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ABSTRACT 
The Army has a rich store of highly immersive flight simulations/simulators.  Due to the expense of deploying 
multiple flight simulators, they are often used in experimental scenarios that only represent a single aircraft at a 
time.  However, this is unrealistic because modern tactical Army aviation rarely flies solo, rather flying at a 
minimum in pairs.  To enable more realistic simulation while reducing costs, applications often use constructive 
simulation of entities.  However, the standard implementations of constructive entities sacrifices simulation fidelity 
by using low-cost desktop simulations that do not provide the precision and accuracy necessary in modern simulated 
warfighting exercises.  A desirable solution would decrease cost while also retaining realism by providing 
autonomous, tactically correct, high-fidelity behaviors for the constructive simulated entities.   This is the goal being 
addressed by the Automated Wingman project.  This project integrates a state-of-the-art simulation architecture with 
the most advanced current technology for building knowledge-intensive intelligent agents.  In addition to the most 
immediate application, providing automated wingmen for Army experimentation with rotary-wing aircraft, this 
project provides a more general opportunity to broaden the use of Intelligent Synthetic Force (ISF) models in DoD 
applications. The industrial-strength integration of the Soar architecture for intelligence and the VR-Forces 
simulation environment creates a robust platform for future applications both in the DoD and the commercial arena.  
This integration relies upon a clean design that includes independent but interacting components.  As a 
consequence, the resulting system contains individual parts that can be reused or upgraded as future demand and 
development dictate. 
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INTELLIGENT CONSRUCTIVE FORCES 
 
As in much of the DOD, the US Army relies heavily 
on simulated environments for training and 
experimentation.  For experimental purposes, the Army 
maintains a rich store of highly immersive flight 
simulators and simulated environments.  Most of these 
immersive systems provide high fidelity simulation of 
a single aircraft, isolated from the multi-player realities 
of operational environments.  This fact creates 
obstacles to training and experimentation, because 
modern military aviation tactics rarely involve solo 
missions.  Rather, aircraft support each other in groups 
in teams, at a minimum in pairs.  To provide realistic 
simulations of such systems, one solution is to augment 
the simulation environment with additional high-
fidelity flight simulators, together with human role 
players to control them.   
 
However, this approach is prohibitively expensive for 
many experimental situations.  Constructive simulation 
of multi-player teams has the potential to provide a 
lower cost alternative.  In constructive simulation, 
computer software generates the representations and 
actions of individual entities, often under the direction 
of a human operator sitting at a control panel.  
However, the use of constructive forces comes with at 
least two types of costs.  First, the user interface for the 
human operator is necessarily much lower fidelity than 
a full flight simulator, which can impact the reality of 
the simulation.  Second, this type of simulation 
requires the use of human operators who are generally 
trained both in operations (e.g., aircraft pilots) and 
trained in how to operate the constructive forces.  
While cheaper than using a full suite of virtual 
simulators, the need for the specially trained personnel 
can be expensive. 
 
A fruitful alternative is to use knowledge-intensive 
agent technology to drive the constructive forces.  
Using knowledge-based agents increases the autonomy 
of the simulated forces.  Appropriate levels of 
autonomy have the potential to produce human-like 
realism in the behaviors while simultaneously reducing 
the manpower requirements for running the simulation.   
 

Helo-Soar 
 
This report describes initial work on Helo-Soar, a 
knowledge-intensive intelligent agent system designed 
to pilot constructive simulations of rotary wing aircraft 
for Army experimentation.  The ultimate goal of Helo-
Soar is to provide an “Automated Wingman” the flies 
in teams with human pilots in virtual flight simulators.  
To accomplish this, Helo-Soar must encode human-
like knowledge for a variety of tasks.  To begin with, 
Helo- 
Soar must encode doctrinal knowledge and 
competence for performing particular types of rotary-
wing missions.  In addition, because the main 
application involves teams of constructive forces and 
humans, Helo-Soar must be able to reason about how 
to coordinate in groups, following appropriate 
command structures and lines of communication.  
Finally, Helo-Soar must include knowledge of how to 
interact and communicate with its teammates.  This 
includes the ability to recognize and generate speech, 
to parse speech into meaningful directives, and to 
engage in structured conversation following 
appropriate communications cadences. 
 
All of these requirements provide significant 
challenges to building a successful system.  The 
knowledge engineering task itself is daunting.  
However, we are building on the success of TacAir-
Soar (Jones et al., 1999), an existing system that flies 
simulated fixed-wing aircraft, as well as prior work 
building intelligent agents for rotary-wing aircraft 
(reference BFTT and maybe USC).  In addition to the 
knowledge engineering task, Helo-Soar must have 
access to appropriate realistic models of the physical 
flight platforms.  This also implies the design of a 
targeted level of interface for agent control of the 
simulated entities.  Helo-Soar must also integrate 
smoothly with external systems for speech synthesis 
and recognition.  Finally, the system must be 
embedded in a larger distributed simulation 
architecture that is robust and flexible. 
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Component orientation 
 
The remainder of this report describes Helo-Soar and 
the architecture within which it is embedded.  The 
guiding design principles for the entire system rely on 
a component oriented approach.  The basic simulation 
architecture is MaK Technologies’ VR-Forces, which 
provides an extremely modular and well-designed set 
of components for integrating distributed simulations.  
In addition to providing the simulated environment, 
VR-Forces provides the physical flight models that 
Helo-Soar controls.  An additional module provides the 
“human level” interface between the physical models 
and the intelligent agent architecture.  Following the 
component-oriented paradigm, the intelligent agent 
architecture and speech modules also serve as distinct 
modules within the overall system.  This component 
orientation maximizes flexibility and the potential for 
reuse, as well as future incremental improvements of 
the various components in the system.  We have also 
carried the component-oriented paradigm inside the 
intelligent agent’s design, where knowledge is 
organized around a modular set of interacting goals 
that provide efficient but goal-driven reasoning. 
 
 

 
Figure 1.  Automated Wingman System Architecture 

 
AUTOMATED WINGMAN SYSTEM 

ARCHITECTURE 
 
Helo-Soar is one piece of a larger architecture for 
distributed simulation.  A schematic of the architecture 
as a whole appears in Figure 1.  The Auto Wingman 
system architecture is built to allow Soar agents to 

interface with VR-Forces and to control entities within 
VR-Forces.  The overall system is designed to 
minimize direct interactions between low-level Soar 
interface code and low level VR-Forces interface code.  
It does this by providing a Thread-safe data interface 
layer. 
 
As each Soar agent is created, it is bound to a specific 
construct on the simulation side that is responsible for 
managing it’s interaction with VR-Forces.  This 
thread-safe binding provides the interface layer that 
moves data and commands back and forth between the 
agent and VR-Forces as XML.   
 
The state of the world in the simulation is collected in 
an XML document each simulation cycle and the 
document is passed to the agent and directly placed in 
the agent’s working memory.  This conversion is 
agnostic to the form of the XML coming in.  This 
allows the simulation to add additional information to 
the input link of the agent without actually requiring 
any changes to the low-level Soar interface code.  
Because Soar agents ignore any data that they are not 
specifically looking for there is a minimal penalty for 
sending extra data to the agent that it may, or may not, 
need in the future.  In the event of multiple updates to 
the world state between agent input phases, the most 
current world state is used. 
 
Commands from the agent are taken from the agent’s 
output-link and directly converted to XML that can be 
processed by the simulation.  These commands are 
well documented and can be validated using either an 
XML schema, or a DTD.  This insures that the 
commands coming from the agent are not only well 
formed, but valid commands.  After the command is 
received, it is processed and the action is taken.  In the 
event that the agent sends multiple commands between 
VR-Forces updates, the commands are queued and 
executed at VR-Forces’ earliest convenience. 
 
This architecture design has proven flexible and robust 
in providing a very capable agent based interface 
between Soar and VR-Forces. 
 

INTELLIGENT AGENT REPRESENTATION 
 
One of the biggest challenges to building the 
Automated Wingman system is to engineer the 
intelligent agent that controls the RWA platforms and 
interacts with human commanders and pilots.  To build 
Helo-Soar, we are relying on an enhanced version of 
the methodology we have previously used in building 
TacAir-Soar (Jones et al., 1999), a similar system that 
controls simulated fixed-wing aircraft. 
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Both of these systems are designed within the Soar 
architecture (Laird, Newell, & Rosenbloom, 1987; 
Newell, 1990), which provides an efficient engine for 
executing production-rule agents.  In Soar, all long-
term knowledge must ultimately be engineered into a 
set of production rules, which are efficient relational 
pattern matchers that provide associate retrieval of 
knowledge to drive intelligent behavior.  In the Helo-
Soar system, we divide these productions into three 
broad categories.  The first maintains the (potentially 
intricate) network of interacting goals that the agent 
must attend to at various times, the second implements 
interpretation knowledge that builds an elaborate 
representation of situational awareness from the 
agent’s perception and interpretations of the 
environment, and the third implements discrete 
deliberate actions that the agent must take in service of 
its goals, and in the context of its representation of 
situational awareness. 
 
Figure 2 shows a schematic representation of a subset 
of the goals in the Helo-Soar  system.  The main point 
to glean from this diagram is that there is a hierarchical 
organization of potentially interacting goals that can be 
active at various times.  The hierarchical arrangement 
provides a tiered set of modular contexts for the 
agent’s reasoning.  This can be important in 
implementing the efficient retrieval of knowledge 
within the agent.  Recall that long-term knowledge in 
Soar is implemented is triggered by a set of relational 
pattern matchers.  Patterns appropriate to the attack-
area goal can be monitored independently and 
continuously even as subgoals of attack-area change 
with the dynamic situation.  For example, there are 

certain types of situation interpretations (for example, 
dealing with target location) that the agent must 
perform during any area attack, but other 
interpretations are only relevant for particular subgoals 
(for example, low-level maneuvering for the move-for-
attack subgoal). 
 
Additionally, this hierarchical organization allows the 
knowledge engineers to impose high-level structure 
and encapsulation on the knowledge base.  The ability 
to do this is essential for large, knowledge-based 
systems.  Without such high-level organization, as with 
traditional large software projects, the agent system 
can become prohibitively expensive to maintain and 
adapt to new requirements.  This is particularly true for 
intelligent systems, which by their very nature need to 
reason about the interactions between goals, and 
complex relational patterns between goals and 
situational interpretations. 
 
It is also this relational intertwining of knowledge that 
limits the ability to encapsulate knowledge structures 
completely.  Although the knowledge design attempts 
as much as possible to define a clean hierarchy of goals 
and subgoals, it should be clear from Figure 2 that a 
simple tree structure is not sufficient to support 
intelligent behavior.  Many subgoals can be performed 
in the service of a variety of supergoals, potentially 
causing problems for encapsulated behavior.  In 
addition, deliberate actions generated by the agent may 
have to switch quickly between attending to multiple 
active goals, or take multiple active goals into account 
simultaneously.  A good example has to do with the 
particular role of an automated wingman.  A wingman 
for a mission must monitor and execute the overall  

Figure 2.  A directed acyclic graph of interacting goals to direct Helo-Soar’s behavior. 
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mission along with the rest of its teammates.  So an 
automated wingman, for example, may be attempting 
to achieve the attack-area goal together with the rest of 
the group.  Simultaneously, however, a wingman must 
focus on the special requirements of providing various 
support actions for the lead, as well as maneuvering to 
stay in formation.  The follow-leader goal explicitly 
represent these constraints in Figure 2.  For simplicity, 
we have omitted some of the explicit subgoals of 
follow-leader. 
 
The point here is that an intelligent automated 
wingman must interleave actions in support of the 
attack-area and follow-leader (and probably also 
other) goals simultaneously.  Our knowledge 
representation approach in Helo-Soar makes these 
simultaneous interactions explicit, allowing the 
potential for meta-reasoning across interacting goals, 
and allowing multiple independent (or dependent) 
goals to drive reasoning, situation interpretation, and 
action. 
 
This knowledge design also takes direct advantage of 
the truth-maintenance system (Forbus & deKleer, 
1993)built into the Soar architecture.  A truth 
maintenance system automatically computes logical 
entailments of an agent’s perceptions, assumptions, 
and other contextual features.  In the context of the 
goal hierarchies, the truth maintenance system 
automatically maintains the dependencies between 
goals, both for goal-subgoal relationships, and for 
connections between goals that interact.  As the 
environment changes, or the agent changes its 
interpretation of the environment, the truth 
maintenance system rapidly and automatically 
restructures the active goal structures to remain 

consistent with the situation.  This allows the agent to 
generate appropriate deliberate actions with 
confidence, even in the face of a rapidly changing, 
complex environment. 
 
Helo-Soar also uses Soar’s truth maintenance system to 
maintain a representation of situational awareness.  As 
inputs to the agent change (from changes in the 
environment, via Soar’s interface to VR-Forces), the 
truth maintenance system automatically computes 
logical entailments of those changes.  For example, a 
pop-up contact on the simulated radar might combine 
with existing knowledge about friendly and enemy 
locations to infer a new threat.  Consequently the 
existence of a threat could combine with knowledge 
about the agent’s flight parameters and the threat’s 
maneuvers to produce various geometric and spatial 
interpretations of the situation.  Additional knowledge 
can use the spatial representations to suggest 
appropriate weapons to use, or ultimately new goals to 
activate (such as evasive maneuvers or air-to-air 
attacks).  Given the appropriate set of productions 
encoding knowledge, all of these interpretations can 
change rapidly and automatically to remain consistent 
with changes in the environment. 
 
Both the goal structures and situational representations 
have to do with maintaining the agent’s internal state 
of awareness.  But ultimately an intelligent agent must 
take some form of external action in the environment.  
The Soar architecture provides this type of mechanism 
by supporting productions that implement deliberative, 
discrete actions, in response to the current context 
provided by active goals and beliefs.  In Soar, a 
deliberative, step-wise action is called an operator.  
During each discrete time-step of the simulation, Helo-

Figure 3.  A subset of Helo-Soar’s goal hierarchy, including a subset of potential 
discrete actions relevant to the goals. 
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Soar determines the next appropriate operator to select 
and execute (often this operator may simply be to wait, 
if Helo-Soar needs some change in the environment to 
drive further action).   
 
Figure 3 shows some of the operators associated with a 
subset of the goals encoded into Helo-Soar.  The 
bottom layer of elements in the figure represent 
discrete operators that Helo-Soar will take in a context-
dependent manner.  Selection and execution of these 
operators depends on the activation of the connected 
goals, as well as various situational features than can 
be attached to the goal structures.  As a simple 
example, the operators start-attack, set-attack-position, 
and end-attack can all be selected in the context of the 
attack-area goal.  However, each also depends on 
other subgoals being active, as well as particular values 
of associated features with the attack-area goal.  
Among other roles, the attack-area goal structure 
maintains a record of the current status of the attack, 
including whether the attack has started and whether 

the attack position has been achieved.  At various 
stages of the attack, and in response to the activation of 
various other subgoals, appropriate operators will 
implement the procedures for beginning the attack, 
moving to the appropriate location, and ending the 
attack.  Similarly, the agent will invoke the deliberate 
behavior to fire at a target (by explicitly invoking the 
missile model provided by the simulation architecture) 
in an appropriate context depending in part on the 
activation of the fire-at-target goal.   
Keep in mind that all of these actions are discrete, and 
will interleave with other actions in the service of other 
goals.  For example, while attempting to achieve the 
attack-area goal, Helo-Soar will also be generating 
deliberate actions to achieve communication goals, fly 
in formation, maintain situational awareness, evade 
threats, and other activities.  This interleaving (together 
with the knowledge management techniques for 
building and maintaining this knowledge-rich system) 
is made possible by the modular goal representations 
with explicitly defined interactions, which is supported 

Figure 4.  Integration of SoarSpeak speech recognition and generation components into 
the simulation architecture. 
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in large part by the automated logical consistency 
provided by Soar. 
 
 

HUMAN-AGENT COMMUNICATION 
 
Human-agent communication is handled through the 
SoarSpeak subsystem, a speech recognition and 
generation interface for Soar agents.  SoarSpeak 
provides interfaces to translate spoken directives into 
English text, based either upon a socket-based 
protocol, or upon the High Level Architecture (HLA).  
This text is sent across simulated radio channels where 
it is "understood" and acted upon by the simulated 
wingman.  For speech generation the reverse process 
occurs; the simulated wingman generates a text 
message that is sent across a simulated radio to a 
speech synthesis application for the human pilot to 
hear. 
 
 In developing Helo-Soar, it was necessary to integrate 
SoarSpeak not only with the simulation system but also 
with the simulator, itself.  The desire to minimize 
computing and footprint requirements for the simulator 
platform lead to the design capture in Figure 4.  In this 
implementation, a Raw Audio Client/Server 
application was developed to allow raw audio to by 
captured, packaged up and shipped across the network 
to the SoarSpeak client-server.  The raw audio client 
can then reside on a computer that is co-located with 
the simulator, while  the raw audio server can reside on 
the same platform that the simulation is run on.  
Connections are handled via TCP/IP sockets. 
 
In order to achieve acceptable voice recognition rates, 
a restricted grammar was developed and is the means 
used to first recognize the pilot’s utterance, and then to 
be “understood” by the intelligent agent wingmen.  The 
basic operation of the system is as follows: the pilot in 
the simulator speaks into his microphone and issues 
orders as he would normally issue to another human 
pilot.  The intelligent agent recognizes and understands 
the orders and replies using the voice generation 
system according to military doctrine and then goes 
ahead and executes the orders it has received. 
 

INTEGRATION LESSONS 
 
One of the key aspects of this effort is the integration 
of Soar with the VR-Forces simulation architecture.  
This integration provides one of the most sophisticated 
cognitive architectures (for implementing intelligent 
agents) with one of the most modern and robustly 
engineered simulation platforms (for providing 
physical and environmental simulation).  Integrating 

Soar with VR-Forces was unique in several respects.  
This is the first time Soar has been integrated with a 
heavily object oriented simulation.  This is in contrast 
to other simulations with which Soar has previously 
been integrated, such as JSAF and OTB.  This is also 
the first time Soar has been configured to run 
asynchronously with a sophisticated simulation 
environment.  In the Automated Wingman architecture, 
the Soar component runs in its own thread, while the 
rest of the simulation runs in another.  As a final 
constraint, this is the first significant Soar integration 
where the integration was performed at the binary code 
level; the Soar engineers did not have direct access to 
the VR-Forces source code to support the integration 
of the intelligent agents.  This was a particularly 
important test of the benefits of a good modular design 
for the overall system architecture. 
 
While integrating with an object oriented system is 
much cleaner, it also requires a very careful 
understanding of the overall simulation architecture.  
For this project, it has been critical for the Soar 
architecture developers to work closely with the 
simulation developers, in order to understand the 
design concepts necessary to accomplish the 
integration.  This “front-loaded” the integration effort.  
However, once the initial design was created, the 
implementation was straightforward. 
 
The requirement for asynchronous control has also 
been an issue.  When integrating with multiple 
distributed simulations, it is important to stay as 
synchronized as possible, so no component of the 
distributed system gets too much out of synch with the 
others.  Historically, intelligent agents have been 
integrated to work in lock step with the underlying 
simulation platforms.  This made it impossible for the 
simulation to get out of synch with the agents (in 
particular, providing some control over the required 
reaction times of the agents).  By dissociating the 
simulation from the agents, if either is idling the other 
thread can make use of the additional cycles.  For 
example, if the simulation is “sleeping”, waiting for 
data, the agent can continue to process and reason over 
the data that is so far available.  This is an advantage to 
the type of “anytime” reasoning that these intelligent 
agents engage in. 
 
The commitment to keeping a clean separation 
between source code changes to Soar and to the 
simulation engine was a potentially high risk design 
decision.  This effort could have been a major 
catastrophe if not for the effective and expeditious 
support of the simulation developer.  Because agent 
control over simulation entities intimately integrates 
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the simulation with the agents, it is important that the 
details of the simulation and the agent architecture are 
well defined, and well understood by all groups in the 
development team.  Because intelligent agents have 
some fundamental differences from standard 
constructive simulations, it would be unusual to 
discover that no changes are required at all to the 
underlying simulation.  However, we were able to tame 
this process through well-defined interfaces and the 
close cooperation of the simulation development team. 
 

CONCLUSION 
 
We have described a simulation architecture to support 
the use of intelligent automated wingmen for army 
experimentation with rotary-wing aircraft.  The design 
includes the integration of a well-designed set of 
components providing the distributed simulation 
environment, physical platforms, intelligent agents, and 
various interfaces for agent communication with the 
simulation, with other agents, and with humans.  In 
addition, the intelligent agents implements a new 
modular approach to knowledge-intensive agent 
design, exploiting an efficient low-level architecture 
for intelligence, and organizing high-level knowledge 
around complex representation of interacting goals, 
efficient representation of sophisticated situation 
interpretations, and the uniform integration of 

deliberate action that is appropriately reactive to 
changing situation interpretations, as well as sensitive 
to multiple active goals.  This component-oriented 
design provides a robust and well engineered 
architecture for DOD applications, which will provide 
a solid software engineering solution for Army 
experimentation, while also reducing maintenance and 
upgrade costs for future expansion of the system to 
new application areas. 
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