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ABSTRACT

The Army has a rich store of highly immersive flight simulations/simulators. Due to the expense of deploying
multiple flight simulators, they are often used in experimental scenarios that only represent a single aircraft at a
time. However, this is unrealistic because modern tactical Army aviation rarely flies solo, rather flying at a
minimum in pairs. To enable more realistic simulation while reducing costs, applications often use constructive
simulation of entities. However, the standard implementations of constructive entities sacrifices simulation fidelity
by using low-cost desktop simulations that do not provide the precision and accuracy necessary in modern simulated
warfighting exercises. A desirable solution would decrease cost while also retaining realism by providing
autonomous, tactically correct, high-fidelity behaviors for the constructive simulated entities. This is the goal being
addressed by the Automated Wingman project. This project integrates a state-of-the-art simulation architecture with
the most advanced current technology for building knowledge-intensive intelligent agents. In addition to the most
immediate application, providing automated wingmen for Army experimentation with rotary-wing aircraft, this
project provides a more general opportunity to broaden the use of Intelligent Synthetic Force (ISF) models in DoD
applications. The industrial-strength integration of the Soar architecture for intelligence and the VR-Forces
simulation environment creates a robust platform for future applications both in the DoD and the commercial arena.
This integration relies upon a clean design that includes independent but interacting components. As a
consequence, the resulting system contains individual parts that can be reused or upgraded as future demand and
development dictate.
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INTELLIGENT CONSRUCTIVE FORCES

As in much of the DOD, the US Army relies heavily
on simulated environments for training and
experimentation. For experimental purposes, the Army
maintains a rich store of highly immersive flight
simulators and simulated environments. Most of these
immersive systems provide high fidelity simulation of
a single aircraft, isolated from the multi-player realities
of operational environments.  This fact creates
obstacles to training and experimentation, because
modern military aviation tactics rarely involve solo
missions. Rather, aircraft support each other in groups
in teams, at a minimum in pairs. To provide realistic
simulations of such systems, one solution is to augment
the simulation environment with additional high-
fidelity flight simulators, together with human role
players to control them.

However, this approach is prohibitively expensive for
many experimental situations. Constructive simulation
of multi-player teams has the potential to provide a
lower cost alternative. In constructive simulation,
computer software generates the representations and
actions of individual entities, often under the direction
of a human operator sitting at a control panel.
However, the use of constructive forces comes with at
least two types of costs. First, the user interface for the
human operator is necessarily much lower fidelity than
a full flight simulator, which can impact the reality of
the simulation.  Second, this type of simulation
requires the use of human operators who are generally
trained both in operations (e.g., aircraft pilots) and
trained in how to operate the constructive forces.
While cheaper than using a full suite of virtual
simulators, the need for the specially trained personnel
can be expensive.

A fruitful alternative is to use knowledge-intensive
agent technology to drive the constructive forces.
Using knowledge-based agents increases the autonomy
of the simulated forces.  Appropriate levels of
autonomy have the potential to produce human-like
realism in the behaviors while simultaneously reducing
the manpower requirements for running the simulation.
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Helo-Soar

This report describes initial work on Helo-Soar, a
knowledge-intensive intelligent agent system designed
to pilot constructive simulations of rotary wing aircraft
for Army experimentation. The ultimate goal of Helo-
Soar is to provide an “Automated Wingman” the flies
in teams with human pilots in virtual flight simulators.
To accomplish this, Helo-Soar must encode human-
like knowledge for a variety of tasks. To begin with,
Helo-

Soar must encode doctrinal knowledge and
competence for performing particular types of rotary-
wing missions.  In addition, because the main
application involves teams of constructive forces and
humans, Helo-Soar must be able to reason about how
to coordinate in groups, following appropriate
command structures and lines of communication.
Finally, Helo-Soar must include knowledge of how to
interact and communicate with its teammates. This
includes the ability to recognize and generate speech,
to parse speech into meaningful directives, and to

engage in structured conversation  following
appropriate communications cadences.
All of these requirements provide significant

challenges to building a successful system. The
knowledge engineering task itself is daunting.
However, we are building on the success of TacAir-
Soar (Jones et al., 1999), an existing system that flies
simulated fixed-wing aircraft, as well as prior work
building intelligent agents for rotary-wing aircraft
(reference BFTT and maybe USC). In addition to the
knowledge engineering task, Helo-Soar must have
access to appropriate realistic models of the physical
flight platforms. This also implies the design of a
targeted level of interface for agent control of the
simulated entities.  Helo-Soar must also integrate
smoothly with external systems for speech synthesis
and recognition. Finally, the system must be
embedded in a larger distributed simulation
architecture that is robust and flexible.
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Component orientation

The remainder of this report describes Helo-Soar and
the architecture within which it is embedded. The
guiding design principles for the entire system rely on
a component oriented approach. The basic simulation
architecture is MaK Technologies’ VVR-Forces, which
provides an extremely modular and well-designed set
of components for integrating distributed simulations.
In addition to providing the simulated environment,
VR-Forces provides the physical flight models that
Helo-Soar controls. An additional module provides the
“human level” interface between the physical models
and the intelligent agent architecture. Following the
component-oriented paradigm, the intelligent agent
architecture and speech modules also serve as distinct
modules within the overall system. This component
orientation maximizes flexibility and the potential for
reuse, as well as future incremental improvements of
the various components in the system. We have also
carried the component-oriented paradigm inside the
intelligent agent’s design, where knowledge is
organized around a modular set of interacting goals
that provide efficient but goal-driven reasoning.
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Figure 1. Automated Wingman System Architecture

AUTOMATED WINGMAN SYSTEM
ARCHITECTURE

Helo-Soar is one piece of a larger architecture for
distributed simulation. A schematic of the architecture
as a whole appears in Figure 1. The Auto Wingman
system architecture is built to allow Soar agents to
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interface with VR-Forces and to control entities within
VR-Forces.  The overall system is designed to
minimize direct interactions between low-level Soar
interface code and low level VR-Forces interface code.
It does this by providing a Thread-safe data interface
layer.

As each Soar agent is created, it is bound to a specific
construct on the simulation side that is responsible for
managing it’s interaction with VR-Forces. This
thread-safe binding provides the interface layer that
moves data and commands back and forth between the
agent and VVR-Forces as XML.

The state of the world in the simulation is collected in
an XML document each simulation cycle and the
document is passed to the agent and directly placed in
the agent’s working memory. This conversion is
agnostic to the form of the XML coming in. This
allows the simulation to add additional information to
the input link of the agent without actually requiring
any changes to the low-level Soar interface code.
Because Soar agents ignore any data that they are not
specifically looking for there is a minimal penalty for
sending extra data to the agent that it may, or may not,
need in the future. In the event of multiple updates to
the world state between agent input phases, the most
current world state is used.

Commands from the agent are taken from the agent’s
output-link and directly converted to XML that can be
processed by the simulation. These commands are
well documented and can be validated using either an
XML schema, or a DTD. This insures that the
commands coming from the agent are not only well
formed, but valid commands. After the command is
received, it is processed and the action is taken. In the
event that the agent sends multiple commands between
VR-Forces updates, the commands are queued and
executed at VR-Forces’ earliest convenience.

This architecture design has proven flexible and robust
in providing a very capable agent based interface
between Soar and VR-Forces.

INTELLIGENT AGENT REPRESENTATION

One of the biggest challenges to building the
Automated Wingman system is to engineer the
intelligent agent that controls the RWA platforms and
interacts with human commanders and pilots. To build
Helo-Soar, we are relying on an enhanced version of
the methodology we have previously used in building
TacAir-Soar (Jones et al., 1999), a similar system that
controls simulated fixed-wing aircraft.
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Figure 2. A directed acyclic graph of interacting goals to direct Helo-Soar’s behavior.

Both of these systems are designed within the Soar
architecture (Laird, Newell, & Rosenbloom, 1987;
Newell, 1990), which provides an efficient engine for
executing production-rule agents. In Soar, all long-
term knowledge must ultimately be engineered into a
set of production rules, which are efficient relational
pattern matchers that provide associate retrieval of
knowledge to drive intelligent behavior. In the Helo-
Soar system, we divide these productions into three
broad categories. The first maintains the (potentially
intricate) network of interacting goals that the agent
must attend to at various times, the second implements
interpretation knowledge that builds an elaborate
representation of situational awareness from the
agent’s perception and interpretations of the
environment, and the third implements discrete
deliberate actions that the agent must take in service of
its goals, and in the context of its representation of
situational awareness.

Figure 2 shows a schematic representation of a subset
of the goals in the Helo-Soar system. The main point
to glean from this diagram is that there is a hierarchical
organization of potentially interacting goals that can be
active at various times. The hierarchical arrangement
provides a tiered set of modular contexts for the
agent’s reasoning. This can be important in
implementing the efficient retrieval of knowledge
within the agent. Recall that long-term knowledge in
Soar is implemented is triggered by a set of relational
pattern matchers. Patterns appropriate to the attack-
area goal can be monitored independently and
continuously even as subgoals of attack-area change
with the dynamic situation. For example, there are
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certain types of situation interpretations (for example,
dealing with target location) that the agent must
perform during any area attack, but other
interpretations are only relevant for particular subgoals
(for example, low-level maneuvering for the move-for-
attack subgoal).

Additionally, this hierarchical organization allows the
knowledge engineers to impose high-level structure
and encapsulation on the knowledge base. The ability
to do this is essential for large, knowledge-based
systems. Without such high-level organization, as with
traditional large software projects, the agent system
can become prohibitively expensive to maintain and
adapt to new requirements. This is particularly true for
intelligent systems, which by their very nature need to
reason about the interactions between goals, and
complex relational patterns between goals and
situational interpretations.

It is also this relational intertwining of knowledge that
limits the ability to encapsulate knowledge structures
completely. Although the knowledge design attempts
as much as possible to define a clean hierarchy of goals
and subgoals, it should be clear from Figure 2 that a
simple tree structure is not sufficient to support
intelligent behavior. Many subgoals can be performed
in the service of a variety of supergoals, potentially
causing problems for encapsulated behavior. In
addition, deliberate actions generated by the agent may
have to switch quickly between attending to multiple
active goals, or take multiple active goals into account
simultaneously. A good example has to do with the
particular role of an automated wingman. A wingman
for a mission must monitor and execute the overall
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Figure 3. A subset of Helo-Soar’s goal hierarchy, including a subset of potential
discrete actions relevant to the goals.

mission along with the rest of its teammates. So an
automated wingman, for example, may be attempting
to achieve the attack-area goal together with the rest of
the group. Simultaneously, however, a wingman must
focus on the special requirements of providing various
support actions for the lead, as well as maneuvering to
stay in formation. The follow-leader goal explicitly
represent these constraints in Figure 2. For simplicity,
we have omitted some of the explicit subgoals of
follow-leader.

The point here is that an intelligent automated
wingman must interleave actions in support of the
attack-area and follow-leader (and probably also
other) goals simultaneously. Our knowledge
representation approach in Helo-Soar makes these
simultaneous interactions explicit, allowing the
potential for meta-reasoning across interacting goals,
and allowing multiple independent (or dependent)
goals to drive reasoning, situation interpretation, and
action.

This knowledge design also takes direct advantage of
the truth-maintenance system (Forbus & deKleer,
1993)built into the Soar architecture. A truth
maintenance system automatically computes logical
entailments of an agent’s perceptions, assumptions,
and other contextual features. In the context of the
goal hierarchies, the truth maintenance system
automatically maintains the dependencies between
goals, both for goal-subgoal relationships, and for
connections between goals that interact. As the
environment changes, or the agent changes its
interpretation of the environment, the truth
maintenance system rapidly and automatically
restructures the active goal structures to remain
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consistent with the situation. This allows the agent to
generate  appropriate  deliberate  actions  with
confidence, even in the face of a rapidly changing,
complex environment.

Helo-Soar also uses Soar’s truth maintenance system to
maintain a representation of situational awareness. As
inputs to the agent change (from changes in the
environment, via Soar’s interface to VR-Forces), the
truth maintenance system automatically computes
logical entailments of those changes. For example, a
pop-up contact on the simulated radar might combine
with existing knowledge about friendly and enemy
locations to infer a new threat. Consequently the
existence of a threat could combine with knowledge
about the agent’s flight parameters and the threat’s
maneuvers to produce various geometric and spatial
interpretations of the situation. Additional knowledge
can use the spatial representations to suggest
appropriate weapons to use, or ultimately new goals to
activate (such as evasive maneuvers or air-to-air
attacks). Given the appropriate set of productions
encoding knowledge, all of these interpretations can
change rapidly and automatically to remain consistent
with changes in the environment.

Both the goal structures and situational representations
have to do with maintaining the agent’s internal state
of awareness. But ultimately an intelligent agent must
take some form of external action in the environment.
The Soar architecture provides this type of mechanism
by supporting productions that implement deliberative,
discrete actions, in response to the current context
provided by active goals and beliefs. In Soar, a
deliberative, step-wise action is called an operator.
During each discrete time-step of the simulation, Helo-
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Figure 4. Integration of SoarSpeak speech recognition and generation components into
the simulation architecture.

Soar determines the next appropriate operator to select
and execute (often this operator may simply be to wait,
if Helo-Soar needs some change in the environment to
drive further action).

Figure 3 shows some of the operators associated with a
subset of the goals encoded into Helo-Soar. The
bottom layer of elements in the figure represent
discrete operators that Helo-Soar will take in a context-
dependent manner. Selection and execution of these
operators depends on the activation of the connected
goals, as well as various situational features than can
be attached to the goal structures. As a simple
example, the operators start-attack, set-attack-position,
and end-attack can all be selected in the context of the
attack-area goal. However, each also depends on
other subgoals being active, as well as particular values
of associated features with the attack-area goal.
Among other roles, the attack-area goal structure
maintains a record of the current status of the attack,
including whether the attack has started and whether
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the attack position has been achieved. At various
stages of the attack, and in response to the activation of
various other subgoals, appropriate operators will
implement the procedures for beginning the attack,
moving to the appropriate location, and ending the
attack. Similarly, the agent will invoke the deliberate
behavior to fire at a target (by explicitly invoking the
missile model provided by the simulation architecture)
in an appropriate context depending in part on the
activation of the fire-at-target goal.

Keep in mind that all of these actions are discrete, and
will interleave with other actions in the service of other
goals. For example, while attempting to achieve the
attack-area goal, Helo-Soar will also be generating
deliberate actions to achieve communication goals, fly
in formation, maintain situational awareness, evade
threats, and other activities. This interleaving (together
with the knowledge management techniques for
building and maintaining this knowledge-rich system)
is made possible by the modular goal representations
with explicitly defined interactions, which is supported



Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2004

in large part by the automated logical consistency
provided by Soar.

HUMAN-AGENT COMMUNICATION

Human-agent communication is handled through the
SoarSpeak subsystem, a speech recognition and
generation interface for Soar agents.  SoarSpeak
provides interfaces to translate spoken directives into
English text, based either upon a socket-based
protocol, or upon the High Level Architecture (HLA).
This text is sent across simulated radio channels where
it is "understood" and acted upon by the simulated
wingman. For speech generation the reverse process
occurs; the simulated wingman generates a text
message that is sent across a simulated radio to a
speech synthesis application for the human pilot to
hear.

In developing Helo-Soar, it was necessary to integrate
SoarSpeak not only with the simulation system but also
with the simulator, itself. The desire to minimize
computing and footprint requirements for the simulator
platform lead to the design capture in Figure 4. In this
implementation, a Raw Audio Client/Server
application was developed to allow raw audio to by
captured, packaged up and shipped across the network
to the SoarSpeak client-server. The raw audio client
can then reside on a computer that is co-located with
the simulator, while the raw audio server can reside on
the same platform that the simulation is run on.
Connections are handled via TCP/IP sockets.

In order to achieve acceptable voice recognition rates,
a restricted grammar was developed and is the means
used to first recognize the pilot’s utterance, and then to
be “understood” by the intelligent agent wingmen. The
basic operation of the system is as follows: the pilot in
the simulator speaks into his microphone and issues
orders as he would normally issue to another human
pilot. The intelligent agent recognizes and understands
the orders and replies using the voice generation
system according to military doctrine and then goes
ahead and executes the orders it has received.

INTEGRATION LESSONS

One of the key aspects of this effort is the integration
of Soar with the VR-Forces simulation architecture.
This integration provides one of the most sophisticated
cognitive architectures (for implementing intelligent
agents) with one of the most modern and robustly
engineered simulation platforms (for providing
physical and environmental simulation). Integrating
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Soar with VR-Forces was unique in several respects.
This is the first time Soar has been integrated with a
heavily object oriented simulation. This is in contrast
to other simulations with which Soar has previously
been integrated, such as JSAF and OTB. This is also
the first time Soar has been configured to run
asynchronously with a sophisticated simulation
environment. In the Automated Wingman architecture,
the Soar component runs in its own thread, while the
rest of the simulation runs in another. As a final
constraint, this is the first significant Soar integration
where the integration was performed at the binary code
level; the Soar engineers did not have direct access to
the VR-Forces source code to support the integration
of the intelligent agents. This was a particularly
important test of the benefits of a good modular design
for the overall system architecture.

While integrating with an object oriented system is
much cleaner, it also requires a very -careful
understanding of the overall simulation architecture.
For this project, it has been critical for the Soar
architecture developers to work closely with the
simulation developers, in order to understand the
design concepts necessary to accomplish the
integration. This “front-loaded” the integration effort.
However, once the initial design was created, the
implementation was straightforward.

The requirement for asynchronous control has also
been an issue. When integrating with multiple
distributed simulations, it is important to stay as
synchronized as possible, so no component of the
distributed system gets too much out of synch with the
others.  Historically, intelligent agents have been
integrated to work in lock step with the underlying
simulation platforms. This made it impossible for the
simulation to get out of synch with the agents (in
particular, providing some control over the required
reaction times of the agents). By dissociating the
simulation from the agents, if either is idling the other
thread can make use of the additional cycles. For
example, if the simulation is “sleeping”, waiting for
data, the agent can continue to process and reason over
the data that is so far available. This is an advantage to
the type of “anytime” reasoning that these intelligent
agents engage in.

The commitment to keeping a clean separation
between source code changes to Soar and to the
simulation engine was a potentially high risk design
decision.  This effort could have been a major
catastrophe if not for the effective and expeditious
support of the simulation developer. Because agent
control over simulation entities intimately integrates
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the simulation with the agents, it is important that the
details of the simulation and the agent architecture are
well defined, and well understood by all groups in the
development team. Because intelligent agents have
some fundamental differences from standard
constructive simulations, it would be unusual to
discover that no changes are required at all to the
underlying simulation. However, we were able to tame
this process through well-defined interfaces and the
close cooperation of the simulation development team.

CONCLUSION

We have described a simulation architecture to support
the use of intelligent automated wingmen for army
experimentation with rotary-wing aircraft. The design
includes the integration of a well-designed set of
components providing the distributed simulation
environment, physical platforms, intelligent agents, and
various interfaces for agent communication with the
simulation, with other agents, and with humans. In
addition, the intelligent agents implements a new
modular approach to knowledge-intensive agent
design, exploiting an efficient low-level architecture
for intelligence, and organizing high-level knowledge
around complex representation of interacting goals,
efficient representation of sophisticated situation
interpretations, and the uniform integration of
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deliberate action that is appropriately reactive to
changing situation interpretations, as well as sensitive
to multiple active goals. This component-oriented
design provides a robust and well engineered
architecture for DOD applications, which will provide
a solid software engineering solution for Army
experimentation, while also reducing maintenance and
upgrade costs for future expansion of the system to
new application areas.

REFERENCES

Forbus, K., & deKleer, J. (1993). Building Problem
Solvers. Cambridge, MA: MIT Press.

Jones, R. M., Laird, J. E., Nielsen, P. E., Coulter, K. J.,
Kenny, P. G., & Koss, F. V. (1999). Automated
Intelligent Pilots for Combat Flight Simulation. Al
Magazine, 20(1), 27-42.

Laird, J. E., Newell, A., & Rosenbloom, P. S. (1987).
Soar: An architecture for general intelligence.
Artificial Intelligence, 33(3), 1-64.

Newell, A. (1990). Unified Theories of Cognition.
Cambridge, Massachusetts: Harvard University
Press.





