

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2004

2004 Paper No. 1774 Page 1 of 10

Formalized Behavior Models for MOUT OPFOR Individual Combatant

Weapon Firing

Richard Stottler Stephanie Lackey John Brian Kirby
Stottler Henke Associates, Inc. NAVAIR TSD Stottler Henke Associates, Inc.

San Mateo, CA Orlando, FL San Mateo, CA
stottler@shai.com stephanie.lackey@navy.mil kirby@shai.com

ABSTRACT

This paper describes techniques to augment the behavioral models of automated Opposing Forces (OPFOR)
Individual Combatants (ICs) with a realistic, practical set of weapon firing behaviors for virtual Military
Operations in Urban Terrain (MOUT) training environments. These behaviors represent a formalization of target
acquisition and firing execution tactics and techniques based on doctrine, input from subject matter experts, and
observations from the field. The formalisms are based on Behavior Transition Networks (BTNs), an extension of
Finite State Machines (FSMs). A COTS toolkit allows for rapid visual behavior specification, testing and
modification, easy simulation integration, and flexible architectures. The behaviors are designed hierarchically so
that the actions and goals of a human combatant can be modeled at various levels of detail. Polymorphism is used
heavily to alter the behaviors based on the type and current state of the IC at all levels of the model. For example,
an IC just exposed to a stun grenade behaves very differently from one who has not been so exposed. A motivated,
well-trained, elite OPFOR IC behaves very differently from a conscript. Uncertainty is incorporated both in the
initial selection of attributes (boldness, speed, aiming accuracy, etc.) of the ICs to give their behaviors natural
variation and in runtime execution of decision making to keep even a single IC from being too predictable. This
paper also describes the behavior modeling process itself from knowledge engineering to formalization and
implementation through validation. The initial prototype is described in which IC behaviors are implemented and
interfaced to a real-time IC simulation.

ABOUT THE AUTHORS

Richard Stottler co-founded Stottler Henke Associates, Inc., an artificial intelligence consulting firm in San
Mateo, California, in 1988 and has been the president of the company since then. He has been the principal
investigator on a large number of tactical decision-making intelligent tutoring system projects conducted by
Stottler Henke including projects for the Navy, Army, Air Force and Marine Corps. Currently he is working on
OPFOR MOUT Individual Combatant targeting and firing behavior modeling for the Marine Corps and a
Combined Arms ITS as part of the US Marine Corps Combined Arms Command and Control Training Upgrade
System (CACCTUS). He has a Masters degree in Computer Science from Stanford University.

Stephanie Lackey is a Computer Engineer in the Science and Technology Division of the Naval Air Systems
Command, Training Systems Division (NAVAIR TSD), in Orlando, Florida. She serves as Principal Investigator
(PI) for the CGF evaluation effort within the Virtual Technologies and Environments program and as Co-PI for the
Intelligent Training Support Tools (ITST) portion of the Air Warfare Training Development (AWTD) program.
Stephanie earned her M.S. degree in Industrial Engineering from the University of Central Florida and is pursuing
her Ph.D. in the same field.

John Brian Kirby graduated in 2003 from the University of California, Berkeley, with simultaneous Bachelor
degrees in Computer Science and Cognitive Science. He has worked as an AI software engineer at Stottler Henke
since graduation. As a member of the Stottler Henke team, he has contributed to OPFOR MOUT individual
combatant targeting and firing behavior modeling for the Marine Corps, storage optimization and scheduling for
NASA's Kennedy Space Center and aircraft carrier VLA lighting design for the Navy.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2004

2004 Paper No. 1774 Page 2 of 10

Formalized Behavior Models for MOUT OPFOR Individual Combatant

Weapon Firing

Richard Stottler Stephanie Lackey John Brian Kirby
Stottler Henke Associates, Inc. NAVAIR TSD Stottler Henke Associates, Inc.

San Mateo, CA Orlando, FL San Mateo, CA
stottler@shai.com stephanie.lackey@navy.mil kirby@shai.com

PROBLEM DESCRIPTION

The need to address skills required for the Military
Operations in Urban Terrain (MOUT) environment
results from the dramatic shift in military tactics since
the end of the Cold War. American military forces
justifiably avoid combat in cities if at all possible, but
the nature of combat has changed requiring combat
forces to enter urban environments as a matter of
course. This trend shows little sign of decreasing
(Miles, 2003) since centers of power are located in
cities and a projected 70 percent of the world
population will occupy urban environments in the near
future (Schwierz, Krenz, & Lipke, 2003). Although
Desert Storm demonstrated the ability of U.S. forces to
gather battlefield intelligence and target enemy forces
at extended ranges, the events in Mogadishu, Somalia,
two years later demonstrated the challenges of fighting
in the post-Cold War era and revealed the clear need
for improved tactics and training (Slear, 2004).

A crucial component of MOUT training is live
training – combat towns. Live training itself presents
challenges to the military including: (1) cost of
production and maintenance and (2) availability of
materials, facilities, and personnel. Unfortunately,
some skills are difficult to train in a live environment
due to safety issues and complexity levels. These
issues are compounded in live MOUT training where
the primary weapon is “the inherent complexity of an
urban area” (Slear, 2004) and the nature of the
mission depends on the opposing force that is
intimately familiar with that urban area. These issues
lead to the following questions: How many combat
towns can you build in order to meet the ever-
increasing need for MOUT training? What is the best
method to replicate opposing forces (OPFOR)? What
is the training value for role-players?

The modeling and simulation community has
responded to these issues (Lyons, Schmorrow, Cohn,
& Lackey, 2002) by providing virtual tools such as
Synthetic Natural Environments (SNE) to simulate the

real world, platform simulators to replace vehicles,
and a variety of technologies to simulate the behavior
of Individual Combatants (IC) including Semi-
Automated Forces (SAFs) and Computer Generated
Forces (CGFs). Traditional research has focused on
SNEs and platform simulators. However, recent
technological developments provide a greater
opportunity to address the level of realism exhibited by
simulated ICs.

Virtual Technologies and Environments (VIRTE) is
an advanced research and development initiative
sponsored by the Office of Naval Research focusing on
virtual technologies for MOUT training. Of particular
interest to the U.S. Navy and Marine Corps is the
ability to accurately model weapon firing behaviors of
OPFOR entities. In order for effective virtual MOUT
training to occur, accurate weapon modeling issues
must be addressed. The development of weapon firing
behaviors is crucial to advancing the science of
simulated training and to address the needs of our
warfighters in the evolving global combat
environment.

REQUIREMENTS FOR MOUT OPFOR IC
WEAPON BEHAVIORS

MOUT training requirements and learning objectives
dictate in what types of situations automated OPFOR
ICs must realistically behave, what types of actions
they should be able to perform, and to what types of
stimuli they should react. For example, building
clearing procedures are the most crucial of the MOUT
activities that should be trained, especially clearing
individual rooms. Therefore, automated OPFOR ICs
must behave realistically when defending the inside of
a building and specifically inside a room to be cleared.
US soldier trainees clearing a room may breech a wall
or a door; may use a stun, compression or
fragmentation hand grenade; might talk or make other
noises outside the room; and of course, will enter the
room and engage enemy found in this room.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2004

2004 Paper No. 1774 Page 3 of 10

Therefore, the automated OPFOR ICs must react
realistically to each of these stimuli. How they react
will depend on their training, experience, motivation,
and other factors. Reacting realistically implies that
they have a number of actions available to them. In
addition to firing on the trainees bursting into the
room (with varying styles and degrees of accuracy),
the automated OPFOR ICs may seek cover (especially
from a grenade or in anticipation of attack), reload,
surrender, move forward to ambush from a hidden
corner, and possibly drop the magazine during
reloading (especially if nervous and inexperienced).
Many of these actions support explicit learning
objectives. In fact, the automated OPFOR fire
reinforces the movement patterns of the soldiers as
they enter the room, it ensures that they maintain their
sectors of fire, and emphasizes that they engage the
enemy quickly and accurately. The OPFOR
ambushing actions reinforce the soldier's requirements
to maintain security on obscured portions of the room.
An explicit learning objective is to make sure when
soldiers employ grenades that they are thrown into the
room hard enough that they bounce around so that
they cannot be easily grabbed and tossed back. This
implies that at least some of the automated OPFOR
should be capable of grabbing and tossing back a
poorly thrown grenade.

Realistic weapon firing behavior also involves many
other aspects. The weapon handling behavior must be
able to realistically choose a weapon (when more than
one is available). Then, making sure it is ready, it
must choose a firing mode (i.e. burst, single shot) and
posture (i.e. prone, standing, etc.), change the
movement state if necessary (i.e. stop or slow down),
select a target when more than one exists, turn to face
the target with realistic speed, possibly coordinate fire
with other team members, aim with realistic accuracy,
select an aim point, decide on number of shots (i.e.
one or two), fire the weapon, assess the results, and
possibly re-engage.

In addition to behaving realistically inside the room
being, or about to be cleared, automated OPFORs must
also behave realistically in hallways, at different types
of hallway intersections, at stairwells, and in large
indoor open areas, such as in warehouses. This
realism includes both defending and ambushing
behavior. A complete automated OPFOR would also
behave appropriately outdoors either offensively or
defensively.

USE OF BTNS FOR BEHAVIOR MODELING

The architecture for authoring weapon firing behaviors
and executing them in a simulation is based on the
SimBionic toolkit. This toolkit utilizes the concept of
behavior transition networks (BTNs), which are
generalizations of finite state machines (FSMs). It
was originally developed to provide intelligent
simulation behavior inside military training
simulations and commercial games. BTNs have
current states and transitions like finite state
machines, but also hierarchically decompose. They can
have variables, communicate to each other through a
blackboard, and can execute arbitrary perceptual or
action-oriented code. A BTN state is called a "node"
and consists of either an action or a sub-behavior. A
large number of these can run in parallel. When used
in conjunction with a simulation, the BTNs interface
via a sophisticated native runtime engine that has been
successfully demonstrated with a variety of real-time
simulations.

In the authoring environment, behaviors are
constructed by "drawing" them as flow-chart
diagrams. Specifically, actions are represented as
rectangles, sub-behaviors as boldfaced rectangles,
conditions as ovals, and connectors (transitions) as
arrows. Unlimited variable assignments, complex
expressions, and explanatory comments can be added
to any of these elements. Figure 1 shows a sample
BTN containing actions, conditions, and connections.
This is an actual behavior from the set of tactical
behaviors developed for the initial prototype. This
includes calls to control actions and sense events in the
simulation environment.

Figure 1 also shows the Nervous EngageEnemy
behavior. Notice the tabs at the bottom of the main
construction panel: another EngageEnemy() behavior
exists for Calm combatants. In this example, the sub-
behavior DetermineAccuracy() binds the variable
accuracyVaration, which is the amount to perturb the
OPFOR's aim, which is passed to the action
TurnToTarget(). The TurnToTarget() action is a direct
command sent from this behavior to the simulation
entity during execution. In a condition in this
transition is the RemainingAmmoInClip() predicate,
which gets the information from the simulation. If the
RemainingAmmoInClip() is 0, then the left-most
transition cannot be followed and the ClipEmpty() sub-
behavior will be executed. The ClipEmpty() behavior
is defined elsewhere in the same tactical module, and
as such, it appears as a darker rectangle (and appears
on the behavior menu on the left side of the screen)

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2004

2004 Paper No. 1774 Page 4 of 10

and can be called from any behavior in this module.
In the run-time engine, each Artificially Intelligent
(AI) directed entity associates with one or more
behaviors that dictate how it will act in the simulation
environment. Behaviors are represented as hierarchies
of BTNs, which consist of two types of elements,
nodes and transitions. A node in a BTN represents an
action that the entity may possibly perform at some
point during the simulation. Two nodes in a BTN are
of special significance. The current node of a BTN
denotes the action currently being carried out by the
associated entity. A given BTN may have exactly one
current node at a time. Note that the actions
represented by a node may be concrete and/or
primitive – such as, FireWeapon() or DoNothing(3
seconds). Or, they may be more abstract and complex
– for example, FindNearestEnemy(). An action may
also represent a deliberative or perceptual activity that
has no direct physical effect on the simulation
environment. Primitive actions tend to directly
interact with the simulation engine through API calls,
while complex actions are generally carried out by
sub-BTNs or specialized behavioral modules.

As stated above, BTNs may be hierarchical. Any node
in a BTN may link to another arbitrary BTN or set of
BTNs. When a node with such links becomes current,
execution passes to one of the linked BTNs, which
begins at its initial node. By using a hierarchical
structure, it is easier to abstract or adapt individual
lower level tactical or decision-making components to
fit a given simulation without major re-programming
requirements. We are constructing a hierarchical
breakdown of the subtasks associated with target
acquisition and firing execution so that high level
tasks and decisions can be expressed in terms of
abstractions of lower level tasks and decisions. This
provides a basis for implementation and also allows
for a modular development process where lower level
behavior elements may be elaborated or simplified in
accordance with iterative development conclusions
regarding their effective level of realism. These levels
of abstraction also make the model easier to
understand. In the current prototype there are dozens
of behaviors, some of which are 5 to 6 layers deep.

Figure 1. SimBionic Behavior Authoring Environment

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2004

2004 Paper No. 1774 Page 5 of 10

 A transition in a BTN is a directed arc connecting two
nodes X and Y (feedback loop) and indicating a
potential direction of control flow. A decision process,
typically a set of logical conditions, but possibly
something more sophisticated, is associated with each
transition. A transition is said to be active if its
decision process returns a “true” result. An active
transition indicates that the BTN may change its
current node from node X to node Y depending on
what other transitions from node X are active and their
relative priorities.

USE OF POLYMORPHISM

The power of the hierarchical description is further
increased by the use of polymorphism where the same
behavior name can refer to different BTNs based on
the value of an entity’s descriptors. The user can
create descriptors and descriptor categories that
describe different facets or attributes of each entity’s
current state. For example, the prototype has a
descriptor category called Calmness that contains
descriptors called Nervous and Calm. These describe
an aspect of the current emotional state of each
simulated IC. Descriptors are also hierarchical so that
lower level descriptors can be created to describe the
entity in more specific terms than higher level
descriptors. Using descriptor categories, the user can
create polymorphisms which are variations on a
behavior that are associated with particular
combinations of descriptors. Then, during runtime,
SimBionic selects and executes the polymorphic
version of a behavior associated with the lowest level
descriptor that matches each entity. For example, if the
Calmness factor of a simulated soldier is Nervous,
SimBionic will look for behaviors associated with
Nervous soldiers. If there are no behaviors defined for
Nervous soldiers, SimBionic will select and run the
default behavior defined for all soldiers.
Polymorphism allows one to extend existing behavior
sets for new types of entities by specializing only the
parts of the behavior “chains” that differ from one type
of entity to another. In this way, the common parts of
behaviors can be reused varying just the parts that
change. This capability makes it easier to create rich
sets of entities that behave differently depending on
their individual characteristics.

POPULATION MODELING AND
PROBABILISTIC DECISIONS AND ACTIONS

In the SimBionic environment, each enemy combatant
has a set of attributes that dictate its gross behavior.
Numerical ratings of Boldness, Calmness, Experience,
Adaptability, Motivation, Hearing, and Accuracy are
calculated based on a statistical model of a
combatant’s source population (e.g. US Marine, Iraqi
insurgent, etc.). This model, separately defined for
each population type, consists of a set of means and
standard deviations for each of the listed parameters
and is saved in a standard text file for ease of editing.
During combatant instantiation, the values associated
with each attribute are used to define a roughly normal
distribution (also called Gaussian or bell-shaped) from
which a rating is chosen at random. This gives the
IC's natural variation while still being representative
of different populations. Some of the attributes, such
as the IC's nervousness or hearing (which may be
damaged), may change during the course of a scenario
while others are considered more permanent, such as
Adaptability or Experience level. For repeatability in
training scenarios, calculated ratings can be saved to a
file and reloaded or edited at will. Instructors can also
define the number and population type of enemy
combatants to be instantiated in a given training
scenario by editing another simple text file.
Additionally, a specific IC's weapon related decisions
and actions are probabilistic so that even a specific IC
behaves differently from itself in the same and similar
circumstances in reasonable and expected ways. Each
of the behaviors is dependent in large part on the
attributes of a particular combatant but is also mildly
randomized to more accurately represent the dynamic
nature of real-time decision-making. Similarly, firing
behavior is dependent on attribute values but with a
degree of randomness to avoid predictable results.
Actual shot location is perturbed (relative to a perfect
aim) slightly by the value of these attributes as well as
by the speed of any required turn during aiming. If a
combatant is surprised, for example, and spins around
to face his target, his ultimate shot location will be
affected by both his inherent quick aimed accuracy and
by the speed of his turn--faster turns will lead to a
greater degree of error in aiming. Should he need to
reload, a low Calmness value could cause him to
probabilistically drop his weapon.

MOUT IC BEHAVIOR MODEL EXAMPLES

The first example of a behavior was previously shown
in Figure 1. This is the EngageEnemy behavior for a
nervous OPFOR inside a room. (Note that the final
node is to spray fire, fast, for two seconds in a wide

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2004

2004 Paper No. 1774 Page 6 of 10

arc, as is often the case for a nervous OPFOR.) The
first step is to eliminate any future attack this OPFOR
had planned. A planned attack might have been the
result of hearing noises outside the room. This plan
was preempted by seeing actual enemy entering the
room in order for this behavior to be active. Typically,
the first sub-behavior executed within this BTN is the
AcquisitionDelay() (since the target is initially alive
and the OPFOR generally has ammo) which is a one
to two second time period depending on experience

and mental state. Then, a determination as to the
accuracy is made somewhat randomly, but also based
on the OPFOR's accuracy, experience, and
nervousness parameters. This nervous OPFOR then
turns quickly to its target, levels its weapon and sprays
fire in the general direction of the target for two
seconds. It then reassesses the condition of its target
and reloads, if necessary, by calling the ClipEmpty()
sub-behavior. Note that it will skip the
AcquisitionDelay() when re-engaging the same target.

Figure 2. The Calm EngageEnemy Behavior

Figure 2 shows the EngageEnemy() behavior for a
calm OPFOR which contrasts with the same behavior
for a nervous OPFOR. This is an example of
polymorphism. A higher level behavior calls an
EngageEnemy() behavior whenever an enemy becomes
visible to the OPFOR without reference to its

calmness. In fact, calmness is set to an initial value
based on the type of person the OPFOR is but changes
dynamically during the course of the scenario as
events occur. When the enemy becomes visible to this
OPFOR, the SimBionic runtime dynamically selects
the correct EngageEnemy() behavior based on the

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2004

2004 Paper No. 1774 Page 7 of 10

value of the OPFOR's Calmness. Note that this BTN
makes use of some of the same predicates, actions and
sub-behaviors as the BTN in Figure 1. This shows
some of the power of hierarchically defining BTNs so
that they can be reused. The first half of this BTN is
the same as in Figure 1; but the calm OPFOR takes the
extra time to aim at its target, complete the aiming
process, then fire one or two shots depending on its
level of experience before reassessing the target. This
example also shows how OPFOR parameters (such as
Experience) can be used to vary a behavior without
using polymorphism.

Figure 3. The ClipEmpty Behavior

The ClipEmpty() behavior (see Figure 3) is executed
when the simulated combatant has run out of
ammunition in the clip. This behavior variation, for a
timid combatant, leads him to run to a cover position,
if one exists, crouch, then reload. A braver combatant
might reload on the spot instead.

The Surrender() behavior (see Figure 4) is called from
multiple BTNs whenever the particular BTN
determines it is appropriate to surrender. For example
it is executed from ClipEmpty() BTN, (Fig 4), in the
event that no ammunition remained in the combatant’s
reserve. The combatant drops his weapon, raises his
arms and waits. This is a good example of how a low
level behavior may be very simulation specific. In this
case, CounterStrike requires two separate drop weapon
calls. Several high level behaviors use the Surrender()
BTN such that if the underlying simulation was
changed, those high level behaviors could be re-used,

as-is, in the new simulation and only the Surrender()
behavior would need to be changed.

PROTOTYPE DESCRIPTION

Our prototype utilizes the commercially available
CounterStrike FPS (First Person Shooter) as its
simulation engine, which provides the fundamental
physics model and graphical representation of the
game world. Software hooks, to the AI middleware
product, SimBionic, drive enemy combatants within

Figure 4. The Surrender Behavior

CounterStrike. SimBionic is a high level development
environment that abstracts the fundamental predicates
and actions of simulated entities from their
implementations in the simulator. Transition to
different simulation environments therefore involves
only the reimplementation of these fundamental
predicates and actions; the behaviors themselves
remain intact and will function without alteration
(dependent upon differences in simulator features).

In the simulated environment, we have equipped the
enemy combatants with accurate sensing apparatuses
through which to perceive their surroundings; these

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2004

2004 Paper No. 1774 Page 8 of 10

sensory abilities are made instantly and are directly
accessible to the SimBionic environment. Combatant
field of view, parametrically variable, we defined to be
90 degrees to the left or right of the current eye
direction. They are able to hear and distinguish
among the sounds of enemy gunfire, voices, grenade
and breaching explosions, doors opening, and
footsteps on hard surfaces. The location of loud
sounds can be accurately determined if in an adjacent
room, but softer sounds and those occurring at a
greater distance provide only general location
information. In the event of injury, the direction of
attack is known. Deafness can be induced by close
proximity to a detonating grenade. Grenades,
depending on type and distance, can stun them. In
general, the simulated combatants’ sensory abilities
are a good approximation to those of real-life
humans’- though they are defined separately and
polled sequentially, the net behavioral result is a
combatant with simultaneous access to all of his
senses.

Behaviorally, simulated combatants are capable of
both immediate reactions to stimuli and longer-term
planning, both of which are effected by the values of
their attributes. Upon hearing the sound of footsteps
on tile floor in an adjacent room, an experienced
combatant (Experience attribute above a certain
threshold) will turn towards the sound and might
spray fire through the wall; an inexperienced
combatant wouldn’t realize they could fire through
walls, and would instead focus their attention on the
door to their room, preparing for an attack. If an
experienced combatant heard the voice of an enemy
outside the door of the room they were hiding in,
instead of immediately firing through the door, they
concentrate on it, ready to fire, but after a few seconds
try spraying fire at the wall adjacent to the door in an
attempt to hit Marines in a stacking position. When
suddenly confronted by an enemy, a nervous
(Calmness attribute below a certain threshold)
combatant wildly sprays fire in the general direction of
the enemy, while a calmer combatant would take the
few extra tenths of a second to aim properly and fire a
more accurate burst. Upon seeing a grenade tossed
into a room with minimal bounce (a stand-in for a
softly tossed grenade, as CounterStrike does not allow
players to change throw velocities), a timid combatant
(Boldness below a certain threshold) runs to a cover
position to avoid the blast, while a bold combatant
would run towards it in an attempt to throw it back. If
an experienced combatant hears two grenade
detonations, one following the other after some brief
interval, he is very likely to preemptively retreat to a

cover position in anticipation of further grenade
attacks. If a nervous combatant hears many different
engagements (defined as shots fired, grenade
detonations, etc.) over a period of time, he becomes
afraid, drops his weapon, and will immediately
surrender to a visible enemy. Each of these behaviors
is dependent in large part on the attributes of a
particular combatant, but is also mildly randomized to
more accurately represent the dynamic nature of real-
time decision-making.

Each combatant has three accuracy attributes. The first
is moving aimed accuracy, which comes into play
when the target is positioned such that the combatant
must turn more than fifteen degrees to face it. The
second attribute is still aimed accuracy, used when the
target requires less than a fifteen degree change in
body angle. The final attribute is quick aimed
accuracy, used when the combatant is surprised and
needs to make a hasty aim.

If he runs out of ammunition, he will immediately
surrender. There is also an inherent acquisition delay
for all combatants when they first see an enemy, the
length of which is dependent upon their experience
and calmness.

Prototype Demonstration Sequence

As the demo begins, the human player (hereafter
referred to as "the player") makes his way quickly
across the tiled lobby of the office. An IC, waiting
with attention focused on his room's only doorway,
hears the player's footsteps as he approaches; having a
relatively high level of experience, he knows the
penetration capabilities of his AK-47, and decides to
preempt an attack by spraying fire through the wall at
the rough location of the sound. Once the smoke has
cleared, he waits a few seconds for any audible sounds
of life on the other side of the wall before refocusing
his attention on the room's door. As the player
(walking slowly now to avoid giving his position away
a second time) bursts through the door, the IC, weapon
already trained on that location, is able to place quick
and accurate fire on his opponent, pausing between
shots to reassess whether the player has yet been
killed.

The player, still on the tiled part of the lobby floor,
approaches the second room more slowly. Once he
has positioned himself in an appropriate stacking
location near the door, he radios to his team that he is
in position to clear the room. The IC waiting inside
hears his voice through the door, and prepares for an

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2004

2004 Paper No. 1774 Page 9 of 10

entering attacker by training his weapon on it. After a
few seconds pass uneventfully, however, the well-
experienced IC hypothesizes that his attackers are
probably stacking outside the room; as such, he turns
his attention away from the door and sprays fire
through the wall at where he assumes the most likely
stacking location would be. The player, having
avoided this onslaught, tosses a flash bang grenade
into the room. Noticing the relatively predictable
angle at which the grenade approaches the wall (a
stand-in for a softly tossed grenade), and being
particularly bold, the IC runs at the grenade in hopes
of catching it and throwing it back. He is too slow,
however, and is incapacitated (though not mortally
wounded) when it detonates.

As the player enters the room, he engages the IC
inside. The IC, though unable to see the player
through the overturned table, senses the direction of
fire he is taking when he is injured, and sprays fire
back through the table at the player. The player
bounces a frag grenade at the IC, who, based on the
difficult angle of bounce off the second wall, tries to
run for cover before it detonates. Though not killed by
the blast, he is severely injured and stunned.

The fourth room the player enters contains two ICs:
the one directly opposite the door has extremely poor
accuracy, and is largely unable to hit the player; the
one in the corner is quite nervous, and elects to spray
fire in the general direction of the visible player
despite having a clear line of sight.

The fifth room is convex in design, and contains an IC
hiding out of line of sight of the door. As the player
enters, the IC hears the squeak of the door hinges, and
tries to creep up behind the player as he pies off the
room.

Once he has eliminated the IC, the player loads his
magazine with a breach round and blows through the
wall into the office stairwell. Hearing this loud
explosion, and understanding it to be a breach, the IC
in the adjacent convex room quickly moves away from
his hiding spot in fear of being hit by a similar breach
into his room.

BEHAVIOR MODELING METHODOLOGY

Over the course of the project we utilized a process for
modeling the weapon related behaviors which appears
appropriate for modeling most types of OPFOR

behaviors to support simulation training. There are 9
steps:

1. Training Requirements Investigation

What kinds of things should the IC do from a
training perspective?
How do the learning/training objectives impact
the IC’s behaviors?
What types of situations, types of actions, and
stimuli/reactions are required of the IC?

2. Knowledge Engineering

What kinds of OPFOR are there?
What are their behaviors and decision-processes?
What are the variations in OPFOR behavior and
why?

Are there variations between different types
of OPFORs? Are there variations within a
population (type of OPFOR)?

Create Scenarios. Define range of scenarios.
Define associated behaviors.

3. Design Behaviors
Draw BTNs, with different states reflecting either
different mental states (e.g. ready, surprised, alert,
concentrating, etc.) or actions.
Actions may be probabilistic (e.g. shooting
accuracy) and links may be probabilistic (e.g. the
decision to grab the grenade or seek cover).
BTNs are polymorphic and parameterized.

4. Design parameters for the behaviors based on what's

needed by the behaviors and what is different
between different ICs or the same IC at different
times.

5. Determine population definitions in terms of

parameter ranges (means and standard deviations).

6. Instantiate ICs from relevant populations for each

scenario.

7. Assign appropriate locations and behaviors to the

ICs (i.e. give them orders).

8. Test, Evaluate, and Validate

Collect accuracy and other statistics and compare
to the population definitions.
Observe OPFOR actions in different
circumstances for qualitative evaluation of
realism.

9. Improve behaviors and population definitions based

on tests and feedback and iterate.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2004

2004 Paper No. 1774 Page 10 of 10

LESSONS LEARNED

There were several lessons learned from this effort.
The first is that BTNs worked well for modeling
realistic OPFOR weapon behaviors. The use of a
graphical tool for editing the BTNs was essential,
since it allowed new behaviors to be created in minutes
and existing ones to be modified in seconds.
Parameterizing the behaviors also facilitated the
behavior improvement process, since an observation
that some action occurred too slowly or quickly, are
not large enough and could be corrected by changing a
parameter. The use of probabilistic methods was
important to achieve realistic levels of variation in the
OPFOR behavior. Having a system capable of
hierarchical representations was important to keep the
complexity at a manageable level and the
understandability high. Even seemingly simple
behaviors are very hierarchical - often 5 to 6 levels
deep. Because of this depth, use of different levels of
abstraction was important. Polymorphism was also an
important tool especially to create variants of the
behavior for the different types of OPFOR. It was very
useful to initially create one version of the behavior,
then create alternative specializations of the behavior
for different types of OPFOR. Each of the above
contributed to being able to quickly create a working
version of the behaviors then vary incrementally
increasing their realism and complexity.

FUTURE WORK

There are four main thrusts to our future efforts
directed toward realistic automated OPFOR weapon
behaviors. The main one is to refine and further
increase the realism, complexity, available actions,
breadth and depth of, and implement behavioral
models for weapon firing tactics, techniques and
procedures for a variety of MOUT situations. OPFOR
weapon firing behaviors will be developed with close
adherence to military doctrine, enemy intelligence,
and thorough elicitation from and evaluation by
subject matter experts. A hierarchical breakdown of
the subtasks associated with target acquisition and
firing execution in a variety of MOUT contexts will be
refined, detailed, and implemented, so that high level
tasks and decisions can be expressed in terms of
abstractions of lower level tasks and decisions. This
provides a basis for implementation, and also allows
for a modular development process, where lower level
behavior elements may be elaborated or simplified in

accordance with iterative development conclusions
regarding their effective level of realism.

The second thrust is to integrate the improved OPFOR
behaviors with VIRTE. This integration is currently
planned through integration with OOS, the OneSAF
Objective System, to which VIRTE will transition.
This would also make the realistic OPFOR behaviors
developed accessible to other simulations using OOS.

A third thrust is the development of tools to support
the Behavior Modeling Methodology. The modeling
process includes requirements gathering, knowledge
elicitation, behavior design, parameter identification,
population construction, simulated IC instantiation,
behavior assignment, testing, validation, and
evaluation. Tools will be developed to support each of
these steps. The validation step is especially important
on the implemented weapon firing behaviors to
determine that there is an adequate level of realism.
Validation metrics which include both statistical
comparison and observation should be used to test
simulated entities in an array of explicitly defined
conditions for which a specification was developed
outlining the acceptable OPFOR actions given each
condition or set of conditions.

The fourth thrust is to expand the breadth of contexts
in which the automated OPFORs can function. The
current implementation addressed the highest priority
OPFOR behavior - realistic weapon firing and related
behaviors within rooms being cleared. The next
priority would fill out the defensive situations within a
building--hallways, hall way intersections, and
stairwells, including both defending and ambushing
behaviors. The next highest priority context is
defending against an enemy (US soldiers) attacking
from the outside. Additional behaviors would include
defending a building, proper position/cover selection,
defending and ambushing at road intersections, firing
around corners and from behind walls, and scanning
behavior. The third priority context is the OPFOR
engaged in offensive MOUT operations, primarily
from outside the buildings that the trainees are
defending. Behaviors include tactical movement down
roads, crossing intersections, entering defended
buildings, reconnaissance and surveillance, and the
use of fire to destroy or disrupt the defense. The last
priority context for the OPFOR are offensive
operations within buildings, since training U.S.
soldiers to defend a portion of a building from attack
from within it, is a low priority.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2004

2004 Paper No. 1774 Page 11 of 10

RELATED WORK

There is a considerable history of work in the
development of behavior sets for complementary focus
areas other than weapon firing. (Wray et al, 2002)
describe an approach and architecture for defining
simulated ICs that can navigate and engage in combat
in MOUT environments, using the Unreal Tournament
game engine as a simulation platform. This approach
is based on the Soar cognitive architecture, which not
only models IC decisions and actions, but also
cognitive states and artifacts such as goals and
memory. Here, the emphasis on realism is achieved
with attempts to actually model human reactions and
deliberative abilities given the parameters of a
simulated environment. (Reece et al, 2000) present a
set of path planning algorithms for MOUT
environments, which consider factors like threat
avoidance and opportunities for concealment.
(McDonald et al, 2001) developed CGF behaviors that
also incorporate issues associated with different rules
of engagement into the tactical decision-making rules.
(Henninger and Taylor, 2002) and (Middleton et al,
1997) prepared studies which focus on weapon firing
and suppression tactics and techniques.

The notion of using a visual environment to specify
behaviors for simulated autonomous entities has a
number of precedents in academia and in industry.
(MacKenzie et al, 1997) describe the MISSIONLAB
system that allows an author to specify the behavior of
multiple robots. The author does this visually using
similar hierarchical state and transition links.
KHOROS (www.khoral.com) is a popular visual editor
for image processing that allows users to string
together operators into a flow diagram. Each operator
comes from a standard library, or is defined by the
user using standard C code. In industry, there are few
visual editors for games. Perhaps most notable is the
Motivate package from the Motion Factory
(www.motion-factory.com). Its use is limited to
development companies and is not freely available for
research use. Also, visualization toolkits have been
developed for the interpretation of behaviors defined
with the Soar architecture described above.

REFERENCES

Henninger, A., and Taylor, G. (2002). Development of

Individual Weapons Firing Algorithm for Air Force

Security Forces Distributed Mission Training.
Unpublished manuscript.

Lyons, D. M., Schmorrow, D., Cohn, J. C., & Lackey,

S. J., (2002). Scenario Based Training with Virtual
Technologies and Environments. Proceedings of
the Image 2002 Conference, Scottsdale, AZ.

MacKenzie, D., Arkin, R.C., and Cameron, J., (1997).

Multiagent Mission Specification and Execution.
Autonomous Robots, 4(1):29-57.

McDonald, B., Weeks, H., and Hughes, J. (2001).

Development of Computer Generated Forces for Air
Force Security Forces Distributed Mission Training.
In Proceedings of I/ITSEC 2001. Orlando, FL.

MCWP 3-35.3, Military Operations on Urbanized

Terrain (MOUT), US Marine Corps.

Middleton, V., D’Enrico, J., and Christenson, W.

(1997). Simulation of Suppression for the
Dismounted Combatant. In Proceedings of 5th
Conference in Computer Generated Forces and
Behavior Representation. Orlando, FL, March
1997.

Miles, J.J., (2003). Maximizing MOUT Training.

Marine Corps Gazette. Retrieved May 26, 2004,
from http://www.mca-
marines.org/Gazette/2003/03Miles.html

Reece, D.A., Kraus, M.K., et al (2000). Tactical

Movement Planning for Individual Combatants,
Orlando, FL. Simulation Interoperability Standards
Organization.

Reece, D.A., Kraus, (2003). VIRTE Demo II Final

CGF Systems Analysis", SAIC, Orlando, FL.

Schwierz, K.P., Krenz, F., & Lipke, L., (2003). The

IRIS Model. MS&T: The International Defence
Training Journal, 5, 13-16.

Slear, T., (2004). Bringing Out the Worst in Armies.

MS&T: The International Defence Training
Journal, 1, 8-13.

Wray, R.E., and Laird, J.E. (2002). Intelligent

Opponents for Virtual Reality Trainers. In
Proceedings of I/ITSEC 2002. Orlando, FL.

