
Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2004

2004 Paper No. 1733 Page 1 of 9

Creating a Communication Infrastructure for Simulating Urban Operations

Richard Williams John J. Tran Bill Helfinstine
 BMH Associates, Inc. Information Sciences Institute, USC Lockheed Martin
 Norfolk, VA Marina del Rey, CA Boston, MA
 Williams@bmh.com jtran@isi.edu bhelf@lads.is.lmco.com

ABSTRACT

Joint Forces Command is currently developing a large-scale, human-in-the-loop (HITL) federation to support a Joint
Urban Operations (JUO) experiment. This resulting JUO HITL federation brings together hundreds of simulations
running on both Scalable Parallel Processors and standard desktop computers located at sites ranging from Hawaii to
Virginia. This endeavor faced the challenge of developing a communication infrastructure that could support a
demanding set of simulation requirements while faced with multiple technological hurdles. These diverse issues,
which included high latency rates, huge amounts of network traffic, and organizing large numbers of computers, had
to be solved to create both a stable and reliable federation.

This paper shall focus on how the communication infrastructure for the JUO HITL Environment was constructed. It
shall describe how the capabilities and demands of the network, machines, run-time infrastructure, and multiple
simulations affected the communication topology design. The paper shall also describe the resulting infrastructure
used for the JUO HITL federation with a discussion of system strengths and weaknesses. The paper shall use
quantitative measurements to illustrate how changes to infrastructure affect network traffic levels and performance.
This paper shall also introduce the specific tools created to facilitate the rapid generation and distribution of the
complex communication topology. Finally, future development work shall be discussed that should result in an
even more robust system with improved implementation features.

ABOUT THE AUTHORS

Richard Williams is a Software Engineer with BMH Associates, Inc., supporting the USJFCOM J9 Experiment
Engineering Department. He received a B.S. in Computer Science from the University of Central Florida. He has
supported federation development for Attack Ops 00 (AO00), United Vision 01 (UV01), Millennium Challenge 02
(MC02) and the Distributed Continuous Experimentation Environment (DCEE). He is currently developing
software to support the Joint Urban Operations (JUO) experiment.

John J. Tran is a researcher at the Information Sciences Institute, University of Southern California. He received
both his BS and MS Degrees in Computer Science and Engineering from the University of Notre Dame, where he
focused on Object-oriented software engineering, large-scale software system design and implementation, and high
performance parallel and scientific computing. He has worked at the Stanford Linear Accelerator Center, Safetopia,
and Intel. His current research centers on Linux cluster engineering, effective control of parallel programs, and
communications fabrics for large-scale computation.

Bill Helfinstine is a federation developer for the USJFCOM J9 Experiment Engineering Department and a
developer and integrator of JSAF (Joint Semi-Automated Forces), as well as primary maintainer and developer of
the RTI-s experimental RTI. He has worked in M&S for 10 years, with the last several in support of JFCOM-
sponsored exercises, culminating in the Joint Urban Operations (JUO) experiment. He is a Staff Software Engineer
at Lockheed Martin Simulation Training and Support Advanced Simulation Center (LMSTS-ASC) in Burlington
MA. He received his B.S. in Computer Science and Engineering at the Massachusetts Institute of Technology.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2004

2004 Paper No. 1733 Page 2 of 9

Creating a Communication Infrastructure for Simulating Urban Operations

Richard Williams John J. Tran Bill Helfinstine
 BMH Associates, Inc. Information Sciences Institute, USC Lockheed Martin
 Norfolk, VA Marina del Rey, CA Boston, MA
 Williams@bmh.com jtran@isi.edu bhelf@lads.is.lmco.com

INTRODUCTION

Joint Forces Command is currently developing a large-
scale, human-in-the-loop (HITL) federation to support
a Joint Urban Operations (JUO) experiment. This
resulting JUO HITL federation brings together
hundreds of simulations running on both Scalable
Parallel Processors (SPPs) and standard desktop
computers located at sites ranging from Hawaii to
Virginia. This endeavor faces the challenge of
developing a communication infrastructure that can
support a demanding set of simulation requirements
while faced with multiple technological hurdles. These
diverse problems, which include high latency, huge
amounts of network traffic, and organizing large
numbers of computers, must be solved to create both a
stable and reliable federation.

Recent world events have shown that urban warfare is
an intricate and dangerous task. Creating simulations
to deal with the complexities of urban warfare is
difficult and tedious. We, the authors, believe these
simulations can help improve decision making for both
the commander and the foot soldier in critical
situations, making our efforts worthwhile. This paper
shall describe the difficulties we faced, our successes,
and our failures in creating an infrastructure to support
simulating Joint Urban Operations.

THE CHALLENGE

The goal of the JUO HITL federation is to simulate a
high fidelity urban environment for experimentation
purposes. This requires simulated pedestrians, civilian
vehicles, blue forces, red forces, and sensors to
converge to produce a quality C4I picture which can
then be used by players. Attempting to tie these
simulations together in a reliable manner has brought
an array of new challenges which had to be addressed
and overcome.

 A Balancing of Resources

A number of new features which have been introduced
in the JUO HITL environment have been challenging
to support. Some features have caused an increase in
the amount of data sent on the network and some have
required increased computational power. To maximize
the size and fidelity of the simulation we are able to
produce, these issues had to be addressed and
conquered with a variety of techniques.

The JUO HITL terrain brought us new challenges in
that it was much more detailed than terrains used
previously. Roads in the urban areas have been created
at five times Vector Map (VMAP) 1 density. This
caused clutter entities to break dead reckoning
thresholds and send out updates at rates up to ten times
higher than seen in previous exercises. Also, more
than 1.8 million buildings are in the two degree by one
degree urban area. More than 65,000 of the buildings
are Multi-Elevation Surface (MES) structures. Both
blue and red sensors were forced to deal with these
large numbers of buildings, which made inter-visibility
computations an expensive task.

Data Collection has presented developers with new and
unique challenges. In prior experiments, such as
Attack Ops 00, it had been possible for a single
federate to consume all the simulation data for
recording. The JUO federation has generated over 200
gigabytes of data per event week. This dilemma
required systems to be created which would record the
necessary data at the local simulation for a thorough
after action review while still being able to provide real
time data for simulation controller analysis.

Another difficulty of the JUO HITL Environment was
trying to configure, update, organize, and monitor a
large number of machines in a quick manner. While
systems have been put in place to automate many of
these processes sometimes automation is not possible.

Although there were a large number of hurdles to
overcome and understand in the creation of the JUO
HITL infrastructure our goal was to minimize
bandwidth consumption, maximize CPU utilization,

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2004

2004 Paper No. 1733 Page 3 of 9

and create the highest fidelity simulation possible with
the equipment which we were allocated.

GENERATING THE INFRASTRUCTURE

The JUO HITL environment is comprised of three
separate communication structures: A simulation
execution system, the simulation, and the data
collection system. The simulation execution system,
described in “Supporting Distributed Simulation on
Scalable Parallel Processors” (Williams, 2003), is used
to help generate the structure for the other systems.

SIMULATION INFRASTRUCTURE

The JUO Federation in the early part of 2004 has been
comprised of 215 to 360 federates and Interest
Management Processors (IMPs). During the May
player training event there were 76 Joint Semi-
Automated Forces (JSAF) Simulations, 82 Clutter
Simulations, 10 Simulation of the Location and Attack
of Enemy Missiles (SLAMEM) federates, 52 IMPs, 3
ModStealth 3D viewers, a Dynamic Terrain Simulation
(DTSIM), a Track Database, and a C4I Gateway (JSAF
Information Paper 2003).

Run Time Infrastructure (RTI-S)

Clutter

JSAF GUI

JSAF Sim

Dynamic
Terrain Sim

SLAMEM
Sensors

SLAMEM
Fusion

C4I

Track
Database

Figure 1. JUO Applications

To bring these applications together we are using RTI-
S (Helfinstine 2003) in a point to point mode which
allows the implementation of an effective Data
Distribution Management scheme. Federations using
multicast as their data transport protocol are typically
limited to approximately 3,000 subscription regions
due to limitations of multicast routers. However, by
using point to point protocols and separate routing
applications (IMPs) the JUO Federation environment is
able to be divided into over 175,000 subscription
regions and can still be divided further.

The simulation uses a tree topology generated by
automated methods for generic non-specific resources
and by hand where an individual resource is required to
be configured in a specific manner. As each simulation
is started, its RTI component will find itself in a
connectivity map file and then connect to its proper
parent machine. The connectivity map tells the
federate the name of the parent and what protocol to
use to connect. RTI-S supports multiple transports
with adjustable parameters. For JUO, we use a TCP
transport and two different UDP transports. Using
these transports, RTI-S has added support for data rate
limiting and overflow handling.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2004

2004 Paper No. 1733 Page 4 of 9

Head IM P

Green Control
Head IM P

Cluster Head
IM P

M ini Cluster
IM P

clutter clutter

clutter clutter

clutter clutter

clutter clutter

clutter clutter

clutter clutter

slam em slam em

slam em slam em

Blue/White
Head IM P

J9 subIM P

J9 subIM P

Blue JSAF

Blue JSAF

Blue JSAF

Blue JSAF

J9 subIM P

Blue JSAF

Blue JSAF

Blue JSAF

Blue JSAF

J9 subIM P

Blue JSAF

Blue JSAF

Blue JSAF

Blue JSAF

J9 subIM P

Blue JSAF

Blue JSAF

Blue JSAF

Blue JSAF

J9 subIM P

J9 subIM P

Blue JSAF

Blue JSAF

Blue JSAF

Blue JSAF

J9 subIM P

Blue JSAF

Blue JSAF

Blue JSAF

Blue JSAF

J9 subIM P

White JSAF

White JSAF

White JSAF

White JSAF

J9 subIM P

White JSAF

White JSAF

White JSAF

J9 subIM P

Track Reporter

White JSAF

White JSAF

White JSAF

TrackDB Red Head IM P

Head IM P Connections
and J9 T opology

Figure 2. Head IMP and JFCOM Topology

Building the Connectivity Map

In developing the topology we attempted to predict
where the weak points might be and limit their impact.
For a typical 100Mbit interface we try to limit the child
count to five applications or four IMPs. We decided to
use a Gigabit interface on the head IMP (see Figure 2)
of the federation to prevent spikes in traffic
overwhelming the interface. Also, the greater
bandwidth allowed us to create a greater spread of
branches at the root of the tree which reduced tree
depth. We decided to use a Gigabit interface on the J9
mini-cluster head node to save on resources by only
using one IMP for 16 child nodes.

We used TCP as our protocol in all situations where
latency was low. However, when latency was high,
such as the link from Maui, HI to Suffolk, VA, we used
the UDP_WAN option. The reason for not using TCP
in these situations is that maximum TCP throughput is
defined by a function of TCP window size and latency
as shown in equation 1(Eshan and Mingyan.)

pingtime
WindowSizeughputMaxTCPThro = (1)

This limited our TCP throughput to Maui using a 64
KB window size with 120 millisecond ping time to

around 4 Mb/Sec. We wanted to do some testing with
modifying window sizes to improve TCP throughput,
however, we have not been able to do so due to
schedule constraints.

Federation Data Traffic Patterns

Data Distribution Management (DDM) is a technology
that lets federates only receive data to which they
subscribe and only publish data which is being
requested. However, for this technology to be
efficient, it is imperative for Federation Managers to
become cognizant of the interactions between the
individual simulations.

By analyzing the interaction of the varying federates
we were able to strategically place federates at
locations that would minimize WAN traffic and
increase entity counts. For instance, we decided to
place SLAMEM and the Track Database at the same
location as the blue cell machines. It was believed that
keeping the Track Modification Request and Track
Object messages (see Figure 3) at the same location
would reduce WAN traffic and allow for a greater
number of objects to be simulated.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2004

2004 Paper No. 1733 Page 5 of 9

SLAMEM Publishing Clutter/JSAF Track Database Blue/White JSAF C4IGW

Footprint

Contact Report/Sensor Detection()

Track Object

OTH Gold Interaction

Track Modification Request

Figure 3. Track Generation Sequence

Early on in testing we tried various configurations with
the red cell, such as, running JSAF front-ends (GUIs)
on machines at Ft. Belvoir, VA and JSAF back-ends
(simulators) on the SPP in Maui, HI. These tests
revealed that the communication load for front-ends to
control back-ends was actually higher than the
simulation load. The current protocol that JSAF uses
for communication between GUIs and simulators is
very heavy and intolerant of packet loss or high
latency. Therefore it works very poorly over WAN
links. We then attempted to run both front and back
ends on the SPP. To allow the players to interact with
the GUI we used Virtual Network Computing (VNC).
These tests revealed that the latency between Maui and
Virginia was too great to allow for quality user
interaction with a GUI updating in real time. Also, as
we increased the number of simulations the bandwidth
consumption for VNC went up linearly which was not
the direction we wished to take the simulation.
Eventually we fell back to placing all red simulation on
machines at Ft. Belvoir (Figure 4).

Red Head IMP

Red SubIMP

Red SubIMP

Red Frontend

Red Backend

Red Backend

Red Backend

Red SubIMP

Red Backend

Red Backend

Red Backend

Red Backend

Red SubIMP

Red Frontend

Red Backend

Red Backend

Red Backend

Red SubIMP

Red Frontend

Red Backend

Red Backend

Red Backend

Red SubIMP

Red Frontend

Dynamic
Terrain Sim

Red Frontend

ModStealth 3D
Viewer

Red SubIMP

Red SubIMP

Red Frontend

Red Backend

Red Backend

Red Backend

Red SubIMP

Red Frontend

Red Backend

Red Backend

Red Backend

Red SubIMP

Red Frontend

Red Backend

Red Backend

Red Backend

Red SubIMP

Red SubIMP

Red Frontend

Red Backend

Red Backend

Red Backend

Red SubIMP

Red Frontend

Red Backend

Red Backend

Red Backend

Red SubIMP

Red Frontend

Red Backend

Red Backend

Red Backend
Figure 4. OpFor Topology

A negative aspect of a federation using a point to point
protocol versus multicast is initial configuration. In a
multicast federation the RTI will subscribe and publish
to multicast groups which are automatically handled by
a multicast router. In a point to point federation each
federate and IMP must be preconfigured with a

mapping to its parent federate. For generic resources,
such as a Scalable Parallel Processor, where the
resource to application mapping is inconsequential we
have developed tools to automatically generate and
distribute the connection topology. However, for
locations where a specific machine is required to run a
specific application, the connection topology must be
manually configured.

A Look at the Numbers

During the May 2004 player testing event we gathered
network metrics to see how much data was being
passed between important links. Our goal was to keep
traffic at levels that would not exceed the limits of the
various interfaces. We were not exactly sure of the
numbers we would see since this event was our first
opportunity to run with 100,000 urban entities, a full
SLAMEM sensor set, and a fully operating player cell.

All data traversing WAN links would either go to or
come out of the federation head IMP. By looking at
the traffic levels on specific connections, we could see
the effects of modifications to the simulation on
network traffic. For instance, during the May event
SLAMEM changed from generating tracks on all
entities to only generating tracks on red. This change
improved the ability for players to deal with their
perceived picture, and also it dropped the traffic exiting
the Track Database by approximately 75 percent.

Most of our predictions on traffic levels were as
expected. The greatest producer of data to the
federation was the Maui SPP, which was the source for
the majority of clutter entities. We were very
encouraged to see that the traffic from Maui (see
Figure 5) was under 10 Mbps and did not approach our
bandwidth limitations.

Kbps per stream from publisher to head IMP
at various entity/track levels

0

1000
2000

3000
4000
5000

6000
7000

8000
9000

Mau
i (c

lut
ter

)

Spa
war

(gr
ee

n c
on

tro
l)

Trac
kD

B

Whit
e/B

lue

Mini
Clus

ter
 (S

LA
MEM an

d c
lut

ter
)

TEC (re
d)

Sing
le

SLA
MEM

Publisher

K
bp

s

25K/4K

50K/28K

105K/5K

Figure 5. Average traffic levels into head IMP

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2004

2004 Paper No. 1733 Page 6 of 9

We were not surprised to see that SPAWAR subscribed
(Figure 6) to a substantial amount of traffic and did not
publish (Figure 5) very much. SPAWAR’s task in the
federation was green control, so the only traffic coming
out of the site would be for clutter generation.
Subscribing applications at the site included JSAF
simulations, used to instantiate clutter and observe the
federation, and a ModStealth 3D viewer used for
trouble shooting and simulation observation.

Kbps per stream from head IMP to subscriber
at various entity/track levels

0

2000

4000

6000

8000

10000

12000

Mau
i (c

lut
ter

)

Spa
war

(gr
ee

n c
on

tro
l)

Trac
kD

B

Whit
e/B

lue

Mini
Clus

ter
 (S

LA
MEM an

d c
lut

ter
)

TEC (re
d)

Sing
le

SLA
MEM

Subscriber

K
bp

s

25K/4K

50K/28K

105K/5K

Figure 6. Average traffic levels out of head IMP

There are numerous variables which affect traffic
levels within the federation. Clutter federates typically
publish entity state information and intersection data to
ensure road intersections are simulated realistically.
With intersection logic off, federates simulating urban
clutter entities will output nearly three times (see
Figure 7) as much data as federates simulating rural
clutter. If clutter intersection logic is turned on the
disparity in network traffic between federates
simulating urban entities to those simulating rural
grows to a factor of ten.

Comparison of rural and urban clutter on network traffic
(Intersection Logic Off)

0

200

400

600

800

1000

1200

1000 2000 3000

Entities

K
bp

s
ou

t

urban

rural

Figure 7. Comparing urban and rural clutter average

traffic levels

Limiting subscriptions has become paramount to the
JUO federation operations. In previous versions of
JSAF, players were able to see and subscribe to all
entities if they zoomed out. In the JUO version,
players will only subscribe to clutter if they zoom into
a fairly close level. Features such as this help
maximize the value of DDM.

As we continue our experiment through the year, we
will look at traffic levels at both the connection and
interface level for all machines at all sites. As changes
in the simulation are introduced, we will monitor traffic
levels and see how these modifications change data
rates.

Ensuring a Solid Federation

To verify the status of each simulation in the federation
a new FederateState object was added to the Federation
Object Model (FOM) (IEEE Std 1516.2-2000.) Each
simulation publishes the FederateState object which
contains information regarding memory, processor
load, local entity count, remote entity count, software
build information, and more. This object allowed
applications to be developed which could then display
federates joining or leaving the federation, federation
entity counts without requiring an application to
subscribe to all entities, and an array of troubleshooting
information.

We have also created a system to force federation saves
at a set periodicity, such as once an hour, so that if a
catastrophic failure does occur we can return to a
previous save point. This feature has been used a
number of times due to network outages, power
outages, and federation wide crashes.

DATA COLLECTION INFRASTRUCTURE

The data collection infrastructure is headed up by the
researchers at ISI in collaboration with the
Topographical Engineering Center to serve the needs
that are driven by Future After Action Review Systems
(FAARS) team. Its purposes are in three folds:

1. Validation and verification – to provide
ground (absolute) truth of the simulation
activities,

2. Comprehensive historical record of
experiment, and

3. Analysis Tool – to answer complex questions;
for example (1) what happened during the
event? (2) Who won? (3) How did they win?

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2004

2004 Paper No. 1733 Page 7 of 9

Beginning with the JUO experiment, our tools
provided a unified method for data collection. In
previous experiments, the data collection effort has
largely been independent efforts by the various
components of the JSAF applications. With
improvements, all participating JSAF applications in
the JUO federation utilize the same logging
mechanism, and as a result, object states, simulation
events, and other simulation data are stored in a
common database.

There are three stages of data collection:

Table 1. Tools for each of the stage

Stage Applications Function
Data
Generation

JSAF
SLAMEM
CLUTTERSIM

the experiment
itself

Runtime
Query

Aggregator
Sqlite Database

capable of
answering
queries while
stage #1 is
active

Post Event
Query

Rsync
dst

support of
complex queries

Data Generation Stage

The data generation stage is the experiment itself.
During the exercise, at the application level, data is
logged to database as followed. Each application
publishes message, i.e. its states and interactions, to the
federation via the RTI, as the data is being prepared for
publication, an intercept library routine is called and
these messages are tagged and saved to a local database
on the node where that application is running. The
logging mechanism is the same for all federate
applications. This design is beneficial in two ways:
first, in distributed environment, the model is scalable
and robust because it does not require a centralized
database; and secondly, the model reduces network
traffic because data logging is done locally to each
node. Note that since the applications only perform
query and insert, these databases grow strictly
monotonically. As each of the databases on each node
grows, the logger tool rotates in a fresh new database to
ensure that no single database grows out of range.

Runtime Query

The runtime query tool provides the users the ability to
perform real-time (live) queries on the federation’s
logged data – in short it provides the users the ability to
query the data that has been logged as described in the
previous section. For example, the user can ask
questions such as “how many ground vehicles are out

there?” The result from the query is said to be the
ground (absolute) truth. Another example query would
be how many vehicles does SLAMEM see?” The
ability to answer these questions in real time is
important and in providing the analysts, and developers
an instantaneous snapshot of the system, it enables the
capability to make quick critical decisions.

Figure 7. a typical aggregator tree

The runtime query system is comprised of a tree of
aggregators and SQL-like database servers. The tree
topology is generated automatically using an even-load
balance scheme. Figure 7 illustrates a typical
aggregator tree. In this case, there are three aggregator
nodes and four database (leaf) nodes. In this example,
the root aggregator (A1) listens for TCP connection,
once an SQL client connects and an SQL command is
issued, A1 makes two connections to B1 and B2 and
waits for responses from B1 and B2; similarly B1,2
connects A1,2 and A3,4 respectively and pass the
query on. Since nodes A1-4 are leaf nodes, they are
also database servers, and they return the result (stored
in the local node database) back up the tree. Note that
the results from these queries can be very large (data
size = n x m, where n is the number of leaf nodes, and
m is the size of the query result), so we have
implemented the aggregator using a stateless model
that can support more than one query at a time. In
practice, this is not realistic to due to the heavy load
that is imposed on the nodes.

Data-staging in support of Analysis

The data staging is a way to move data collected at the
distributed nodes into a single (monolithic) database,
so that users can use it to perform complex queries to
answer difficult questions about the exercise. The

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2004

2004 Paper No. 1733 Page 8 of 9

reason that complex queries cannot be executed on
distributed database system is due to the fact that some
database queries requires operations on the global
dataset, e.g. summation. One example question is
“give us a track or sequence of a vehicle with the ID
xyz” – the result of the query would be a chronological
sequence of activities by that vehicle. Two of the
challenges of the data staging are (1) geographically
dispersed sites (TEC, MHPCC, j9), (2) and the amount
of log data (200+ GIG) generated during the
experiment.

The data staging process can be broken down into three
separate steps, all of which occurs at the end of each
simulation day: (1) data pull, (2) data convert, and (3)
data import. All three steps are all executed on our
terabyte database machine.

Data Pull

We implemented the data pull tools using a data
synchronization tool called rsync, which is readily
available on most Linux distributions. Rsync is robust,
fast, and works over a number of transport layers
including SSH and Kerberos-enabled SSH. Rsync
only pulls files that have been changed since the last
pull, thus reducing the network traffic and wait time for
each of the subsequent data pull operations. Typically,
an end-of-day data pull on XYZ gigabytes for all of the
three sites (TEC, j9 and MHPCC) takes about XYZ
time. Note that data pull should not be confused with
issuing a query on the root aggregator node during the
runtime.
Data Conversion

The data pulled from the distributed sites is a highly
compressed file that has multiple tables. Each of the
database files requires conversion into a format that
can then be inserted into the MySQL database. The
amount of data being pulled each night is extremely
large and since the conversion routine can be
decoupled and is embarrassingly parallel, we devised a
simple scheme to farm out the decoding jobs to all 17
nodes of the mini local cluster. In doing so, we are
able to achieve close to 17x speed up. We are
implementing a number of robustness features, for
example the tag-and-proceed technique to ensure that
no database table is decoded twice. On average, it
takes 5 hours to decode 3.5G amount of data.

Data Import

The data import stage is a simple algorithm that does
linear time visit on each of the decoded datum and
insert it into the database. We made some interesting
observations during one data import experiment:

- Data conversion can be done in parallel,
- Data loading does not enjoy the same

level of speed up

We suspect that this is due to the fact that the MySQL
database server is I/O bounded so at the moment most
of the tuning is done to the database server.

After all the data has been loaded into the database, the
other members of the FAARS team can conduct the
complex queries such as those mentioned earlier.

FUTURE WORK

While we feel we have been successful at generating a
strong foundation for simulating urban operations,
there are still many obstacles left to overcome.

Work remains to be done in improving the structure of
the simulation. A tree structure will not scale and is
not optimal for passing data from publishing federate
to subscriber. Work is being done to bring a mesh
router (Helfinstine 2003) to the JUO federation which
should improve scalability.

A number of times during testing it was discovered that
a problem in the federation was a result of a single
federate publishing an excessive amount of data. In
another instance, it was discovered that if the players
used certain panels within JSAF that their processor
load would go to near 100 percent. While we have
methods to analyze metrics within the individual
simulations, we currently do not have an automated
method to warn federation managers of these problems
as they occur. Some type of metric alarm system
would aid greatly in operating a long running, stable
federation.

A job which is currently underway is the improvement
of the JSAF control approach. This new system will be
based on a command/query protocol verses the existing
shared database protocol. This change should allow us
to split GUIs from simulators more effectively.

More work can be done to simplify the initial setup of
the JUO federation. Currently the process of initially
setting up a simulation run is quite involved and can
take a qualified operator a full day to set up. Although
a number of utilities have been created to aid in this
process, we think it can still be improved further.

CONCLUSION

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2004

2004 Paper No. 1733 Page 9 of 9

We have successfully designed a system which
connects hundreds of machines from across the country
running a variety of simulations. These simulations
have been successfully tested using over 100,000
civilian and OpFor entities being tracked by a variety
of simulated sensors in a detailed urban environment.

Our efforts have led to the development of a data
collection structure which can provide real time
simulation information without overloading the
network. This information can then be used to help
gauge the successes and failures of players as they
occur.

We have designed and developed systems which allow
us to verify that simulations are running correctly,
ensure network connectivity and monitor federate
status. They have also been designed to give real time
federation level summaries to support simulation
execution. These tools have not simply been nice to
have, they have been essential to troubleshooting
problems and ensuring a solid federation.

Possibly the most exciting development for the JUO
HITL federation has been the impressive effectiveness
of data distribution management. DDM has increased
the capabilities of this federation by orders of
magnitude, while working in flawless fashion from
event to event.

While we are encouraged by our accomplishments to
date we do not feel as if we are finished. Much more
work can still be done to create a structure which can
support the largest simulation possible with limited
resources.

ACKNOWLEDGEMENTS

The authors would like to thank Andy Ceranowicz,
Steve Bixler, Rae Dehncke, Jason Boyer, Glenn
Goodman, Mark Torpey, Jackie Tran, Phil Colon, and
all the various site support personnel for their help in
making this work.

REFERENCES

Eshan, N. & Mingyan, L., Analysis of TCP Transient
Behavior and Its Effect on File Transfer Latency,.
Retrieved June 16 from
http://www.eecs.umich.edu/~mingyan/pub/icc03.pdf

IEEE Std 1516.2-2000. IEEE Standard for Modeling

and Simulation (M&S) High Level Architecture
(HLA) --- Object Model Template (OMT)
Specification. The Institute of Electrical and
Electronic Engineers. March 2001.

Williams, R., & Tran, J. (2003). Supporting Distributed

Simulation on Scalable Parallel Processors,
Proceedings of the 2003
Interservice/IndustryTraining, Simulation and
Education Conference.

Helfinstine, B., Torpey, M., & Wagenbreth, G. (2003).

Experimental Interest Management Architecture for
the DCEE, Proceedings of the 2003
Interservice/IndustryTraining, Simulation and
Education Conference.

JSAF – Joint Semi-Automated Information Paper,

(2003). Retrieved June 17, 2004, from
http://www.mstp.quantico.usmc.mil/modssm2/InfoP
apers/INFOPAPER%20JSAF_files/INFOPAPER_JS
AF.htm

