and targets in 3D space. While other
swarm interfaces deal mainly with abstracted virtual
agents (such as Minar et. al, 1996 and Tambe et. al,
1999), this interface allows the user to essentially reach
into the virtual battlefield/airspace to control swarms of
UAV entities.

The UAVMI will be constructed as an interface/library
that can be attached to existing simulation/command
software. Typically this interface is constructed as a
software module that is linked into the specific
simulation software. This approach requires that the
simulation software be altered somewhat in order to
communicate with the UAVMI. The High Level
Architecture (HLA) (see Larimer, 1997) provides
another solution that could be used as an alternate
method for communicating commands to the UAVs.
Using HLA, a computer dedicated to the UAVMI
system could be placed on a network that includes
multiple machines participating in the simulation. The
UAVMI system would issue commands, through
HLA, to the various UAVs being controlled/simulated
on other participating machines. Design and
development of the UAVMI system will include an
investigation of this approach.

The testbed uses the OpenSkies simulation software,
developed at Cybernet Systems. The OpenSkies
system is a state-of-the-art PC-based simulation
software package designed from the ground up as a

general-purpose simulation tool kit. OpenSkies
supports such features as force feedback, accelerated 3D
graphics, stereoscopic 3D graphics, and HLA-based
multi-user networking.

It is an irrefutable fact that human beings currently
possess adaptive capabilities that far exceed our
machines. The best solution for UAV control is
therefore an optimal combination of the human and
technological component. Our goal is the creation of a
system that provides a powerful tool to the human
operator that performs the iterative, math-intensive
details of command distribution and control, and frees
him/her to view and plan UAV actions using an
intuitive and geometric interface.

SWARM LEVEL COMMANDS

To control multiple UAVs, there are specific command
requirements for the UAVMI system. Relevant issues
include:

a Where and how exactly does the UAV’s
autonomy interface with the highe level
commands coming from the UAVMI? The
solution is to create (or adopt an existing)
command language for the individual UAVs.

b) Define a library of “swam-level commands”.
These are commeands that effect groups of UAVs.
These commands will be generated within the

UAVML
0 Address the issue of how ‘“swam-level
commands” translate into commands to

individual UAVs. For example: if the swarm-
level command is for group A to attadk enemy
group E, then what exactly should a; (one UAV
in group A) do? Attadk e,? Attack the closest
element in group E? What if that target is
already covered by a;?

Ultimately, we want to undestand the maximum
number of UAVs a single operaor, and a group of
operators, can contol. There is a concan that
infomation overload will cause operaors problems
when they attempt to manage multiple UAVs.
Fortunately, current work has shown that it is possible
to manage multiple (dozens or more) UAVs
simultaneously. Relevant issues include:

Interservice /Industry Training, Simulation, and Education Conference (I/ITSEC) 2003

a Command-group definition - The operaor
must have the ability to divide the UAV group
under his/her command into subsets, each of
which can be given separate commands. The
operator should be able to perform this in real-
time, which likely suggests a graphical
seletion process. Therefore we are developing
a set of realtime command-group selection
interfaces.

b) Othergroup definition - The operator must
have the ability to divide the set of all other
known vehides or instalations into subsets.
Similar to command-group definition, the user
must be able to perform this in realtime.
Furthermore, the operaor must be able to
characterize the group as a threa-type that may
effet path planning. Therefore we are defining
a set of realtime othergroup seletion and
characterization interfaces.

¢ Path genemtion - The operator will be able to
command a UAV group to a location. One
method being used is to allow the operaor to,
at a high level, tell the UAV group where to
go. The software must then use these way-
points in conjunction with infomation about
threat location and terrain constraints to
construct the fastest, safest path. Therefore we
are defining the set of constraints incomporated
into the system as well as the operator input.

d) Relative posture command - The operator must
also have the capability to command a UAV
group to a position relative to another
entity/group. For example: command group A
to attack enemy group E from azimuth of 270°
and an elevation of 45° (i.e. from the east and
from above).

A CUEING SYSTEM

To allow for multiple UAV contmwl, a cueing interface is
required, which includes a graphic representation of the
operating theater presented to the user as well as audio
rendaing. Relevant issues include but are not limited
to:

a) Graphical differentiation - The operator must be
able to tell which forces are friendly, which are
hostile, and which are the ones he/she is
contolling. We are creating visual cues, such as
highlighting and group color, that such
differentiation.

b) Location cues - The operaor must be able to
percave 3D location of the entities cleady,
espedally altitude. We are exploring such
mechanisms as 3D stereoscopy, artificial
shadows, and drop-to-terrain lines.

¢ Audio cues - Sound can be used to warn the
operator of proximity, velocity, and events such
as missile launches, takeoffs, and landings. We
are creating a set of audio cues for this system.

SELECTION METHODS FOR THE SWARM
LEVEL TACTICAL INTERFACE

Selection is basically the mechanisms for specifying
which UAVs are affected by commands and which are
showing their information. The selection of units is a
simple function of a swarm interface, necessary for
specifying a subset of units to view information on and
to command. We name two common approaches to
selection. The first is “Single Selection”, which is
simply clicking on a unit directly or from a list of
units. The second is “Region Selection”, which is the
action of specifying a geometric region (usually
rectangular) using the mouse, and any units in that
region are selected. Units selected will have a different
appearance in the interface, usually done by either
showing a translucent “box” around the unit, having a
simple 2D graphic “float” above the unit, or changing
the color of the unit. Below we list enhancements of
these two basic selection methods.

¢ Selection Tool Palette — this is simply a
palette, like in a drawing program, of different
shapes that can be used for the region
selection. This palette would include the
basics such as rectangular, square, circular,
and elliptic shapes, and add shapes such as
polygonal, closed spline (a curvy polygon),
and freeform. Since we are dealing with 3
dimensions, however, there also need to be
3D versions of those listed earlier. For the
first four we listed, the 3D versions are box,
cubic, spherical, and ellipsoid. Some other
valuable 3D shapes are cylindrical, cone, and
possibly torus (donut). Figure 1 shows an
example selection palette, depicting square,
circular, elliptic, spline, cubic, spherical,
cylindrical, torus, and cone regions.

Select |

sl LN X XY

Figure 1. An Example Selection Palette

* Grouping — Numerous real-time strategy
computer games have established an effective
mechanism for splitting a large number of
units into customizable groups. In general, a
group is defined by selecting all those units to
be in the group, and then the Ctrl key is
pressed while selecting a number (0-9). This

Interservice /Industry Training, Simulation, and Education Conference (I/ITSEC) 2003

“sets” the group to the number key pressed.
A group can then be selected entirely by
simply hitting the number key that
corresponds to it. This can obviously be
extended for functions keys, other keyboard
keys, or even using other modifier keys (Alt,
Shift) to specify other layers of keys. So we
can have a group for the “1” key, another for
the “Shift+1” key combination, another for
“Alt+1” combination, and yet another for
“Shift+Alt+1” combination. Units can be in
more than one group, for instance if we have a
group that contains a sensor drone, but also
want a group for all sensor drones.

Standard GUI Conventions — It only makes
sense to use the conventions found in most
software packages in use today. Some of
these conventions, and their translation in the
context of a swarm GUI are:

o Ctrl+Click = Select a unit if not already
selected, deselect it if it is selected. This also
will add/remove a unit from the current group.
o Shift+Click = Select all the units from the
currently select unit to the unit shift-clicked
on, the region selected could be some basic
standard (probably a box), or maybe use the
currently chosen region in the selection
palette.

o Double-Click = Select the unit and the
group that the unit is currently in. If a unit is
in more than one group, select the first
(lowest number) group.

o Triple-Click = Select all units in the area,
or possibly all units entirely.

Fuzzy Selection — Quite often, the need arises
for the ability to quickly select a subset of
some units to have them perform a command.
For instance, a set of hostiles is detected and
we want to take several, but not all of our
units to respond to it. However, our units
may be distributed close together, and in such
a way that we can’t simply select a group of
them using a normal tool. What is needed is
a “fuzzy selection”. A fuzzy selection is a
modifier of a normal region selection
(rectangular or spherical for instance), but only
a subset of the units that fall in the region are
actually selected. The units actually selected
can either be based on a percentage (“select a
third of the units in this region™) or by type
(“select all sensor drones in this region”) or
even by other categories such as health, fuel,
or anything (“select all the severely damaged
units in this region”). Which types of fuzzy
selection are most beneficial depends on the

results of testing various options and seeing
which are most used. Figure 2 shows a
traditional, rectangular region selection and
the resulting gap formed that may be tactically
undesirable. Figure 3 shows the use of a 33%
“fuzzy” selection, and the resultant formation
that is much more tactically feasible.

+ + + =+

+ + -+ 1=+1~+
-+ + +

+ + =+ 'T'+1“+
-+ -+

+ -rf-r

Figure 2. Traditional Selection Resulting in a
Tactically Poor Formation

+ + + +
+ + + fff-r
+ + -~ + -+
+ + o+ __-;-__1'-1-
+ + +
+ + 1‘-1-

Figure 3. “Fuzzy” Selection of a Third of the Units in
a Region, and the Resulting, Much More Tactically
Friendly, Formation

VIEWPOINT NAVIGATION METHODS FOR
THE SWARM LEVEL TACTICAL INTERFACE

Viewpoint navigation is simply the manner in which
the operator “moves around” in the virtually
represented space that is populated by the UAVs. A
basic feature of a multiple UAV interface is the ability
for the operator to move an “avatar” around. An avatar
is simply the operator’s presence in the simulation.
An avatar is usually thought of as the camera in the
world. Like a camera, there are many ways to position
and orient an avatar. The primary methods that we are
implementing for a multiple UAV interface are:

a) Free Fly — This mode allows the avatar to
move around the world at will, using a simple
set of controls. This mode was completed
during the Phase I effort, and is included here
for completeness. The avatar is not attached
to any object, and not forced to look in any

b)

c)

)

Interservice /Industry Training, Simulation, and Education Conference (I/ITSEC) 2003

direction. It is a useful mode when
everything is going well and the operator
wants to “take a look around”. Typical
control schemes are the use of the mouse to
control the direction the camera is looking,
and the keyboard to move the camera in the
direction of the viewpoint, or reverse, or
orthogonal to the viewpoint.

First Person — The first person mode puts the
operator in the virtual seat of one of the
UAVs. This mode was completed during the
Phase I effort, and is included here for
completeness. This mode is often coupled
with the Wingman Command mode outlined
in the Command section below, giving the
operator more direct control of the UAV. It
allows the operator to get a better feel for what
a UAV can sense, and can be attached with a
morphing of the GUI to give a more intimate
feel for how a UAV is doing. A first person
GUI would be similar to a flight simulator, in
that all the normal flight instruments can be
presented to the operator. Since the UAV is
virtual, the operator can look around more
freely than if there was simply a camera
attached to the UAV, allowing the operator to
look straight down, backward or whatever
direction desired. Control in the mode is
usually limited to orientation of the camera,
through the use of the mouse or keyboard,
although positional control can be obtained
when direct control of a UAV is active.

Third Person — Third person allows the
operator to “orbit” a single UAV, with similar
advantages, but allowing for more “body
sense” of the UAV by allowing the operator to
see what the UAV is doing. This mode was
completed during the Phase I effort, and is
included here for completeness. The camera is
attached to the UAV but is outside of the
UAV, at a distance specified by the operator.
The avatar can move around the UAV, but the
camera is always pointed towards it.
Navigating tight situations is a good use for
this mode, as is the communication of
vehicular damage. Third person control
schemes usually have the mouse movement
control the rotation around the UAV, and the
mouse wheel or keyboard to zoom in and out.
Through the use of standard “trackball”
control algorithms, this movement is
extremely intuitive.

Bird’s Eye — The bird’s eye view is similar
to radar in that the camera is high above the
ground, looking straight down, creating a type
of 2-D representation. This allows for “big
picture” information to be communicated

e)

quickly, since humans are very adept at
dealing with 2D representations of
information. The avatar always points down,
but can zoom in and out, and move around
laterally. Control of the bird’s eye view is
fairly simple — arrow keys to control
movement in the plane or the operator can
“bump” the mouse pointer against the sides of
the screen for similar control, and then either
another two keys or the mouse wheel to zoom
in and out.

Center of Mass -- This is similar to the
Third Person mode, but instead of being
attached to a single UAV, the avatar orbits the
center of mass of a group of UAVs. This
allows the operator to more easily deal with
group commands and group information. The
changing nature of the UAVs has minimal
impact on the camera, yet the camera will
move with the group as a whole, making it a
bit easier to navigate in some circumstances.
Unlike the bird’s eye view, this mode allows
the operator to interact with the UAVs in all
three dimensions. The controls for the Center
of Mass mode operates very similarly to the
third person mode, except the center of mass
is focused on instead. A prototype of this
viewpoint navigation method will be
complete by the end of the Phase I effort.

Tactical Multi-View -- This mode is useful
for viewing all of the UAVs on the screen,
without the need for exact distances between
them. One instantiation of this technique is
to display a local area map, with multiple
“windows” showing a bird’s eye view of each
UAV. See Figure 4 for an example of this
effect. This technique allows for both an

intimate view of what each UAV is doing,
while also giving a higher-level view for force
deployment, and other, more abstract needs.

Interservice /Industry Training, Simulation, and Education Conference (I/ITSEC) 2003

INFORMATION DISPLAY METHODS FOR
THE SWARM LEVEL TACTICAL INTERFACE

Unique approaches must be taken to display the
information about UAVs in such a manner that won’t
overload the operator, yet allows important individual
and swarm information to be noticed and dealt with in
a timely manner. The display of information,
including unit information, group information,
environmental information, and current mission
information, amongst others, is a complex topic. We
address some of the more basic concepts, with some
concrete examples in this section.

The primary focus of the interface when it comes to
informational display is to maximize the amount of
information communicated while minimizing the
attention needs from the operator. Showing all the
relevant statistics for all units will quickly cause
information overload. The trick is to show
information only when it is needed, so there is no
point in always showing the amount of fuel in all
units. Instead, fuel status is only needed when it
becomes low, in general circumstances. However, to
compound the “trickiness” of the situation, exactly
what is important to display is context dependant.
Continuing the fuel example, while normally we don’t
want to know fuel levels unless they get below a
certain level (the amount needed to return to home
base, for instance), some contexts may require more
information. If we command a UAV to go to a certain
location, we then want to know if there is enough fuel
to get there (and back). Furthermore, important
information seems to avoid coming in a nice steady
stream. Instead, it often “clumps”. A group of units
suddenly discover a convoy of enemies, while the
convoy also discovers the units, sending a wad of
information the operator’s way.

We address these issues in the following general
techniques.

* Per Unit Graphics — Numerous techniques
have been developed over the years of
presenting the most important information
about an entity with small graphical
“widgets”. In the case of a UAYV, this will
probably be a line graphic for an abstraction of
its “health”, and perhaps fuel and armament.
Small icons can be used to show state
information (“Defensive Stance”, or
“Attacking” for instance). Figure 5 shows an
example of possible icons.

Defensive
Stance —

Figure 5. Example Graphic Icons for a Unit

Message Console — A message console can be
displayed at the bottom of the screen. This
console is simply an output for text message
from any entity in the interface. It can contain
messages from UAVs (“Fuel Low!” or “Under
Attack!”) or environmental messages
(“Thunderstorm predicted to hit at 15:30”), for
instance.

Event Queue — To handle the issue of
information overload because of multiple
simultaneous events, we present the idea of an
event queue. What happens is that an event
occurs, but instead of a popup or some other
intrusive action occurring that could interrupt
what the operator is currently doing, an alert
icon is flashed briefly along with an audible,
then the actual event is placed on a graphical
queue of events on the side of the screen. The
operator can then handle the events in an
orderly fashion, either by picking individual
events out of the queue, or through the use of
a “Next Event” command. Events in the
queue can have priorities, which can either
affect the ordering of the events in the queue,
or simply cause the icons in the queue to have
a different color based on the priority.

Command Prediction — As mentioned
above, the importance of information is often
context based. One situation where this is
true is in giving commands to UAVs. An
operator not only wants to know the current
status of the UAV, but whether the UAV will
be capable of carrying out a given command.
A command to attack is useless if a unit has
no armaments. A simple method for this is a
“rejection” tool, whereby a UAV rejects a
given command in some manner clearly
noticeable by the operator. An audible buzz
and a red flash around the unit is an example.

Access to Detailed Information — While we
want to minimize information displayed, the
operator should always be able to get to the
information needed, through the use of special
side-screens or popups. Selecting a single
UAYV, for instance, should bring up most of

Interservice /Industry Training, Simulation, and Education Conference (I/ITSEC) 2003

the statistics about the UAV in a small side
window. Another method is too have a small
“balloon” popup when the mouse pointer is
held over a unit, similar to “balloon help” that
exists in most operating systems. Detailed
information will also include special sensor
information that will either adjust the
individual UAV display, the swarm UAV
display, or the actual map interface that the
UAVs interact with.

COMMAND METHODS FOR THE SWARM
LEVEL TACTICAL INTERFACE

Quick and rapid techniques must be developed to allow
operators to give orders to a swarm of UAVs, while
minimizing the amount of functionality lost when
compared to a single operator controlling a single
UAV. The most important piece of the interface is the
one that allows the operator to give commands to the
UAVs. Complex sets of commands must be easily
specified and delivered. The previous sections really
deal with helping the operator determine what
commands to give, how current commands are
unfolding, and specifying which UAVs receive which
commands. In this section we identify not only how to
give commands, but some interesting types of
commands to give.

* Travel — The most basic command to give to
a UAV is “go to there”. This is simply done
in our proposed interface by selecting a UAV,
and specifying the location it is to go to. The
same technique can be used with multiple
UAVs (groups). One nontrivial portion of
this is exactly how the destination is
specified. Two dimensions is simple, but the
addition of the third makes it much more
complex. For a solution, we turn to the 3D
RTS game “Homeworld” (see Homeworld,
1999). In this game, to move a unit, the unit
is selected, and then the “move” command is
given. This brings up a “movement disk”
that is gradated with the degrees of the
compass. Moving the mouse around moves
within this disk, and the path specified is
shown as a line from the unit to the current
position of the mouse in the disk. The
operator can hold the shift key at any time,
and this will allow the operator to modify the
altitude up and down. The operator can
intersperse changes in the 2D disk and in
elevation. Once the destination is correct,
clicking the left mouse button sends the unit
there.

Waypoints — Beyond the first simple
movement command, another idea borrowed
from the computer gaming world is waypoints
— the ability to specify multiple destination
points for a unit, which will be followed in
turn. New waypoints can be added through a
special “Add Movement” command.

Formations — Often, it is advantageous for
units to travel in a specific formation. To
accomplish this in the swarm interface, we
will create a simple “formation palette”, that
allows the operator to select different shapes
for the UAVs to fly in. Figure 6 shows an
example palette, although it only displays
two-dimensional formations. Other
formations will need to be included that
capture the possibility of using all three
dimensions.

Figure 6. Formation Palette

Distributions — Once at a location, a group of
UAVs may form a different, dynamic pattern
to fulfill a certain duty. For instance, a group
of sensor drones may travel to an area in a
wedge formation, but once there, it may form
a circle around a specific area to form a
perimeter to prevent something from passing
out of an area undetected. We call this
“distributions”. Similar to formations, a
palette of formations will be available to the
operator. These distributions will tend to be a
bit more complex, and as such, the operator
can combine multiple distributions over time.
For instance, continuing the sensor drone
example, the circle may start rather broad (50
km radius), but if the mission changes to fine
the object of interest, the circle may start to
“close”. This could be a combination of a
“circle” distribution with a “inwards”
distribution. One important component of a
distribution is the “holding pattern”. UAVs
may be commanded to simply hover, or
tightly turn, in place, or the distribution may
be cyclic.

UAV-Specific Commands — Many of the
commands given to a UAV will be specific to
the type of UAV it is. Different UAVs have
different munitions, sensors, and general
capabilities. Clicking on a UAV will bring
up a palette of commands corresponding to
that UAV.

Interservice /Industry Training, Simulation, and Education Conference (I/ITSEC) 2003

Stance/Attitude — Often, things will happen
to a UAV while the operator is not directly
observing the UAV. In this situation, the
UAYV may have automated responses. We call
such automation its “Stance”. The stance of a
UAV is indicated by a small icon near the
UAV on screen, as well as in any
informational display of the UAV. Some
stances are complicated and require other
information to be specified, such as a location
to flee to, or how much munitions to expend
when attacking. Some possible stances are:

o Hostile — if something comes near
the UAYV, it attacks.

o Guarding — if something attacks the
object the UAV guards, the UAV
attacks.

o Defensive — if something attacks the
UAYV, it responds in kind.

o Observing — if something attacks the
UAV, the UAV moves away.

o Spy --the UAV tries to remain
undetected, but if it is, it moves with
all haste back to a location.

Command Queuing — Commands can be
queued for a UAV or group of UAVs. The
queue is displayed when the unit is selected,
and can be modified. So a unit can be told to
fly to a certain location, and then release its
bombs on a target, and then fly to a different
location and enter into a sensor-sweep mode.
This allows the operator to build up long
commands from a smaller set of
“commandlets”.

Wingman Mode — One mode possible for the
command and control of a UAV is the so-
called “Wingman Mode”, where the operator
takes almost direct control of a UAV, and
treats the other UAVs as wingmen. In this
mode, the display is replaced with more
detailed instrument information to allow the
operator to control the UAV directly.
Furthermore, commands in this mode are
much more simplistic and terse, since the
operator’s attention will be more consumed by
the act of controlling the UAV. Sample
commands in this mode are:

o “Follow Me” — all the UAVs go into
a predefined formation and follow the
operator’s UAV as the lead.

o “Attack My Target” — the operator
can specify a target and send its
wingman UAVs to attack it.

o “Bomb My Target” — Similar to
“Attack my target” except the target
is ground-based.

o “Defend Me” — Prevent hostiles
from damaging the controller’s UAV.

CONCLUSIONS

We have described innovative interface for operators to
control multiple UAVs in a combat situation. We have
detailed selection methods, navigation methods,
display methods, and command methods. While still
a work in progress, many of the methods here have
been implemented in our OpenSkies system, and they
lay the foundation for full control of swarms of UAVs
in a combat environment.

REFERENCES

Nelson Minar, Roger Burkhart, Chris Langton, Manor
Askenazi, 1996. The Swarm Simulation System: A
Toolkit for Building Multi-agent Simulations
(1996). Retrieved June 27, 2003 from
http://www.santafe.edu/projects/swarm/

Colonel Bruce Stark, USAF, 2003. Dynamic BMC41 —
the Central Nervous System of the Command and
Control Constellation (C2C). UCAV 2003, March
25-26 2003, Alexandria, VA.

Dr. Michael S. Francis, Colonel, USAF, 2003.
UCAV — Catalyst for Network Centric Operations.
Teamwork in Cyberspace: Using TEAMCORE to
Make Agents Team-Ready. UCAV 2003, March 25-
26 2003, Alexandria, VA.

Tambe, Shen, Mataric, Pynadath, Goldberg, Modi, Qiu,
and Salem, 1999. 1999 AAAI Spring Symposium
Series, March 22-24 1999, Palo Alto, California.

Larimer, 1997. Thesis: Building an Object Model of a
Legacy Simulation.” Retrieved June 27, 2003, from
http://diana.or.nps.navy.mil/~ahbuss/StudentTheses/
LarimerThesis.pdf

Homeworld, 1999. Published by Sierra Games.
Retrived June 217, 2003, from
http://www.sierra.com/product.do?gamePlatformld=
110

http://www.santafe.edu/projects/swarm/
http://diana.or.nps.navy.mil/~ahbuss/StudentTheses/LarimerThesis.pdf
http://www.sierra.com/product.do?gamePlatformId=110

