

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2004

2004 Paper No. 1743 Page 1 of 13

Intelligent Simulation-Based Tutor for Flight Training

Emilio Remolina, Sowmya Ramachandran, Daniel
Fu, Richard Stottler

William R. Howse

Stottler Henke Associates, Inc. U.S. Army Research Institute
San Mateo, California Fort Rucker, Al

{remolina,sowmya,fu}@stottlerhenke.com howsew@rwaru-emh1.army.mil

ABSTRACT

Today’s military flight simulators have dramatically reduced the cost of training by providing cheaper, effective
alternatives to training on a real aircraft. However, flight training is still limited by the availability of instructor
pilots. The adage “practice makes perfect” is nowhere truer than in the learning psychomotor skills such as flying.
Ideally, trainees should be able to practice flying skills on their own to complement instructor-led training. Most
flight simulators do not have any automated assessment and tutoring facilities, making them ineffective as self-
paced learning environments.

The Army has funded pioneering research on developing automated tutors for flight training, specifically for
training initial-entry rotor-wing pilots. An early rule-based system, called the IFT (Intelligent Flight Trainer),
monitored trainees’ flight performance and provided adaptive coaching. It provided instructional assistance by
regulating the challenge level of a flight task, and through overt spoken feedback to inform trainees when they are
flying out of range of specified flight parameters. Evaluations showed that while this system was effective in
improving flying skills, it was inflexible in terms of it assessment and instruction strategies.

The Army is currently funding research on a next generation automatic flight trainer, called AIS-IFT, that improves
upon the IFT. AIS-IFT is designed to be flexible and extensible in terms of assessment and tutoring procedures. A
visual authoring tool lets SMEs and course designers modify or create powerful instructional behavior with little
programming effort. Whereas the previous effort had the instructional approach embedded deep in the tutoring
system, the new approach separate the specific instructional strategies from the ITS infrastructure, thus empowering
SMEs and course authors to create a tutor with pedagogy that is customized to their domain.

ABOUT THE AUTHORS

Dr. Emilio Remolina is an Artificial Intelligence research scientist at Stottler Henke Associates, Inc. He received
his Ph.D. in Computer Science, specializing in cognitive robotics from the University of Texas at Austin in 2001.
His graduate work focused on “map building”, whereby an autonomous robot combines sensory information and
actions it performs in order to build and localize in a map of its environment. Dr. Remolina’s research interest
includes intelligent tutoring systems, planning, simulation and common sense reasoning.

Dr. Sowmya Ramachandran is a research scientist at Stottler Henke Associates, Inc. Dr. Ramachandran received
her Ph.D. is Computer Science from the University of Texas at Austin. She has a strong background in a wide
variety of Artificial Intelligence techniques, including Intelligent Tutoring Systems, and Machine Learning. Her
research interests include application of Artificial Intelligence techniques to Education Technology with a focus on
addressing motivational, affective, and meta-cognitive issues. Dr. Ramachandran has headed several intelligent
tutoring system development efforts for k-12 education and military training. She is currently heading an effort to
develop an intelligent tutoring system for training medical teams and another for training information warfare
teams.

Dr. Daniel Fu joined Stottler Henke six years ago after earning a graduate degree in computer science. He currently
manages two projects: a cultural decision aid tool, and a project to create a wargaming toolset. The first project

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2004

2004 Paper No. 1743 Page 2 of 13

employs a case-based reasoning approach to a decision aid that factors cultural influence into the decision-making
process. The system consists of a cultural model, authoring and automated analysis techniques for applying the
model to specific situations. The second project, called Warcon, aims to create a wargame construction toolset for
AF instructors to quickly create wargames for student use. Most important are advanced user interfaces that cater to
the user’s sophistication level, ranging from simulator parameter editing to complete wargame construction.

Richard Stottler co-founded Stottler Henke Associates, Inc., an artificial intelligence consulting firm in San Mateo,
California, in 1988 and has been the president of the company since then. He has been the principal investigator on
a large number of tactical decision-making intelligent tutoring system projects conducted by Stottler Henke
including projects for the Navy, Army, Air Force and Marine Corps. Currently he is working on OPFOR MOUT
Individual Combatant targeting and firing behavior modeling for the Marine Corps and a Combined Arms ITS as
part of the US Marine Corps Combined Arms Command and Control Training Upgrade System (CACCTUS). He
has a Masters degree in Computer Science from Stanford University.

Dr. William R. Howse, works as a Research Psychologist and Team Leader with the U.S. Army Research
Institute’s Rotary Wing Aviation Research Unit at Ft. Rucker, Alabama. His experience includes work in
psychophysics, educational program evaluation, design and evaluation of training systems, development of
performance measures for individual, crew and collective training systems, and development of personnel selection
and classification systems. His current activities involve integration of automated and manual data collection
processes and development of artificially intelligent adaptive approaches to simulation-based training.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2004

2004 Paper No. 1743 Page 3 of 13

Intelligent Simulation-based Tutors for Flight Training

Emilio Remolina, Sowmya Ramachandran, Daniel
Fu, Richard Stottler

William R. Howse

Stottler Henke Associates Inc U.S. Army Research Institute
San Mateo, California Fort Rucker, Al

{remolina,sowmya,fu}@stottlerhenke.com howsew@rwaru-emh1.army.mil

INTRODUCTION

Today’s military flight simulators have dramatically
reduced the cost of training by providing cheaper,
effective alternatives to training on a real aircraft.
However, flight training is still limited by the
availability of instructor pilots. The adage “practice
makes perfect” is nowhere truer than in the learning
psychomotor skills such as flying. Ideally, trainees
should be able to practice flying skills on their own to
complement instructor-led training. Most flight
simulators do not have any automated assessment and
tutoring facilities, making them ineffective as self-
paced learning environments.

The Army has funded pioneering research on
developing automated tutors for flight training,
specifically for training initial-entry rotor-wing pilots.
An early rule-based system, called the IFT (Intelligent
Flight Trainer), monitored trainees’ flight performance
and provided adaptive coaching. It provided
instructional assistance by regulating the challenge
level of a flight task, and through overt spoken
feedback to inform trainees when they are flying out of
range of specified flight parameters. Evaluations
showed that while this system was effective in
improving flying skills, it was inflexible in terms of it
assessment and instruction strategies.

The Army is currently funding research on a next
generation automatic flight trainer, called AIS-IFT,
that improves upon the IFT. AIS-IFT is designed to be
flexible and extensible in terms of assessment and
tutoring procedures. A visual authoring tool lets SMEs
and course designers modify or create powerful
instructional behavior with little programming effort.
Whereas the previous effort had the instructional
approach embedded deep in the tutoring system, the
new approach separate the specific instructional
strategies from the ITS infrastructure, thus empowering
SMEs and course authors to create a tutor with
pedagogy that is customized to their domain.

This paper will describe both these efforts in detail and
discuss avenues for future research and development in
the area of automated flight training.
AUTOMATED FLIGHT TRAINING

The Army Research Institute (ARI) has been studying
the problem of building automated tutors for training
initial-entry rotor-wing (IERW) pilots. Normally these
pilots are trained in real equipment one-on-one by
instructor pilots. The ARI has the objective of
improving the efficiency of this process by providing
intelligent simulator-based tutors to replace some of
the live equipment training. While computer-based
training cannot replace live training, it has been shown
to be a highly effective complement, especially when it
provides scenario-based instruction with realistic
simulators [Schank, 1995]. The effectiveness of such
simulation-based training hinges crucially on the
availability of instructional support from an instructor.

Unfortunately the financial and human resources are
simply not available to provide the kind of one-on-one
instruction that learning to fly helicopters requires. The
use of an intelligent tutoring system (ITS), as the one
described in this paper, have the potential to achieve
many of the same benefits as one-on-one instruction
do. Intelligent Tutoring Systems are computer-based
training systems that mimic human instructors in
providing one-on-one instruction. Much like a human
instructor, ITSs dynamically assess and diagnose a
student's knowledge and skill levels and provide
training that is customized to the student's learning
needs. To truly tailor instruction, ITSs create, develop,
and maintain a model of the student. This model is used
as a basis for automatic selection of instruction method
and content, for automatic diagnosis, remedial course
formulation, re-testing, progress monitoring and
reporting.

IFT: AN INITIAL APPROACH TO
INTELLIGENT FLIGHT TRAINING.

The Intelligent Flight Trainer (IFT) is an Intelligent
Tutoring System for IERW pilots. The IFT consists of
a helicopter flight simulator and an intelligent tutoring

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2004

2004 Paper No. 1743 Page 4 of 13

system (ITS) merged into a single system. This system
was designed to help teach hovering skills to IERW
pilots, and is described in greater detail than found here
in previous papers (Krishnakumar, et. al., 1991). The
skills taught by the IFT were later extended to include
hover taxi, hover turn, traffic patterns, and standard
approaches (Mulgand, et. al., 1995). An introduction
to helicopter piloting, as well as detailed descriptions
of the tasks above, can be found in Padfield (1992).

The IFT simulator represents a generalized training
helicopter. The cockpit consists of a frame, instrument
panel, cyclic, collective, and pedals, all of which have
been taken from actual helicopters. There is also a
single screen to display virtual or glass cockpit
displays. Three larger screens provide forward and side
visual displays, with a resulting visual field of about 90
degrees. The entire simulator (including the ITS
discussed below) is powered by a set of Linux boxes.
These machines run various pieces of software to
control the cockpit, flight model, image generation,
and audio systems (Mulgand, et. al., 1995).

In the IFT, the intelligent tutoring system attempts to
provide the same types of training provided by
instructor pilots. The two main components of the ITS
are referred to as the helper and the advisor. Helper
makes it easier for the student to fly the helicopter,
akin to training wheels on a bicycle. It dynamically
adjusts the flight model to correspond with the
student’s ability to complete maneuvers. The student
begins with a flight model that is very easy to fly, but
very unrealistic, and progresses to an aerodynamic
model that closely approximates the real thing. This
allows beginning students who, for example, tend to
make large, impulsive cyclic movements, to be able to
“fly” the helicopter. At the same time, proficient
students are not given this freedom and need to make
the small and controlled types of cyclic inputs actually
used in the helicopter. All of this is performed without
explicit interaction of the student with the ITS.

The second component requires more interaction since
the Advisor communicates verbally with the student.
Currently, this means that the advisor “talks” using
text-to-speech software and the student listens. The
advisor has four different informative roles, the first of
which is to instruct the student on basic procedures
(tutorial role), such as applying left peddle as the
collective is increased. Performance monitoring is the
second role, with instructions such as “watch your
airspeed”. The third role is control activity monitoring,
where comments on how the student is using the
controls are given by the advisor (e.g. notifying the

student when they are cross-controlling). The final
feedback role is advisory, which verbalizes suggestions
to control or correct flight. An example of this type of
comment is “descend by lowering the collective.”

Mulgand, et al., (1995) evaluated the performance of
the IFT with a single participant with a basic
knowledge of helicopter flight but minimal flight
experience. They found that the level of control
assistance given could effectively allow the student to
hover, and that the level of control assistance generally
decreased with more time spent on the hover task. For
the traffic pattern task this level of increased
performance was not found. Generally, the student
performed poorly on this task. They note, however,
that the advisor did successfully guide the student
through the traffic pattern. Despite the evaluation
shortcomings (e.g., small study size, lack of control
group), the evaluation does serve as an indicator that
variable controls can help a student perform tasks and
that the student can follow the verbal cues of the
advisor.

We are primarily concerned with the intelligent
tutoring system portion of the IFT. The IFT system
was found to somewhat brittle with respect to its
instructional approach which was embedded deep into
the logic of the system and there were no facilities to
change its behavior without re-writing the system.
Studies with students showed that its behavior did need
to be tuned and modified based on observations of its
effectiveness. The current work was therefore
motivated by the need to develop an Adaptive
Instructional System (AIS) architecture that provides
the infrastructure for deep student modeling (i.e.
modeling factors other than skill mastery, e.g.
personality and affective traits), and for rapid
modification and enhancement of tutoring behavior.

The next sections present the AIS-IFT system. We give
a system functional description, followed by a
description of the system architecture, the authoring
tool, and actual content.

AIS-IFT FUNCTIONAL DESCRIPTION

AIS-IFT is a framework for building agile Intelligent
Tutoring Systems that can be adapted in terms of their
instructional behavior with minimal effort. An
overarching goal is to develop approaches for putting
the tools for modifying the content and the pedagogy
of an ITS in the hands of the trainers and subject
matter experts who can incorporate the lessons they
learn from extended use of the ITS back into the design

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2004

2004 Paper No. 1743 Page 5 of 13

of the ITS. An important pre-condition for meeting this
objective successfully is that the tools should expose
the underlying structure and behavior of the ITS
comprehensively, and provide easy yet powerful ways
of modifying them. The trade-off between usability
and power is crucial.

The AIS-IFT follows the instructional model, as used
by Instructor Pilots, of teaching in the context of flight
exercises. Trainees are assigned flight exercises based
on mastery and personality attributes. Exercises are
preceded by pre-flight briefings, and followed by
detailed after-action reviews. The after-action reviews
include pointers to remedial material on certain
principles; however most of the training happens in the
context of exercises. Trainees are coached through the
exercises to varying degrees based on their expertise
level.

Adaptive instructional practices
The AIS-IFT system incorporates the following
adaptive instructional practices:

1. The tutor selects instructional goals based on the
student model, which is in turn based on assessment of
student performance on exercises. Advanced tasks and
skills are introduced only when their pre-requisites
have been mastered. Thus, the challenge level of
learning activities presented to students are customized
to their pace of gaining expertise.

2. The tutor adapts to personality differences by
presenting introverts initially with exercises that make
fewer attentional demands. This is based on the
research finding that introverts are less able to handle
situations that require paying attention to several things
at once than extraverts. By regulating the challenge
level to start with exercises requiring less attention, and
progressively increasing this over time, the tutor
provides introverts with a graded learning experience
that is tuned to their abilities.

3. Expert students are given less coaching than novice
students. This is consistent with the recommendation
that the optimal strategy for teaching motor skills is to
provide coaching and practice in the initial stages but
withdraw them as the student progresses. Such
withdrawal of coaching has been found to be essential
for effective learning [Gagne and Medsker, 1996].

4. The coaching provided to a student is itself adaptive
of the student’s mastery profile. During a flying
exercise, the tutor has several competing dimensions
on which it can focus its coaching. For example, at any

given time in an exercise, a student may be going
above the target altitude and moving away from the
target heading. In this case, the tutor uses the student
model to choose its focus. For a student who has less
mastery over maintaining heading than altitude, it
would coach the student on the former. On the other
hand a student who is better at maintaining heading
than altitude will be coached on maintaining altitude.
In this way, the tutor adapts its coaching to the needs
of the student.

An AIS-IFT session
Instruction is based on flight exercises. An exercise
consists of a flight pre-brief, followed by a flying
session, ending with an after action review. Next we
describe what an AIS-IFT session looks like.

Assessment testing
For first-time training, the student proceeds to
assessment testing followed by a pre-brief, exercise,
post-brief, and an optional review. Returning students
proceed directly to a pre-brief based on earlier
assessments and recent training exercises. The initial
assessment currently includes a personality test; the
AIS-IFT system evaluates student responses and
determines the appropriate learning style and
personality of the student based on the answers given
by the student in the assessment test.

Posting teaching goals
 Following the assessment testing, the AIS-IFT system
plans further instruction by developing a set of goals
and finding a plan to satisfy those goals, as explain
later. For example, a list of goals for a beginner student
may include

indicating those skills the student should practice next.
The tutor prefers active exercises to passive display of
didactic review and therefore most often chooses to
assign exercises as a way of improving skills. When
selecting an exercise, the tutor choses that exercise that
cover the most goals.

Pre-brief
Each exercise starts with pre-brief providing
instructions of what the exercise is about and what is
expected from the student (Figure 1). The pre-brief
provides a specific task outline instructing the student
of step-by-step action and any requirements that must
be met during the exercise, such as helicopter heading,

- (increase-mastery (concept = control cyclic to the left)
- (increase-mastery (concept = decrease altitude))
- (increase-mastery (concept = increase speed))

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2004

2004 Paper No. 1743 Page 6 of 13

altitude and speed requirements in an exercise. Task’s
descriptions include hyperlinks that if selected, provide
additional information and detail for guidance and
definition of the task. This pre-brief is customized
depending on the student’s model and learning style.
For example, if students have some familiarity with the
task less information about the task is provided; for
some students the task is presented in a well structured
and detailed manner; for other students the task is
succinctly described and more links are provided to
present opportunities for analysis and research.

Figure 1. Exercise pre-brief.

Doing the exercise
To begin an exercise, AIS-IFT instructs the student to
select a specific flight that is geared for the chosen
exercise. The student uses the simulator facilities to
start the flight. Once the flight starts, the student is in
control of the helicopter. The tutor provides (spoken)
instructions whenever it decides the student needs
some help. The tutor decides and informs the student
when the exercise is done.

 Real-time coaching feedback during the exercise is
derived from a description of the procedure the student
should carry on to recover from out of nominal
conditions (e.g., if the student lost altitude use a
recover altitude procedure to coach the student). In

later sections we illustrate how authors can “draw”
such procedures.

The tutor provides the following kinds of coaching
depending on the expertise level of the student.
Advanced students get limited coaching, which is often
restricted to alerting the student about events and
helicopter conditions that need attention. Novice
students, on the other hand, get hands on coaching in
the form of specific instructions on what they should
be doing with the controls. Coaching takes the form of
verbal, spoken instructions. In addition, the tutor may
provide help in the form of visual cues. In the current
version of AIS-IFT, the tutor can flash relevant
instruments to guide the student in using instruments to
understand the state of the helicopter and determine
corrective actions. For example, if the student is
climbing too fast, the tutor will flash the climb-rate
indicator in order to draw the student’s attention to her
rate of climb.

The tutor stops the simulation whenever the student
loses control of the helicopter. Losing control of the
helicopter happens when the helicopter’s parameters
are outside the exercise’s specified range, which is
specified while defining the exercise using the
authoring tool. Usually these parameters define
obvious out of control conditions: the helo is about to
crash, the helo is rolling. Other out of control
conditions are less obvious: the helo deviated too much
from the exercise’s targeted heading; the helo is out of
the altitude range specified for the exercise. The tutor
will explain why the helo is out of control, as well as
how to correct the situation.

Post-brief
The tutor provides an after-action review once the
exercise is completed. This feedback is given in two
forms: an exercise performance summary (see figure
below) and a replay of the exercise.

The postbrief is a typical exercise performance
summary that shows the following results: (i) the three
best things that were done well; (ii) improvements (if
any) noticed in student’s flying skills (none shown in
this figure), and (iii) three worst things done during the
exercise. Hyperlinks are provided for the student to
review those flying skills or principles that need the
most improvement. In all cases, the student model is
used to filter the feedback that is provided to student
by not including things the student already knows (e.g.,
point out things done well only if the student has not
mastered them before the exercise) or things that are
not usual problems (e.g., advanced students may lost

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2004

2004 Paper No. 1743 Page 7 of 13

altitude during an exercise although they in general
know how to maintain the altitude).

After-action review also includes a graphical summary
of the exercise execution. For example, in a straight-
level exercise, these graphs show the change in
latitude, longitude altitude, and heading during the
exercise execution. This review is set so students can
see the changes as they occurred.

Figure 2. After action review display

Handling automaticity
Developing skill automaticity is very important for
achieving expertise in motor tasks such as flying.
Automaticity is the degree to which a person has
automated the skills so that they require minimal
attentional resources to perform them. People who
have automated a skill can typically perform other
secondary tasks without any deterioration of their
performance on tasks involving the skill. Most of us
have automated the skill of driving a car so that we are
able to converse with passengers or listen to the radio
without significant loss of driving performance.
Automaticity is typically assessed by observing a
student’s performance on the main task in the presence
of other distractions that require their attention. The
section student assessment and modeling explains how

the student model has been designed to include
automaticity measures.

AIS-IFT measures automaticity by compounding flight
exercises with secondary tasks that compete for a
trainee’s attention. Currently, the AIS-IFT includes one
secondary task, namely manipulating various radio
control buttons that are used to assess automaticity.
Secondary tasks can be graded according to their
difficulty so that more challenging distractions can be
used as the student gains expertise.

The student’s performance on the flight task in the
presence of distractions is measured and used to update
the student model. These exercises not only serve as
assessments but also as practice opportunities that let
students to develop automaticity.

AIS-IFT ARCHITECTURE
AIS-IFT consists of two components: an authoring tool
and a domain-independent ITS run time engine. This
core runtime engine requires content in the form of
presentations, domain ontology, and assessment and
instructional behaviors which must be created using the
authoring tool.

Figure 3 shows the relationship between the domain
content (mostly defined via the authoring tool) and the
core components of the runtime engine: the Assessment
Manager, the Simulation Manager, the
Communications Manager, the Instructional Planner,
and the Sensor Manager. The box with the thick solid
line defines the boundaries of the core parts of AIS.
The components within the box with the dashed
boundary represent AIS-IFT components that are
domain independent, but still can be swapped in and
out. For example, it should be possible to replace a
personality assessment test without modifications to
the core system. The components outside the two
boxes represent the domain dependent components and
will have to be developed separately for each domain
of application (e.g., the simulator, or special sensors
like eye tracking). The architecture of the runtime
engine and its interfaces has been designed so that
these domain-specific elements can be simply
incorporated as plug-ins. Next we discuss the
assessment manager and the instructional planner. The
other engine components mostly do data
transformation and facilitate the communication
between the engine and domain-dependent components

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2004

2004 Paper No. 1743 Page 8 of 13

AIS

Simulator

Sim
performance

Evaluator

Sim Helpers

Simulation
manager

Scenario specs,
Student's performance,
simulation events

Simulation events,
simulation
assessment
conditions

Requests for
assessments

Observation
records

Domain dependent
instructional

rules/behaviors

Principles, facts,
concepts,
definitions

Instructional
planner

Assessment Manager (for
evaluating non-dynamic

performance like answers to
questions, for interpreting

results of initial assessments)

Initial assessment
batteries

Initial Assessment
Evaluator

Authoring Tool

Authoring Tool

Assesment battery -
Student model mapping

Instructional
Content

Assessment
configuration tool

Sensors

Sensor
mappings

Sensor
Manager

User Interface
controls

Communications
manager

UI-backend
information

mapping

Sensor Data

Request
for sendor

data

Sim Performance
Evaluator

Figure 3. AIS-IFT system architecture.

Student Assessment and modeling
The Assessment manager uses the domain ontology
specified by the course authors as the basis of the
student model. The domain concepts such as tasks,
skills, and principles are augmented with numeric
estimates of mastery and, in the case of tasks and skills,
automaticity. The assessment of a student’s
performance in exercises provides the basis for these
estimates. Bayesian inference is used to integrate the
findings from a single exercise with the existing
student model estimates. The Assessment manager uses
the student model to decide which skills the student
should work next. This information is converted into
instructional goals posted to the instructional planner.

Figure 4 shows an example of a Bayesian network
constructed automatically from the relation between
tasks (hover requires maintain altitude), skills
(collective control, pedal control) and principles
(maintain sight of picture, not shown in the figure).
The mastery nodes represent the student’s mastery on a
task, skill, or principle without accounting for
automaticity. The automaticity node models the degree
to which the student shows evidence of having

automated a task or a skill. The “true mastery” node
represents a composite of these two estimates.

True hover mastery

True collective control
mastery True cyclic control

mastery True pedal control
mastery

True manipulating
controls mastery

+ve +ve +ve

+v
e

maintaining altitude

+ve

Mastery Network

hover mastery Hovering Automaticity

manipulating controls
mastery

Manipulating controls
Automaticity

Manipulating controls
integration

Hovering skills
integration

Figure 4. Bayesian network used to represent the
student model.

In the absence of any initial assessment, the Bayesian
network is instantiated with uniform priors that

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2004

2004 Paper No. 1743 Page 9 of 13

indicate low mastery on all domain concepts. The
conditional probabilities representing the relationship
between skills and their parent concepts are also
heuristically instantiated. When the Simulation
Performance Evaluator reports on the student’s
performance on a simulated exercise, it also sends
scores on the various tasks, skills, and principles
associated with the exercise. These scores are used to
heuristically determine the evidence of mastery on
these concepts and are placed as evidence on the
corresponding nodes in the Bayesian network (mastery
evidence are placed on mastery nodes, and evidence
from automaticity assessments are placed on
automaticity nodes). Bayesian inference is used to
propagate this evidence to arrive at updated mastery
estimates (Pearl, 1986).

Instructional planner
The Instructional Planner (IP) decides what
instructional action the system should do next. The IP
(i) creates and executes plans to satisfy posted goals,
(ii) provides facilities to broadcast event/observations
to agents, and (iii) provides facilities to relate agents to
goals, to plug-in new agents, and to execute
hierarchical exercises.

Making plans
In order to satisfy a goal, the IP asks all agents whether
they can satisfy that goal. Based on the agents’ answers
and the planning strategies (e.g., prefer doing
simulation exercises to reading review material), the IP
creates a plan. Each step in the plan is an agent’s
action. The IP executes this plan by asking agents to
execute the action associated with the current step of
the plan.

Modeling Agents
At the heart of the AIS-IFT engine there is a collection
of agents responsible for carrying out instructional
actions. Agents know how to do certain actions. An
action is associated with a behavior, which is the
“executable” part of the action. Actions can be thought
of as “what to do” and behaviors as “how to do it.”

On being asked to perform an action, an agent
“activates” the behavior associated with the action.
Agents can run multiple behaviors simultaneously.
Although running simultaneously, behaviors share the
same thread of execution. Behaviors are modeled as
C++ objects defining a method called action which
implements the logic of the behavior. A round-robin
non-preemptive scheduling policy executes the action
method of each active behavior until the behavior
releases control (the behavior’s done() method return

true). If the behavior relinquishing the control has not
yet completed (the behavior’s done() method returns
false), it will be rescheduled the next round. This form
of modeling agents is similar to the one used by
systems like JADE which follows FIPA’s standards
(www.fipa.org).

 When agent’s behaviors are described using the
authoring tool, SMEs are not aware of the agent’s API
described in the previous paragraph. Authors define
behaviors by drawing hierarchical state machines akin
to flowcharts, and the AIS-IFT follows such
description (see authoring tool section below).
Nevertheless, the system APIs allow developers to
enhance agent’s behaviors by using different
application tools like rule-based systems (e.g., CLISP)
or Bayesian networks (e.g., Netica).

AIS-IFT AUTHORING TOOL

The authoring tool allows authors to define declarative
and procedural knowledge. Declarative knowledge
defines a database of object instances, each consisting
of a type which is a set of properties common to a
number of instances that distinguish them as an
identifiable class. Types and instances define a
semantic network representing the domain of the ITS.
The authoring tool GUI organizes this database in
terms of the following editors (see Figure 5): Task-
skill-principle Editor, the Exercise Editor, and the
Student Model Editor. The Task-skill-principle editor
enables the definition of the knowledge of what to
teach and includes the following default types of
knowledge objects: tasks, skills, and principles. These
define the core set of domain knowledge. The Exercise
editor facilitates the creation of a library of exercises
for the tutor to draw upon as it trains the students. The
Student Model editor defines the attributes that should
be modeled in the Bayesian network used to define the
student model. The GUI provides facilities to browse,
query and perform consistency checks on the domain
database.

AIS-IFT exercises were represented by instances of the
type Exercise. Exercise’s attributes represent among
others the following information:

- A collection of tasks, skills, and principles that
describe what the exercise teaches.

- A set of pre-requisites the student must satisfy in
order to do the exercise.

- Exercise parameters: a list of values for the
variables of interest during the exercise (e.g.,
target altitude, target speed, maximum speed
deviation).

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2004

2004 Paper No. 1743 Page 10 of 13

- Evaluation machines: behaviors describing
procedures the student is expected to perform
during an exercise.

- Evaluator: behavior in charge of producing the
evaluation report when the exercise finishes.

- Exercise coordinator: behavior describing when
different stages of the exercise should start or end.

- Events: list all the events (detected conditions) the
tutor should react to.

The author can extend the type hierarchy to represent
exercises that need special representation. For instance,
in a traffic pattern exercise it is necessary to know the
waypoints at which the student is supposed to turn.

Figure 5. Different editors (tabs) allow authors to
define a database of types and instances used to
represent the instructional domain.

Procedural knowledge - Modeling behaviors
Types and instances provide a way for gathering
knowledge. Ultimately, there are two ways in which
the knowledge will become operational: evaluating and
teaching the student. The ways in which the training
system fulfills these functions are driven by behavior
scripts that dictate how the training system should
interact with the student. The Tutor Behavior editor has
the author specify two kinds of knowledge: how to
assess the student and how to teach the student. Both
types of knowledge are captured in the form of
behavior scripts that specify tutor behavior under
different conditions. These behaviors are visualized in
a “drag and drop” style canvas (see Figure 6).

AIS-IFT models behaviors as a hierarchical finite state
machine where the flow of control resides in stack of
hierarchical states. Condition logic is evaluated
according to a prescribed ordering, showing very
obvious flow of control. AIS-IFT employs four
constructs: actions, which define all the different
actions the system can perform; behaviors that chain
actions and conditional logic; predicates, which set the
conditions under which each action and behavior will
happen; and connectors, which control the order in
which conditions are evaluated, and actions and
behaviors take place. These four allow one to create
behavior that ranges from simple sequences to complex
conditional logic. The graphical representation of a
behavior is akin to a flowchart as illustrated in the
figure below. Next we present some of the AIS-IFT
teaching and evaluation procedures.

Teaching an exercise

Figure 6. Behavior defining the high-level logic on
how to teach an exercise.

Figure 6 shows the teachExercise behavior defining
how to teach a flight exercise. This behavior will
present an exercise prebrief, start the simulator, coach
the student during flying and then give the student after
action review. The behavior also defines places at
which the student may cancel the exercise: during the
prebrief or while executing the exercise. The
behaviors used by teachExercise have the following
function:

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2004

2004 Paper No. 1743 Page 11 of 13

• prebrief: speaks aloud the short description of the
exercise, generates an html file describing the
exercise, and shows this html file to the student.

• startSimulator: verifies that the simulator is
connected (running) before starting the exercise. If
the simulator is not connected, it asks the student
to start the simulator.

• doStartExercise: sets the initial conditions for the
scenario: starts the simulator with the correct
scenery file and place the helicopter in stable
conditions as described by the exercise parameters.

• assistPerformance: this behavior is in charge of
providing real-time feedback to the student during
the exercise. (more later)

• postBrief: provides after action review to the
student: it generates an html file with a summary
of things done well, any improved skills, and
things to improve. In the later case links to review
material are provided. The student will also have
access to a replay of the exercise.

Evaluation Machines – Events
AIS-IFT uses the following schema to evaluate student
performance in real time and provide coaching
feedback during an exercise:

1. Evaluation machines generate events for which
some feedback may be provided.

2. The assistPerformance behavior takes as input
events generated by evaluation machines and
decides on which event to pay attention to (if any)
and which feedback to provide (if any).

3. The exercise coordinator will start and stop the
evaluation machines associated with each
exercise’s stage so that appropriated events (and
so feedback) are generated.

Events signal the occurrence of some condition during
the exercise. For example, an event may signal that the
helicopter is flying too high, while another event may
signal that the student did not move the collective
down as expected. Events are generated by evaluation
machines.

Evaluation machines monitor whether the student is
following some procedure. When monitoring a
procedure, the context for whether an event be reported
is defined by the current state of the procedure.
Consequently, events are context-dependent, and the
feedback associated with these events will be
consistent with the execution of the evaluation’s
machine flying procedure.

Figure 7 shows the high level description of the task
maintain altitude: the student is expected to monitor the

altimeter while maintaining constant altitude. Should
the altitude start increasing (altimeterTooHigh
condition in the figure) the student should start a
descend procedure to acquire altitude.

Figure 7. High-level description of a maintain altitude
procedure.

The logic of the decreaseAltitude behavior is as
follows (see Figure 8):

1. Wait for student to do something. If student moves
the collective down (decreasedCollective condition in
the figure), start the real descent procedure (box
labeled by doDescendWithCol).

2. If the student does nothing and some time has
elapsed (timeout condition, left upper corner in the
figure), then post an event
(descendingNoCollectiveDown) and get ready to start
the real descent procedure. If the tutor decides to react
to this event, using the event’s feedback, the tutor will
ask the student to move the collective down.

3. If while waiting for the student’s action the altitude
gets larger than the safety largest altitude, and
outofcontrol event is generated.

The lower part of Figure 8 shows the rest of the
behavior’s logic, which is concerned with the condition
to end the behavior doDescendWithCol. This logic is
as follows:

4. If the helo gets stable at the target altitude, the
procedure ends.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2004

2004 Paper No. 1743 Page 12 of 13

5. If while descending, the target altitude is overshot,
then the behavior doAscendWithCollective is invoked.

6. If during ascend the helo overshoots the altitude,
then a behavior is generated indicating overshoot from
below and the descend procedure is invoked again.

Figure 8. Procedure to decrease altitude.

The behavior doDescendWithCo describes the
procedure by which the student acquires target altitude.
The procedure recognizes three basic helicopter states:
descending, ascending and ascending above target
altitude. Here is the logic of this procedure:

1. If the helo is descending but the descend rate is too
high, then the event descendingTooQuicklly is
generated.

2. If the helo has been ascending for the last 5
seconds, then an event is generated (whose
feedback will make the helo go down), and we
wait for 2 seconds before deciding in which of the
three main states the helo is at. This wait
recognizes the fact that it takes some time before
observing the effect of a control input, and
consequently, the tutor should not ask the student
to provide more input than required.

3. If the helo is stable above target altitude, behave
similarly as when the helo is ascending. The event
generated may have the same feedback (i.e., nose
down) but signal different conditions for the

procedure and the types of problems the student
may have.

CONCLUSIONS AND FUTURE WORK

Simulation-based flight training augments with
intelligent tutoring to enable automated training has the
potential for delivering effective training at reduced
costs. We have discussed a series of such systems, the
IFT and AIS-IFT. The latter improves upon the former
by enabling rapid modification of the content, the
assessment procedures, and instructional strategies.
AIS-IFT exposes not only the content but also tutoring
behavior to inspection and modification. The authoring
tool provides a visual metaphor resembling flow-charts
to describe desired tutoring and assessment procedures.
Helicopter flying procedures are described using this
tool and at run time the system monitors that the
student follow such procedures, coaching the student if
needed by providing feedback that is appropriate
according to the procedure’s current state and context.
The AIS-IFT is one of the early steps in the direction
of automated flight training. Evaluation studies will
have to be conducted to study its performance and fine
tune the training methodology.

The current version of AIS-IFT runs on a desktop
using Microsoft flight simulator. Our future work
involves integrating the ITS with the IFT simulator as
well as evaluating the system, both the performance of
the ITS and the authoring tool facilities. While very
powerful, the current authoring tool requires authors to
have some programming skills to exploit the whole
range of possibilities.

ACKNOWLEDGEMENTS

The work reported here was funded by the Office of
the Secretary of Defense under contract number
DASW01-01-C-5317.

REFERENCES

Krishnakumar, K.S., Sawal, D., Bailey, J.E., & Dohme,

J.A. (1991). A simulator-based automated helicopter
hover trainer: Synthesis and verification. In IEEE
Transactions on Systems, Man, and Cybernetics, 21,
961-970.

Mulgand, S.S., Asdigha, M., Zacharias, G.L.,
Krishnakumar, K., & Dohme, J.A. (1995). An
intelligent tutoring system for simulator-based
helicopter flight training. In Proceedings of the 1995
Flight Simulation Technologies Conference.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2004

2004 Paper No. 1743 Page 13 of 13

Padfield Randall R. and Padfield Ralph C. 1992.
Learning to fly helicopters. McGraw Hill.

Pearl, J. (1986), Probabilistic reasoning in intelligent
systems: Networks of plausible inference, Morgan
Kaufman.

Schank, R. (1995), What We Learn When We Learn by
Doing, Technical Report no. 60, Institute of
Learning Sciences, Illinois.

