

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2004

2004 Paper No. 1830 Page 1 of 6

Realtime Pixel Lighting Using Fragment Programs

Steven Hales
Lockheed Martin

Orlando, FL
steven.ha1es@lmco.com

ABSTRACT

This paper will describe techniques to implement the lighting algorithms for point and spot light sources at a pixel
level at realtime rates using fragment program capabilities on current graphics cards.

Visual simulation has long been required to simulate point and spot light sources such as headlights, search lights,
flares, and steerable landing lights. To calculate lighting at a pixel level from these sources has traditional been
difficult to run at realtime rates. Today's commercial graphics cards now have the ability to do pixel lighting at
realtime rates using fragment programs (pixel shaders). The complex calculations for range and angle attenuation
of these lights sources can be imbedded into texture maps and "looked-up". Two or multi-pass algorithms per
polygon of the past are no longer necessary.

The generation of texture coordinates and generation of the texture maps from the attenuation calculations will be
described. Lighting from directional light sources (e.g., sun or moon) and illumination of fog will also be
addressed.

The pixel lighting performance of current commercial graphics cards (NVIDIA/ATI) will be discussed.

ABOUT THE AUTHOR

Steven Hales is a senior staff systems engineer at Lockheed Martin. Steve graduated from the University of South
Florida in 1976 with a degree in electrical engineering. He worked for 10 years at (then) Sperry Univac (now
Unisys) in CPU design of mainframe computers. Steve has worked for Lockheed Martin (Martin Marietta/GE) since
1987 in visual simulation image generation.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2004

2004 Paper No. 1830 Page 2 of 6

Realtime Pixel Lighting using Fragment Programs

Steven Hales
Lockheed Martin

Orlando, FL
steven.ha1es@lmco.com

OVERVIEW

Graphics 3D APIs such as OpenGL and Direct3D
specify lighting algorithms that are applied to the
vertices of a polygon. Gourard shading is then applied
such that the color at a pixel is interpolated from the
color of the vertices. While this may produce adequate
results for directional (infinite) light sources, such as
the sun, it does not generally produce adequate results
for point or spot light sources. Range attenuation may
be inadequate, especially with large polygons. The lobe
effect of a spotlight may be greatly distorted or
missing. A classic example is a flashlight shining on
the center of a large polygon. There would be no
lighting since the vertices are all outside the cone angle
of the light. The only solution is to tessellate the
polygon until the desired effect is achieved. However,
tessellation is an expensive solution.

With the advent of fragment programs (pixel shaders),
the ability to do lighting algorithms in the pixel
pipeline is now available. However, the calculations to
do the lighting algorithms for a pixel in the same
manner as a vertex are expensive. The current
graphics cards do not have the performance to do these
calculations and meet the realtime requirements for
visual simulation in military ground and flight
simulators. However, most of these calculations can
be embedded in texture maps and “looked up”, making
realtime operation achievable.

COMPUTE LIGHTING USING TEXTURE MAPS

Lighting Algorithms

The lighting algorithms applied to a vertex for spot
light sources can be broken into two parts: range
attenuation and angle attenuation. Point lights sources,
such as flares, only require range attenuation. Lets
define V to be the position of the vertex and L the
position of the light. Lets define P to be the vector
from the light to the vertex, R2 as the square of the
range to the light, and R as the range to the vertex from

the light. Both range and angle attenuation require the
following equations:
P = V – L
R2 = P * P
R = square root (R2)

Range attenuation is controlled by three parameters,
the constant (C), linear (L), and quadratic (Q)
attenuation factors. The equation for range attenuation
is:

Attenuation = 1 / (C + L * R + Q * R2)

For spotlight angle attenuation, lets define l to be the
direction of the light. Two parameters, the cone half
angle (HA) and the spot exponent (S) control angle
attenuation. The cosine of the angle between the
direction of the light and the direction from the light to
the vertex is defined as COSA. The equations for angle
attenuation are:

COSA = l * P / R
If COSA > cosine (HA),
 Attenuation = COSA**S
Else
 Attenuation = 0

Embedding Range Attenuation in a Texture Map

In general, texture coordinates must be between zero
and one when looking up a texture map value (texel).
Texture coordinates can be clamped to one if greater
than one and to zero if less than zero. If we use a
range extent of the light, we can keep the texture
coordinates between zero and one while within the
extent of the light, and clamped when outside the
extent of the light. The range attenuation equation
only approaches zero, but a small attenuation value, a
(e.g. 0.05), can be chosen at which we will force the
attenuation to zero.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2004

2004 Paper No. 1830 Page 3 of 6

This chosen attenuation value can be used to compute
the range extent, E, of the light by solving the
quadratic equation for R, where Q * R2 + L * R + (C –
1/a) = 0. Then, 3D texture coordinates s, t, and r can
be set as:

s = 0.5 + k * Px
t = 0.5 + k * Py
r = 0.5 + k * Pz
where the constant k = 0.5 / E.

When a component of the vector to light equals –E, the
texture coordinate is zero, and when the component
equals E, the texture coordinate is one. At any texel in
the map, the vector from the light to the texel can be
determined by:

Px = (s – 0.5) / k
Py = (t – 0.5) / k
Pz = (r – 0.5) / k

The range to the point is then calculated and the range
attenuation equation applied to determine the value of
the texel. The boundaries of the map should have the
texel value set to zero. In effect, the texels of the
texture map are defining the attenuation at discrete
points, but linear texture filtering can be used to
provide smoothing.

Specifically, for a given width, height, and depth of the
3D texture map, the texture map data is computed as
follows:

For i = 0 through (depth – 1)
 r = i / (depth – 1)
 z = (r – 0.5) / k
 For j = 0 through (height – 1)
 t = j / (height – 1)
 y = (t – 0.5) / k
 For k = 0 through (width – 1)
 s = k / (width – 1)
 x = (s – 0.5) / k
 R2 = x * x + y * y + z * z
 If (R2 > E) texel = 0
 else
 R = square root (R2)
 attenuation = 1 / (C + L * R + Q * R2)
 If attenuation > 1.0, attenuation = 1.0
 texel = attenuation converted to proper data format

An issue of using a 3D texture map is the amount of
texture memory required. However, a 128x128x128
map normally gives adequate resolution.

 If the resolution versus texture memory issue makes
using a 3D map unfeasible, a slightly slower and
complex method could be used. Use s and t with a 2D
map to look up a texture coordinate, q, where

q = 0.5 + k * |Px,Py|

Then, q and r can be used to look up the range
attenuation with a 2D texture map. The resolution of
these two 2D texture maps could be increased greatly
over the 3D map. However, most current cards are
limited to four texture maps (the Radeon 9800 and
X800 have eight). If a graphics card only has four
texture maps and a polygon has two textures, only one
would be available for range attenuation, given one is
required for angle attenuation. In this case, a 3D
texture map would have to be used.

Embedding Angle Attenuation in a Texture Map

A texture cube map will be used to look up angle
attenuation. The texture coordinates is determined by
first rotating the vertex into light coordinates, where
the x-coordinate is in the direction of the light.
Typically, a spot light may be defined relative to a
viewpoint, with an azimuth and elevation. The
viewpoint also may have heading, pitch, and roll. The
vertices may be relative to a world coordinate set.

Once the vertex is in light coordinates, then y and z
components are scaled by tangent of (90-half angle),
such that the entire cube map face covers the cone
angle. The positive x face (|x| > |y| and |x| > |z| and x >
0) of the cube map will have the lobe pattern. The
other five faces of the cube map are zero. The texture
coordinates sent with the vertex will be

s = x
t = a * y
r = a * z

where the constant a = tangent (90 – HA).

 Internally, the texture coordinates to the positive x
cube map will be:

s = 0.5 + 0.5 * t / s
t = 0.5 + 0.5 * r / s

So, given the s and t, COSA is computed as follows:

y/x = b * (s – 0.5)
z/x = b * (t – 0.5)
 COSA = 1 / square root (y/x * y/x + z/x * z/x + 1)

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2004

2004 Paper No. 1830 Page 4 of 6

where the constant b = 2 / a. The rest of the angle
attenuation equation can be applied to determine the
texel value.

Specifically for a given image size of the cube map, the
texture map data is computed as follows:

For i = 0 through (size – 1)
 t = i / (size – 1)
 z/x = b * (t – 0.5)
 For j = 0 – (size – 1)
 s = j / (size – 1)
 y/x = b * (s – 0.5)
 COSA = 1 / square root (y/x * y/x + z/x * z/x + 1)
 If COSA > cosine (HA),
 Attenuation = COSA**S
 Else
 Attenuation = 0
 texel = attenuation converted to proper data format

OTHER LIGHTING ISSUES

Directional Light Source

Since the fragment program requires the fragment
color before lighting, lighting must be disabled. This
requires that directional light sources must be handled
in the fragment program.

If flat shading is active, this only requires that the
shading value be passed as a texture coordinate to the
fragment program. Assuming no specular lighting, the
shading value f is calculated as follows:

f = ambient + diffuse * (d * n)

where d is the light direction and n is the face normal.

If smooth shading is active, the resultant shading at a
vertex can be passed as a texture coordinate. The
interpolated texture coordinate at the fragment is the
shading value.

Multiple Light Sources

In the case where multiple point or spot light sources
are required, such as headlights, the range and angle
attenuation texture maps may be able to be used for the
additional light sources.

 If the range attenuation parameters (C, L, Q) are the
same, only additional texture coordinates are required.
These would be generated as before, but using the new
light position (L). If the light sources are close

together, as in the case of headlights, then the same
texture coordinates might be used for both sources.

 If the angle attenuation parameters (HA and S) are the
same, only additional texture coordinates are required.
These would be generated as before, but using the new
light position (L).

Most current graphics cards support eight texture
coordinates, so up to four spot light sources could be
handled in this manner (given a texture coordinate used
for directional light source).

Lighting in Fog

The fragment program must also handle lighting in fog.
The effect of the fog will depend on if a fragment is
inside or outside the spot light, the range attenuation of
the light, and the fog density. The amount of fog
increases with range, but the intensity of the light
decreases. So, the issue is determine how must light is
reflected back off the fog.

A method to simulate this effect is to determine a fog
color to approximate the amount of reflection. A
method of doing this is to take samples across the
extent of the light. At each sample, calculate the fog
factor and the attenuation. Multiply one minus the fog
factor times the attenuation. Take the maximum value
of the samples as the fog color intensity for the light.
This value can be passed as a parameter to the
fragment program. A fragment will compute its fog
color as:

Fragment fog color = light color * angle attenuation *
fog color intensity + ambient fog color

The fog factor at the fragment is then used to
interpolate between color before fog and this fragment
fog color.

CREATING THE FRAGMENT PROGRAM

Fragment Program Lighting Equations

The general equation for lighting at a face fragment
(pixel) is:

Output color = (Sum of (range attenuation * angle
attenuation * (ambient light color + (l*N) * diffuse
light color) for all non-directional light sources +
directional ambient + directional diffuse * (d * n)) *
face fragment color * face texture 1 * face texture 2 (if
any).

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2004

2004 Paper No. 1830 Page 5 of 6

Sample Fragment Program

Lets assume a two headlights case, with range
attenuation and spot light parameters being the same
for both lights. We will assume the lights are close
enough together that the same range attenuation value
can be used for both lights. We will ignore diffuse
lighting for the headlights and apply the light color to
the ambient light color. Let RA be range attenuation
and AA1 and AA2 be angle attenuation for the two
lights. Let lcol be the light color and icol the fragment
color. The resultant lighting equation is:

Output color = (RA * (AA1 + AA2) * lcol + f) * icol *
tex1 * tex2

Using the OpenGL ARB_fragment_program extension,
the sample program is:

 static char *arb_pixel_light =
 "!!ARBfp1.0 \
 OPTION ARB_fog_exp2; \
 OUTPUT output = result.color; \
 ATTRIB tc_t1 = fragment.texcoord[0]; \
 ATTRIB tc_t2 = fragment.texcoord[1]; \
 ATTRIB tc_ra = fragment.texcoord[2]; \
 ATTRIB tc_aa1 = fragment.texcoord[3]; \
 ATTRIB tc_aa2 = fragment.texcoord[4]; \
 ATTRIB tc_f = fragment.texcoord[5]; \
 ATTRIB icol = fragment.color.primary; \
 PARAM lcol = state.light[1].ambient; \
 TEMP tex1; \
 TEMP tex2; \
 TEMP ra; \
 TEMP aa1; \
 TEMP aa2; \
 TEMP aa; \
 TEMP acc; \
 TXP tex1, tc_t0, texture[0], 2D; \
 TXP tex2, tc_t1, texture[1], 2D; \
 TEX ra, tc_ra, texture[2], 3D; \
 TEX aa1, tc_aa1, texture[3], CUBE; \
 TEX aa2, tc_aa2, texture[3], CUBE; \
 ADD aa, aa1, aa2; \
 MUL acc, aa, ra; \
 MAD_SAT acc.xyz, acc, lcol, tc_f.x; \
 MUL acc, acc, tex1; \
 MUL acc, acc, tex2; \
 MUL_SAT output, acc, icol; \
 END";

FRAGMENT PROGRAM RESULTS

The fragment program above was applied to a typical
simulation and training database, as shown in Figure 1,
using the ATI Radeon X800 Pro card to show per pixel
lighting. Figure 2 shows the same scene with low
visibility (fog). The fragment program was changed to
implement the logic described in the “Lighting in Fog”
section.

Figure 1. Per Pixel Lighting Without Fog

Figure 2. Per Pixel Lighting With Fog

GRAPHICS CARDS PERFORMANCE

The scene in Figure 1 was used to measure the
performance of several graphics cards with (shader)
and without (legacy) per pixel lighting. The results
were normalized to the fastest card (ATI X800). The
fragment program was executed on all polygons.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2004

2004 Paper No. 1830 Page 6 of 6

Table 1. Normalized Graphics Card Data

 Legacy Shader

ATI Radeon X800 PRO 1.0 1.95
ATI Radeon 9800 PRO 1.130 2.450

Nvidia GeForce FX 5950 1.847 4.830

The ATI 9800 card has significantly better
performance than the Nvidia 5950, with and without
per pixel lighting. The X800 was just released, but the
Nvidia 6800 was not available. However, there is
significant improvement between the ATI X800 and
9800, with more improvement on the shader path than
the legacy path.

The pixel processing time degrades significantly when
the fragment program is enabled, even with texture
lookup to eliminate most of the calculations. The pixel
processing time at least doubles.

Even a fragment program that just mimics the legacy
texture pipeline logic runs much slower than just using
the legacy pipeline.

However, the polygons within the extent of the light
(and within the cone angle) can be sorted from those
outside the extent of the light (or outside the cone
angle). The fragment program would be enabled only
for those polygons within the extent (and cone angle)
of the light.

CONCLUSION

Other shading languages are available, such as Cg and
OpenGL Shading Language. Direct 3D is an option
besides OpenGL. But, it is unlikely that the
performance issues are dependent on the platform
used.

As far as how simulation and training programs will be
able to leverage the rapidly changing GPU
programmability and programming interfaces, the
approach used here for pixel lighting (point and spot
light sources), is the same approach as used for bump
mapping, Phong shading, and other advanced graphics
features. In general, however, the use of fragment
programs may remain somewhat limited given current
performance levels. Limiting the number of polygons
that require the use of the fragment programs can give
a trade off between performance and image quality.

