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ABSTRACT 

 

This paper will describe techniques to implement the lighting algorithms for point and spot light sources at a pixel 
level at realtime rates using fragment program capabilities on current graphics cards. 

Visual simulation has long been required to simulate point and spot light sources such as headlights, search lights, 
flares, and steerable landing lights.  To calculate lighting at a pixel level from these sources has traditional been 
difficult to run at realtime rates.  Today's commercial graphics cards now have the ability to do pixel lighting at 
realtime rates using fragment programs (pixel shaders).  The complex calculations for range and angle attenuation 
of these lights sources can be imbedded into texture maps and "looked-up".  Two or multi-pass algorithms per 
polygon of the past are no longer necessary. 

The generation of texture coordinates and generation of the texture maps from the attenuation calculations will be 
described.  Lighting from directional light sources (e.g., sun or moon) and illumination of fog will also be 
addressed.  
 
The pixel lighting performance of current commercial graphics cards (NVIDIA/ATI) will be discussed. 
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OVERVIEW 
 
Graphics 3D APIs such as OpenGL and Direct3D 
specify lighting algorithms that are applied to the 
vertices of a polygon.  Gourard shading is then applied 
such that the color at a pixel is interpolated from the 
color of the vertices.  While this may produce adequate 
results for directional (infinite) light sources, such as 
the sun, it does not generally produce adequate results 
for point or spot light sources.  Range attenuation may 
be inadequate, especially with large polygons. The lobe 
effect of a spotlight may be greatly distorted or 
missing.  A classic example is a flashlight shining on 
the center of a large polygon.  There would be no 
lighting since the vertices are all outside the cone angle 
of the light.  The only solution is to tessellate the 
polygon until the desired effect is achieved.  However, 
tessellation is an expensive solution. 
 
With the advent of fragment programs (pixel shaders), 
the ability to do lighting algorithms in the pixel 
pipeline is now available.  However, the calculations to 
do the lighting algorithms for a pixel in the same 
manner as a vertex are expensive.  The current 
graphics cards do not have the performance to do these 
calculations and meet the realtime requirements for 
visual simulation in military ground and flight 
simulators.  However, most of these calculations can 
be embedded in texture maps and “looked up”, making 
realtime operation achievable.   
 
COMPUTE LIGHTING USING TEXTURE MAPS 
 
Lighting Algorithms 
 
The lighting algorithms applied to a vertex for spot 
light sources can be broken into two parts:  range 
attenuation and angle attenuation.  Point lights sources, 
such as flares, only require range attenuation.  Lets 
define V to be the position of the vertex and L the 
position of the light.  Lets define P to be the vector 
from the light to the vertex, R2 as the square of the 
range to the light, and R as the range to the vertex from 

the light.  Both range and angle attenuation require the 
following equations: 
P = V – L 
R2 = P * P 
R = square root (R2) 
 
Range attenuation is controlled by three parameters, 
the constant (C), linear (L), and quadratic (Q) 
attenuation factors.  The equation for range attenuation 
is: 
 
Attenuation = 1 / (C + L * R + Q * R2) 
 
For spotlight angle attenuation, lets define l to be the 
direction of the light.  Two parameters, the cone half 
angle (HA) and the spot exponent  (S) control angle 
attenuation.  The cosine of the angle between the 
direction of the light and the direction from the light to 
the vertex is defined as COSA. The equations for angle 
attenuation are: 
 
COSA = l * P / R 
If COSA > cosine (HA), 
  Attenuation = COSA**S 
Else 
  Attenuation = 0 
 
Embedding Range Attenuation in a Texture Map 
 
In general, texture coordinates must be between zero 
and one when looking up a texture map value (texel).  
Texture coordinates can be clamped to one if greater 
than one and to zero if less than zero.  If we use a 
range extent of the light, we can keep the texture 
coordinates between zero and one while within the 
extent of the light, and clamped when outside the 
extent of the light.  The range attenuation equation 
only approaches zero, but a small attenuation value, a 
(e.g. 0.05), can be chosen at which we will force the 
attenuation to zero.   
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This chosen attenuation value can be used to compute 
the range extent, E, of the light by solving the 
quadratic equation for R, where Q * R2 + L * R + (C – 
1/a) = 0.  Then, 3D texture coordinates s, t, and r can 
be set as: 
 
s = 0.5 + k * Px  
t = 0.5 + k * Py 
r = 0.5 + k * Pz 
where the constant k = 0.5 / E. 
 
When a component of the vector to light equals –E, the 
texture coordinate is zero, and when the component 
equals E, the texture coordinate is one.  At any texel in 
the map, the vector from the light to the texel can be 
determined by: 
 
Px = (s – 0.5) / k 
Py = (t – 0.5) / k 
Pz = (r – 0.5) / k 
 
The range to the point is then calculated and the range 
attenuation equation applied to determine the value of 
the texel.  The boundaries of the map should have the 
texel value set to zero.  In effect, the texels of the 
texture map are defining the attenuation at discrete 
points, but linear texture filtering can be used to 
provide smoothing. 
 
Specifically, for a given width, height, and depth of the 
3D texture map, the texture map data is computed as 
follows: 
 
For i = 0 through (depth – 1) 
  r = i / (depth – 1) 
  z = (r – 0.5) / k 
  For j = 0 through (height – 1) 
     t = j / (height – 1) 
     y = (t – 0.5) / k 
     For k = 0 through (width – 1) 
       s = k / (width – 1) 
       x = (s – 0.5) / k 
       R2 = x * x + y * y + z * z 
       If (R2 > E) texel = 0 
       else 
       R = square root (R2) 
       attenuation = 1 / (C + L * R + Q * R2) 
       If attenuation > 1.0, attenuation = 1.0 
       texel = attenuation converted to proper data format 
 
An issue of using a 3D texture map is the amount of 
texture memory required.  However, a 128x128x128 
map normally gives adequate resolution. 
 

 If the resolution versus texture memory issue makes 
using a 3D map unfeasible, a slightly slower and 
complex method could be used.  Use s and t with a 2D 
map to look up a texture coordinate, q, where 
 
q = 0.5 + k * |Px,Py| 
 
Then, q and r can be used to look up the range 
attenuation with a 2D texture map.  The resolution of 
these two 2D texture maps could be increased greatly 
over the 3D map.  However, most current cards are 
limited to four texture maps (the Radeon 9800 and 
X800 have eight).  If a graphics card only has four 
texture maps and a polygon has two textures, only one 
would be available for range attenuation, given one is 
required for angle attenuation.  In this case, a 3D 
texture map would have to be used. 
 
Embedding Angle Attenuation in a Texture Map 
 
A texture cube map will be used to look up angle 
attenuation.  The texture coordinates is determined by 
first rotating the vertex into light coordinates, where 
the x-coordinate is in the direction of the light.  
Typically, a spot light may be defined relative to a 
viewpoint, with an azimuth and elevation.  The 
viewpoint also may have heading, pitch, and roll.  The 
vertices may be relative to a world coordinate set. 
 
Once the vertex is in light coordinates, then y and z 
components are scaled by tangent of (90-half angle), 
such that the entire cube map face covers the cone 
angle.  The positive x face (|x| > |y| and |x| > |z| and x > 
0) of the cube map will have the lobe pattern.  The 
other five faces of the cube map are zero. The texture 
coordinates sent with the vertex will be 
 
s = x 
t = a * y 
r = a * z 
 
where the constant a = tangent (90 – HA). 
 
 Internally, the texture coordinates to the positive x 
cube map will be: 
 
s = 0.5 + 0.5 * t / s 
t = 0.5 + 0.5 * r / s 
 
So, given the s and t, COSA is computed as follows: 
 
y/x = b * (s – 0.5) 
z/x = b * (t – 0.5) 
 COSA = 1 / square root (y/x * y/x + z/x * z/x + 1) 
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where the constant b = 2 / a.  The rest of the angle 
attenuation equation can be applied to determine the 
texel value. 
 
Specifically for a given image size of the cube map, the 
texture map data is computed as follows: 
 
For i = 0 through (size – 1) 
  t = i / (size – 1) 
  z/x  = b * (t – 0.5) 
  For j = 0 – (size – 1) 
     s = j / (size – 1) 
     y/x = b * (s – 0.5) 
    COSA = 1 / square root (y/x * y/x + z/x * z/x + 1) 
     If COSA > cosine (HA), 
       Attenuation = COSA**S 
    Else 
      Attenuation = 0 
    texel = attenuation converted to proper data format 
  
 

OTHER LIGHTING ISSUES 
 
Directional Light Source 
 
Since the fragment program requires the fragment 
color before lighting, lighting must be disabled.  This 
requires that directional light sources must be handled 
in the fragment program. 
 
If flat shading is active, this only requires that the 
shading value be passed as a texture coordinate to the 
fragment program.  Assuming no specular lighting, the 
shading value f is calculated as follows: 
 
f = ambient + diffuse * (d * n) 
 
where d is the light direction and n is the face normal. 
 
If smooth shading is active, the resultant shading at a 
vertex can be passed as a texture coordinate.  The 
interpolated texture coordinate at the fragment is the 
shading value. 
 
Multiple Light Sources 
 
In the case where multiple point or spot light sources 
are required, such as headlights, the range and angle 
attenuation texture maps may be able to be used for the 
additional light sources. 
 
 If the range attenuation parameters (C, L, Q) are the 
same, only additional texture coordinates are required.  
These would be generated as before, but using the new 
light position (L).  If the light sources are close 

together, as in the case of headlights, then the same 
texture coordinates might be used for both sources. 
 
 If the angle attenuation parameters (HA and S) are the 
same, only additional texture coordinates are required.  
These would be generated as before, but using the new 
light position (L).  
 
Most current graphics cards support eight texture 
coordinates, so up to four spot light sources could be 
handled in this manner (given a texture coordinate used 
for directional light source). 
 
Lighting in Fog 
 
The fragment program must also handle lighting in fog.  
The effect of the fog will depend on if a fragment is 
inside or outside the spot light, the range attenuation of 
the light, and the fog density.  The amount of fog 
increases with range, but the intensity of the light 
decreases.  So, the issue is determine how must light is 
reflected back off the fog. 
 
A method to simulate this effect is to determine a fog 
color to approximate the amount of reflection.  A 
method of doing this is to take samples across the 
extent of the light.  At each sample, calculate the fog 
factor and the attenuation.  Multiply one minus the fog 
factor times the attenuation.  Take the maximum value 
of the samples as the fog color intensity for the light.  
This value can be passed as a parameter to the 
fragment program.  A fragment will compute its fog 
color as: 
 
Fragment fog color = light color * angle attenuation * 
fog color intensity + ambient fog color 
 
The fog factor at the fragment is then used to 
interpolate between color before fog and this fragment 
fog color. 
 
 

CREATING THE FRAGMENT PROGRAM 
 
Fragment Program Lighting Equations 
 
The general equation for lighting at a face fragment 
(pixel) is: 
 
Output color = (Sum of (range attenuation * angle 
attenuation * (ambient light color + (l*N) * diffuse 
light color) for all non-directional light sources + 
directional ambient + directional diffuse * (d * n)) * 
face fragment color * face texture 1 * face texture 2 (if 
any). 
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Sample Fragment Program 
 
Lets assume a two headlights case, with range 
attenuation and spot light parameters being the same 
for both lights.  We will assume the lights are close 
enough together that the same range attenuation value 
can be used for both lights.  We will ignore diffuse 
lighting for the headlights and apply the light color to 
the ambient light color.  Let RA be range attenuation 
and AA1 and AA2 be angle attenuation for the two 
lights.   Let lcol be the light color and icol the fragment 
color.  The resultant lighting equation is: 
 
Output color = (RA * (AA1 + AA2) * lcol + f) * icol * 
tex1 * tex2 
 
Using the OpenGL ARB_fragment_program extension, 
the sample program is: 
 
 static char *arb_pixel_light = 
  "!!ARBfp1.0                                                \ 
   OPTION   ARB_fog_exp2;                         \ 
   OUTPUT   output = result.color;                 \ 
   ATTRIB   tc_t1   = fragment.texcoord[0];   \ 
   ATTRIB   tc_t2   = fragment.texcoord[1];   \ 
   ATTRIB   tc_ra   = fragment.texcoord[2];   \ 
   ATTRIB   tc_aa1 = fragment.texcoord[3];   \ 
   ATTRIB   tc_aa2 = fragment.texcoord[4];   \ 
   ATTRIB   tc_f     = fragment.texcoord[5];   \ 
   ATTRIB   icol  = fragment.color.primary;   \ 
   PARAM   lcol = state.light[1].ambient;      \ 
   TEMP    tex1;                                               \ 
   TEMP    tex2;                                               \ 
   TEMP    ra;                                                   \ 
   TEMP    aa1;                                                 \ 
   TEMP    aa2;                                                 \ 
   TEMP    aa;                                                   \ 
   TEMP   acc;                                                  \ 
   TXP      tex1, tc_t0, texture[0], 2D;              \ 
   TXP      tex2, tc_t1, texture[1], 2D;              \ 
   TEX      ra,   tc_ra, texture[2], 3D;                \ 
   TEX      aa1,  tc_aa1, texture[3], CUBE;      \ 
   TEX      aa2,  tc_aa2, texture[3], CUBE;      \ 
   ADD     aa, aa1, aa2;                                     \ 
   MUL     acc, aa, ra;                                        \ 
   MAD_SAT acc.xyz, acc, lcol, tc_f.x;           \ 
   MUL     acc, acc, tex1;                                  \ 
   MUL     acc, acc, tex2;                                  \ 
   MUL_SAT output, acc, icol;                         \ 
   END"; 
 
  

FRAGMENT PROGRAM RESULTS 
 

The fragment program above was applied to a typical 
simulation and training database, as shown in Figure 1, 
using the ATI Radeon X800 Pro card to show per pixel 
lighting.    Figure 2 shows the same scene with low 
visibility (fog).  The fragment program was changed to 
implement the logic described in the “Lighting in Fog” 
section. 
 

 
 

Figure 1.  Per Pixel Lighting Without Fog 
 
 

 
 

Figure 2.  Per Pixel Lighting With Fog 
 
 

GRAPHICS CARDS PERFORMANCE 
 

The scene in Figure 1 was used to measure the 
performance of several graphics cards with (shader) 
and without (legacy) per pixel lighting.  The results 
were normalized to the fastest card (ATI X800).  The 
fragment program was executed on all polygons. 
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Table 1.  Normalized Graphics Card Data 

 
 Legacy Shader 

ATI Radeon X800 PRO 1.0 1.95 
ATI Radeon 9800 PRO 1.130 2.450 

Nvidia GeForce FX 5950 1.847 4.830 
 
The ATI 9800 card has significantly better 
performance than the Nvidia 5950, with and without 
per pixel lighting.   The X800 was just released, but the 
Nvidia 6800 was not available.  However, there is 
significant improvement between the ATI X800 and 
9800, with more improvement on the shader path than 
the legacy path.  
 
The pixel processing time degrades significantly when 
the fragment program is enabled, even with texture 
lookup to eliminate most of the calculations. The pixel 
processing time at least doubles. 
 
Even a fragment program that just mimics the legacy 
texture pipeline logic runs much slower than just using 
the legacy pipeline. 
 

However, the polygons within the extent of the light 
(and within the cone angle) can be sorted from those 
outside the extent of the light (or outside the cone 
angle).  The fragment program would be enabled only 
for those polygons within the extent (and cone angle) 
of the light. 
 

CONCLUSION 
 

Other shading languages are available, such as Cg and 
OpenGL Shading Language.  Direct 3D is an option 
besides OpenGL.  But, it is unlikely that the 
performance issues are dependent on the platform 
used. 
 
As far as how simulation and training programs will be 
able to leverage the rapidly changing GPU 
programmability and programming interfaces, the 
approach used here for pixel lighting (point and spot 
light sources), is the same approach as used for bump 
mapping, Phong shading, and other advanced graphics 
features.  In general, however, the use of fragment 
programs may remain somewhat limited given current 
performance levels.  Limiting the number of polygons 
that require the use of the fragment programs can give 
a trade off between performance and image quality. 
 
 

 
 
  
 
 
 

 
 
 

 




