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ABSTRACT 
 
This paper describes techniques to augment the behavioral models of automated Opposing Forces (OPFOR) 
Individual Combatants (ICs) with a realistic, practical set of weapon firing behaviors for virtual Military 
Operations in Urban Terrain (MOUT) training environments.  These behaviors represent a formalization of target 
acquisition and firing execution tactics and techniques based on doctrine, input from subject matter experts, and 
observations from the field.  The formalisms are based on Behavior Transition Networks (BTNs), an extension of 
Finite State Machines (FSMs).  A COTS toolkit allows for rapid visual behavior specification, testing and 
modification, easy simulation integration, and flexible architectures.  The behaviors are designed hierarchically so 
that the actions and goals of a human combatant can be modeled at various levels of detail.  Polymorphism is used 
heavily to alter the behaviors based on the type and current state of the IC at all levels of the model.  For example, 
an IC just exposed to a stun grenade behaves very differently from one who has not been so exposed.  A motivated, 
well-trained, elite OPFOR IC behaves very differently from a conscript.  Uncertainty is incorporated both in the 
initial selection of attributes (boldness, speed, aiming accuracy, etc.) of the ICs to give their behaviors natural 
variation and in runtime execution of decision making to keep even a single IC from being too predictable.  This 
paper also describes the behavior modeling process itself from knowledge engineering to formalization and 
implementation through validation.  The initial prototype is described in which IC behaviors are implemented and 
interfaced to a real-time IC simulation.    
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PROBLEM DESCRIPTION 
 
The need to address skills required for the Military 
Operations in Urban Terrain (MOUT) environment 
results from the dramatic shift in military tactics since 
the end of the Cold War.  American military forces 
justifiably avoid combat in cities if at all possible, but 
the nature of combat has changed requiring combat 
forces to enter urban environments as a matter of 
course.  This trend shows little sign of decreasing 
(Miles, 2003) since centers of power are located in 
cities and a projected 70 percent of the world 
population will occupy urban environments in the near 
future (Schwierz, Krenz, & Lipke, 2003).  Although 
Desert Storm demonstrated the ability of U.S. forces to 
gather battlefield intelligence and target enemy forces 
at extended ranges, the events in Mogadishu, Somalia, 
two years later demonstrated the challenges of fighting 
in the post-Cold War era and revealed the clear need 
for improved tactics and training (Slear, 2004). 
 
A crucial component of MOUT training is live 
training – combat towns.  Live training itself presents 
challenges to the military including: (1) cost of 
production and maintenance and (2) availability of 
materials, facilities, and personnel.  Unfortunately, 
some skills are difficult to train in a live environment 
due to safety issues and complexity levels.  These 
issues are compounded in live MOUT training where 
the primary weapon is “the inherent complexity of an 
urban area” (Slear, 2004) and the nature of the 
mission depends on the opposing force that is 
intimately familiar with that urban area.  These issues 
lead to the following questions:  How many combat 
towns can you build in order to meet the ever-
increasing need for MOUT training?  What is the best 
method to replicate opposing forces (OPFOR)?  What 
is the training value for role-players?   
 
The modeling and simulation community has 
responded to these issues (Lyons, Schmorrow, Cohn, 
& Lackey, 2002) by providing virtual tools such as 
Synthetic Natural Environments (SNE) to simulate the 

real world, platform simulators to replace vehicles, 
and a variety of technologies to simulate the behavior 
of Individual Combatants (IC) including Semi-
Automated Forces (SAFs) and Computer Generated 
Forces (CGFs).  Traditional research has focused on 
SNEs and platform simulators.  However, recent 
technological developments provide a greater 
opportunity to address the level of realism exhibited by 
simulated ICs.   
 
Virtual Technologies and Environments (VIRTE) is 
an advanced research and development initiative 
sponsored by the Office of Naval Research focusing on 
virtual technologies for MOUT training.  Of particular 
interest to the U.S. Navy and Marine Corps is the 
ability to accurately model weapon firing behaviors of 
OPFOR entities.   In order for effective virtual MOUT 
training to occur, accurate weapon modeling issues 
must be addressed.  The development of weapon firing 
behaviors is crucial to advancing the science of 
simulated training and to address the needs of our 
warfighters in the evolving global combat 
environment.  
 
 

REQUIREMENTS FOR MOUT OPFOR IC 
WEAPON BEHAVIORS 

 
MOUT training requirements and learning objectives 
dictate in what types of situations automated OPFOR 
ICs must realistically behave, what types of actions 
they should be able to perform, and to what types of 
stimuli they should react.  For example, building 
clearing procedures are the most crucial of the MOUT 
activities that should be trained, especially clearing 
individual rooms.  Therefore, automated OPFOR ICs 
must behave realistically when defending the inside of 
a building and specifically inside a room to be cleared.  
US soldier trainees clearing a room may breech a wall 
or a door; may use a stun, compression or 
fragmentation hand grenade; might talk or make other 
noises outside the room; and of course, will enter the 
room and engage enemy found in this room.  
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Therefore, the automated OPFOR ICs must react 
realistically to each of these stimuli.  How they react 
will depend on their training, experience, motivation, 
and other factors.   Reacting realistically implies that 
they have a number of actions available to them.  In 
addition to firing on the trainees bursting into the 
room (with varying styles and degrees of accuracy), 
the automated OPFOR ICs may seek cover (especially 
from a grenade or in anticipation of attack), reload, 
surrender, move forward to ambush from a hidden 
corner, and possibly drop the magazine during 
reloading (especially if nervous and inexperienced).  
Many of these actions support explicit learning 
objectives.  In fact, the automated OPFOR fire 
reinforces the movement patterns of the soldiers as 
they enter the room, it ensures that they maintain their 
sectors of fire, and emphasizes that they engage the 
enemy quickly and accurately.  The OPFOR 
ambushing actions reinforce the soldier's requirements 
to maintain security on obscured portions of the room.  
An explicit learning objective is to make sure when 
soldiers employ grenades that they are thrown into the 
room hard enough that they bounce around so that 
they cannot be easily grabbed and tossed back.  This 
implies that at least some of the automated OPFOR 
should be capable of grabbing and tossing back a 
poorly thrown grenade. 
 
Realistic weapon firing behavior also involves many 
other aspects.  The weapon handling behavior must be 
able to realistically choose a weapon (when more than 
one is available). Then, making sure it is ready, it 
must choose a firing mode (i.e. burst, single shot) and 
posture (i.e. prone, standing, etc.), change the 
movement state if necessary (i.e. stop or slow down), 
select a target when more than one exists, turn to face 
the target with realistic speed, possibly coordinate fire 
with other team members, aim with realistic accuracy, 
select an aim point, decide on number of shots (i.e. 
one or two), fire the weapon, assess the results, and 
possibly re-engage. 
 
In addition to behaving realistically inside the room 
being, or about to be cleared, automated OPFORs must 
also behave realistically in hallways, at different types 
of hallway intersections, at stairwells, and in large 
indoor open areas, such as in warehouses.  This 
realism includes both defending and ambushing 
behavior.  A complete automated OPFOR would also 
behave appropriately outdoors either offensively or 
defensively. 
 
 

USE OF BTNS FOR BEHAVIOR MODELING 
 
The architecture for authoring weapon firing behaviors 
and executing them in a simulation is based on the 
SimBionic toolkit.  This toolkit utilizes the concept of 
behavior transition networks (BTNs), which are 
generalizations of finite state machines (FSMs).  It 
was originally developed to provide intelligent 
simulation behavior inside military training 
simulations and commercial games.  BTNs have 
current states and transitions like finite state 
machines, but also hierarchically decompose. They can 
have variables, communicate to each other through a 
blackboard, and can execute arbitrary perceptual or 
action-oriented code.  A BTN state is called a "node" 
and consists of either an action or a sub-behavior.  A 
large number of these can run in parallel.  When used 
in conjunction with a simulation, the BTNs interface 
via a sophisticated native runtime engine that has been 
successfully demonstrated with a variety of real-time 
simulations. 
 
In the authoring environment, behaviors are 
constructed by "drawing" them as flow-chart 
diagrams. Specifically, actions are represented as 
rectangles, sub-behaviors as boldfaced rectangles, 
conditions as ovals, and connectors (transitions) as 
arrows.  Unlimited variable assignments, complex 
expressions, and explanatory comments can be added 
to any of these elements.  Figure 1 shows a sample 
BTN containing actions, conditions, and connections.  
This is an actual behavior from the set of tactical 
behaviors developed for the initial prototype. This 
includes calls to control actions and sense events in the 
simulation environment. 
 
Figure 1 also shows the Nervous EngageEnemy 
behavior.  Notice the tabs at the bottom of the main 
construction panel: another EngageEnemy() behavior 
exists for Calm combatants.  In this example, the sub-
behavior DetermineAccuracy() binds the variable 
accuracyVaration, which is the amount to perturb the 
OPFOR's aim, which is passed to the action 
TurnToTarget().  The TurnToTarget() action is a direct 
command sent from this behavior to the simulation 
entity during execution.  In a condition in this 
transition is the RemainingAmmoInClip() predicate, 
which gets the information from the simulation.  If the 
RemainingAmmoInClip() is 0, then the left-most 
transition cannot be followed and the ClipEmpty() sub-
behavior will be executed.  The ClipEmpty() behavior 
is defined elsewhere in the same tactical module, and 
as such, it appears as a darker rectangle (and appears 
on the behavior menu on the left side of the screen) 
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and can be called from any behavior in this module.  
In the run-time engine, each Artificially Intelligent 
(AI) directed entity associates with one or more 
behaviors that dictate how it will act in the simulation 
environment.  Behaviors are represented as hierarchies 
of BTNs, which consist of two types of elements, 
nodes and transitions.  A node in a BTN represents an 
action that the entity may possibly perform at some 
point during the simulation.  Two nodes in a BTN are 
of special significance.  The current node of a BTN 
denotes the action currently being carried out by the 
associated entity. A given BTN may have exactly one 
current node at a time.  Note that the actions 
represented by a node may be concrete and/or 
primitive – such as, FireWeapon() or DoNothing(3 
seconds). Or, they may be more abstract and complex 
– for example, FindNearestEnemy().  An action may 
also represent a deliberative or perceptual activity that 
has no direct physical effect on the simulation 
environment.  Primitive actions tend to directly 
interact with the simulation engine through API calls, 
while complex actions are generally carried out by 
sub-BTNs or specialized behavioral modules. 

As stated above, BTNs may be hierarchical. Any node 
in a BTN may link to another arbitrary BTN or set of 
BTNs.  When a node with such links becomes current, 
execution passes to one of the linked BTNs, which 
begins at its initial node.  By using a hierarchical 
structure, it is easier to abstract or adapt individual 
lower level tactical or decision-making components to 
fit a given simulation without major re-programming 
requirements.  We are constructing a hierarchical 
breakdown of the subtasks associated with target 
acquisition and firing execution so that high level 
tasks and decisions can be expressed in terms of 
abstractions of lower level tasks and decisions.  This 
provides a basis for implementation and also allows 
for a modular development process where lower level 
behavior elements may be elaborated or simplified in 
accordance with iterative development conclusions 
regarding their effective level of realism.  These levels 
of abstraction also make the model easier to 
understand.  In the current prototype there are dozens 
of behaviors, some of which are 5 to 6 layers deep. 

 
 

Figure 1.  SimBionic Behavior Authoring Environment 
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 A transition in a BTN is a directed arc connecting two 
nodes X and Y (feedback loop) and indicating a 
potential direction of control flow.  A decision process,  
typically a set of logical conditions, but possibly 
something more sophisticated, is associated with each 
transition.  A transition is said to be active if its 
decision process returns a “true” result. An active 
transition indicates that the BTN may change its 
current node from node X to node Y depending on 
what other transitions from node X are active and their 
relative priorities. 
 

USE OF POLYMORPHISM 
 
The power of the hierarchical description is further 
increased by the use of polymorphism where the same 
behavior name can refer to different BTNs based on 
the value of an entity’s descriptors.  The user can 
create descriptors and descriptor categories that 
describe different facets or attributes of each entity’s 
current state. For example, the prototype has a 
descriptor category called Calmness that contains 
descriptors called Nervous and Calm. These describe 
an aspect of the current emotional state of each 
simulated IC. Descriptors are also hierarchical so that 
lower level descriptors can be created to describe the 
entity in more specific terms than higher level 
descriptors. Using descriptor categories, the user can 
create polymorphisms which are variations on a 
behavior that are associated with particular 
combinations of descriptors. Then, during runtime, 
SimBionic selects and executes the polymorphic 
version of a behavior associated with the lowest level 
descriptor that matches each entity. For example, if the 
Calmness factor of a simulated soldier is Nervous, 
SimBionic will look for behaviors associated with 
Nervous soldiers. If there are no behaviors defined for 
Nervous soldiers, SimBionic will select and run the 
default behavior defined for all soldiers.  
Polymorphism allows one to extend existing behavior 
sets for new types of entities by specializing only the 
parts of the behavior “chains” that differ from one type 
of entity to another. In this way, the common parts of 
behaviors can be reused varying just the parts that 
change. This capability makes it easier to create rich 
sets of entities that behave differently depending on 
their individual characteristics. 
 
 

POPULATION MODELING AND 
PROBABILISTIC DECISIONS AND ACTIONS 

 

In the SimBionic environment, each enemy combatant 
has a set of attributes that dictate its gross behavior.  
Numerical ratings of Boldness, Calmness, Experience, 
Adaptability, Motivation, Hearing, and Accuracy are 
calculated based on a statistical model of a 
combatant’s source population (e.g. US Marine, Iraqi 
insurgent, etc.).  This model, separately defined for 
each population type, consists of a set of means and 
standard deviations for each of the listed parameters 
and is saved in a standard text file for ease of editing.  
During combatant instantiation, the values associated 
with each attribute are used to define a roughly normal 
distribution (also called Gaussian or bell-shaped) from 
which a rating is chosen at random.  This gives the 
IC's natural variation while still being representative 
of different populations.  Some of the attributes, such 
as the IC's nervousness or hearing (which may be 
damaged), may change during the course of a scenario 
while others are considered more permanent, such as 
Adaptability or Experience level.  For repeatability in 
training scenarios, calculated ratings can be saved to a 
file and reloaded or edited at will.  Instructors can also 
define the number and population type of enemy 
combatants to be instantiated in a given training 
scenario by editing another simple text file.  
Additionally, a specific IC's weapon related decisions 
and actions are probabilistic so that even a specific IC 
behaves differently from itself in the same and similar 
circumstances in reasonable and expected ways.  Each 
of the behaviors is dependent in large part on the 
attributes of a particular combatant but is also mildly 
randomized to more accurately represent the dynamic 
nature of real-time decision-making.  Similarly, firing 
behavior is dependent on attribute values but with a 
degree of randomness to avoid predictable results.   
Actual shot location is perturbed (relative to a perfect 
aim) slightly by the value of these attributes as well as 
by the speed of any required turn during aiming.  If a 
combatant is surprised, for example, and spins around 
to face his target, his ultimate shot location will be 
affected by both his inherent quick aimed accuracy and 
by the speed of his turn--faster turns will lead to a 
greater degree of error in aiming.  Should he need to 
reload, a low Calmness value could cause him to 
probabilistically drop his weapon.  
 
 

MOUT IC BEHAVIOR  MODEL EXAMPLES 
 
The first example of a behavior was previously shown 
in Figure 1.  This is the EngageEnemy behavior for a 
nervous OPFOR inside a room.  (Note that the final 
node is to spray fire, fast, for two seconds in a wide 
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arc, as is often the case for a nervous OPFOR.)  The 
first step is to eliminate any future attack this OPFOR 
had planned.  A planned attack might have been the 
result of hearing noises outside the room.  This plan 
was preempted by seeing actual enemy entering the 
room in order for this behavior to be active.  Typically, 
the first sub-behavior executed within this BTN is the 
AcquisitionDelay() (since the target is initially alive 
and the OPFOR generally has ammo) which is a one 
to two second time period depending on experience 

and mental state.  Then, a determination as to the 
accuracy is made somewhat randomly, but also based 
on the OPFOR's accuracy, experience, and 
nervousness parameters.  This nervous OPFOR then 
turns quickly to its target, levels its weapon and sprays 
fire in the general direction of the target for two 
seconds.  It then reassesses the condition of its target 
and reloads, if necessary, by calling the ClipEmpty() 
sub-behavior.  Note that it will skip the 
AcquisitionDelay() when re-engaging the same target.  

 

 
 

Figure 2. The Calm EngageEnemy Behavior  
 

 
Figure 2 shows the EngageEnemy() behavior for a 
calm OPFOR which contrasts with the same behavior 
for a nervous OPFOR.  This is an example of 
polymorphism.  A higher level behavior calls an 
EngageEnemy() behavior whenever an enemy becomes 
visible to the OPFOR without reference to its 

calmness.  In fact, calmness is set to an initial value 
based on the type of person the OPFOR is but changes 
dynamically during the course of the scenario as 
events occur.  When the enemy becomes visible to this 
OPFOR, the SimBionic runtime dynamically selects 
the correct EngageEnemy() behavior based on the 
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value of the OPFOR's Calmness.  Note that this BTN 
makes use of some of the same predicates, actions and 
sub-behaviors as the BTN in Figure 1.  This shows 
some of the power of hierarchically defining BTNs so 
that they can be reused.  The first half of this BTN is 
the same as in Figure 1; but the calm OPFOR takes the 
extra time to aim at its target, complete the aiming 
process, then fire one or two shots depending on its 
level of experience before reassessing the target.  This 
example also shows how OPFOR parameters (such as 
Experience) can be used to vary a behavior without 
using polymorphism. 
 

 
 

Figure 3. The ClipEmpty Behavior 
 
The ClipEmpty() behavior (see Figure 3) is executed 
when the simulated combatant has run out of 
ammunition in the clip. This behavior variation, for a 
timid combatant, leads him to run to a cover position, 
if one exists, crouch, then reload.  A braver combatant 
might reload on the spot instead. 
 
The Surrender() behavior (see Figure 4) is called from 
multiple BTNs whenever the particular BTN 
determines it is appropriate to surrender.  For example 
it is executed from ClipEmpty() BTN, (Fig 4), in the 
event that no ammunition remained in the combatant’s 
reserve.  The combatant drops his weapon, raises his 
arms and waits.  This is a good example of how a low 
level behavior may be very simulation specific.  In this 
case, CounterStrike requires two separate drop weapon 
calls.  Several high level behaviors use the Surrender() 
BTN such that if the underlying simulation was 
changed, those high level behaviors could be re-used, 

as-is, in the new simulation and only the Surrender() 
behavior would need to be changed. 
 
 

PROTOTYPE DESCRIPTION 
 
Our prototype utilizes the commercially available 
CounterStrike FPS (First Person Shooter) as its 
simulation engine, which provides the fundamental 
physics model and graphical representation of the 
game world.  Software hooks, to the AI middleware 
product, SimBionic, drive enemy combatants within  

 
 

Figure 4. The Surrender Behavior 
 
CounterStrike.  SimBionic is a high level development 
environment that abstracts the fundamental predicates 
and actions of simulated entities from their 
implementations in the simulator.  Transition to 
different simulation environments therefore involves 
only the reimplementation of these fundamental 
predicates and actions; the behaviors themselves 
remain intact and will function without alteration 
(dependent upon differences in simulator features). 
 
In the simulated environment, we have equipped the 
enemy combatants with accurate sensing apparatuses 
through which to perceive their surroundings; these 
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sensory abilities are made instantly and are directly 
accessible to the SimBionic environment.  Combatant 
field of view, parametrically variable, we defined to be 
90 degrees to the left or right of the current eye 
direction.  They are able to hear and distinguish 
among the sounds of enemy gunfire, voices, grenade 
and breaching explosions, doors opening, and 
footsteps on hard surfaces.  The location of loud 
sounds can be accurately determined if in an adjacent 
room, but softer sounds and those occurring at a 
greater distance provide only general location 
information.  In the event of injury, the direction of 
attack is known.  Deafness can be induced by close 
proximity to a detonating grenade.  Grenades, 
depending on type and distance, can stun them.  In 
general, the simulated combatants’ sensory abilities 
are a good approximation to those of real-life 
humans’- though they are defined separately and 
polled sequentially, the net behavioral result is a 
combatant with simultaneous access to all of his 
senses.  
 
Behaviorally, simulated combatants are capable of 
both immediate reactions to stimuli and longer-term 
planning, both of which are effected by the values of 
their attributes.  Upon hearing the sound of footsteps 
on tile floor in an adjacent room, an experienced 
combatant (Experience attribute above a certain 
threshold) will turn towards the sound and might 
spray fire through the wall; an inexperienced 
combatant wouldn’t realize they could fire through 
walls, and would instead focus their attention on the 
door to their room, preparing for an attack.  If an 
experienced combatant heard the voice of an enemy 
outside the door of the room they were hiding in, 
instead of immediately firing through the door, they 
concentrate on it, ready to fire, but after a few seconds 
try spraying fire at the wall adjacent to the door in an 
attempt to hit Marines in a stacking position.  When 
suddenly confronted by an enemy, a nervous 
(Calmness attribute below a certain threshold) 
combatant wildly sprays fire in the general direction of 
the enemy, while a calmer combatant would take the 
few extra tenths of a second to aim properly and fire a 
more accurate burst.  Upon seeing a grenade tossed 
into a room with minimal bounce (a stand-in for a 
softly tossed grenade, as CounterStrike does not allow 
players to change throw velocities), a timid combatant 
(Boldness below a certain threshold) runs to a cover 
position to avoid the blast, while a bold combatant 
would run towards it in an attempt to throw it back.  If 
an experienced combatant hears two grenade 
detonations, one following the other after some brief 
interval, he is very likely to preemptively retreat to a 

cover position in anticipation of further grenade 
attacks.  If a nervous combatant hears many different 
engagements (defined as shots fired, grenade 
detonations, etc.) over a period of time, he becomes 
afraid, drops his weapon, and will immediately 
surrender to a visible enemy.  Each of these behaviors 
is dependent in large part on the attributes of a 
particular combatant, but is also mildly randomized to 
more accurately represent the dynamic nature of real-
time decision-making. 
 
Each combatant has three accuracy attributes. The first 
is moving aimed accuracy, which comes into play 
when the target is positioned such that the combatant 
must turn more than fifteen degrees to face it.  The 
second attribute is still aimed accuracy, used when the 
target requires less than a fifteen degree change in 
body angle. The final attribute is quick aimed 
accuracy, used when the combatant is surprised and 
needs to make a hasty aim.   
 
If he runs out of ammunition, he will immediately 
surrender.  There is also an inherent acquisition delay 
for all combatants when they first see an enemy, the 
length of which is dependent upon their experience 
and calmness. 
 
Prototype Demonstration Sequence 
 
As the demo begins, the human player (hereafter 
referred to as "the player") makes his way quickly 
across the tiled lobby of the office.  An IC, waiting 
with attention focused on his room's only doorway, 
hears the player's footsteps as he approaches; having a 
relatively high level of experience, he knows the 
penetration capabilities of his AK-47, and decides to 
preempt an attack by spraying fire through the wall at 
the rough location of the sound.  Once the smoke has 
cleared, he waits a few seconds for any audible sounds 
of life on the other side of the wall before refocusing 
his attention on the room's door.  As the player 
(walking slowly now to avoid giving his position away 
a second time) bursts through the door, the IC, weapon 
already trained on that location, is able to place quick 
and accurate fire on his opponent, pausing between 
shots to reassess whether the player has yet been 
killed. 
  
The player, still on the tiled part of the lobby floor, 
approaches the second room more slowly.  Once he 
has positioned himself in an appropriate stacking 
location near the door, he radios to his team that he is 
in position to clear the room.  The IC waiting inside 
hears his voice through the door, and prepares for an 



 
 

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2004 
 

2004 Paper No. 1774 Page 9 of 10 

entering attacker by training his weapon on it.  After a 
few seconds pass uneventfully, however, the well-
experienced IC hypothesizes that his attackers are 
probably stacking outside the room; as such, he turns 
his attention away from the door and sprays fire 
through the wall at where he assumes the most likely 
stacking location would be.  The player, having 
avoided this onslaught, tosses a flash bang grenade 
into the room.  Noticing the relatively predictable 
angle at which the grenade approaches the wall (a 
stand-in for a softly tossed grenade), and being 
particularly bold, the IC runs at the grenade in hopes 
of catching it and throwing it back.  He is too slow, 
however, and is incapacitated (though not mortally 
wounded) when it detonates. 
  
As the player enters the room, he engages the IC 
inside.  The IC, though unable to see the player 
through the overturned table, senses the direction of 
fire he is taking when he is injured, and sprays fire 
back through the table at the player.  The player 
bounces a frag grenade at the IC, who, based on the 
difficult angle of bounce off the second wall, tries to 
run for cover before it detonates.  Though not killed by 
the blast, he is severely injured and stunned. 
  
The fourth room the player enters contains two ICs: 
the one directly opposite the door has extremely poor 
accuracy, and is largely unable to hit the player; the 
one in the corner is quite nervous, and elects to spray 
fire in the general direction of the visible player 
despite having a clear line of sight. 
  
The fifth room is convex in design, and contains an IC 
hiding out of line of sight of the door.  As the player 
enters, the IC hears the squeak of the door hinges, and 
tries to creep up behind the player as he pies off the 
room. 
  
Once he has eliminated the IC, the player loads his 
magazine with a breach round and blows through the 
wall into the office stairwell.  Hearing this loud 
explosion, and understanding it to be a breach, the IC 
in the adjacent convex room quickly moves away from 
his hiding spot in fear of being hit by a similar breach 
into his room.   
 
 

BEHAVIOR MODELING METHODOLOGY 
 
Over the course of the project we utilized a process for 
modeling the weapon related behaviors which appears 
appropriate for modeling most types of OPFOR 

behaviors to support simulation training.  There are 9 
steps: 
 
1. Training Requirements Investigation 

What kinds of things should the IC do from a 
training perspective?   
How do the learning/training objectives impact 
the IC’s behaviors? 
What types of situations, types of actions, and 
stimuli/reactions are required of the IC? 

  
2. Knowledge Engineering 

What kinds of OPFOR are there? 
What are their behaviors and decision-processes? 
What are the variations in OPFOR behavior and 
why?  

Are there variations between different types 
of OPFORs?  Are there variations within a 
population (type of OPFOR)?   

Create Scenarios.  Define range of scenarios.  
Define associated behaviors. 
 

3. Design Behaviors 
Draw BTNs, with different states reflecting either 
different mental states (e.g. ready, surprised, alert, 
concentrating, etc.) or actions. 
Actions may be probabilistic (e.g. shooting 
accuracy) and links may be probabilistic (e.g. the 
decision to grab the grenade or seek cover). 
BTNs are polymorphic and parameterized. 

 
4. Design parameters for the behaviors based on what's 

needed by the behaviors and what is different 
between different ICs or the same IC at different 
times. 

 
5. Determine population definitions in terms of 

parameter ranges (means and standard deviations). 
 
6. Instantiate ICs from relevant populations for each 

scenario. 
 
7. Assign appropriate locations and behaviors to the 

ICs (i.e. give them orders). 
 
8. Test, Evaluate, and Validate   

Collect accuracy and other statistics and compare 
to the population definitions.   
Observe OPFOR actions in different 
circumstances for qualitative evaluation of 
realism. 

 
9. Improve behaviors and population definitions based 

on tests and feedback and iterate. 
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LESSONS LEARNED 
 
There were several lessons learned from this effort.  
The first is that BTNs worked well for modeling 
realistic OPFOR weapon behaviors.  The use of a 
graphical tool for editing the BTNs was essential, 
since it allowed new behaviors to be created in minutes 
and existing ones to be modified in seconds.  
Parameterizing the behaviors also facilitated the 
behavior improvement process, since an observation 
that some action occurred too slowly or quickly, are 
not large enough and could be corrected by changing a 
parameter. The use of probabilistic methods was 
important to achieve realistic levels of variation in the 
OPFOR behavior.  Having a system capable of 
hierarchical representations was important to keep the 
complexity at a manageable level and the 
understandability high.  Even seemingly simple 
behaviors are very hierarchical - often 5 to 6 levels 
deep.  Because of this depth, use of different levels of 
abstraction was important.  Polymorphism was also an 
important tool especially to create variants of the 
behavior for the different types of OPFOR.  It was very 
useful to initially create one version of the behavior, 
then create alternative specializations of the behavior 
for different types of OPFOR.  Each of the above 
contributed to being able to quickly create a working 
version of the behaviors then vary incrementally 
increasing their realism and complexity. 
 
 

FUTURE WORK 
 
There are four main thrusts to our future efforts 
directed toward realistic automated OPFOR weapon 
behaviors.  The main one is to refine and further 
increase the realism, complexity, available actions, 
breadth and depth of, and implement behavioral 
models for weapon firing tactics, techniques and 
procedures for a variety of MOUT situations.  OPFOR 
weapon firing behaviors will be developed with close 
adherence to military doctrine, enemy intelligence, 
and thorough elicitation from and evaluation by 
subject matter experts.  A hierarchical breakdown of 
the subtasks associated with target acquisition and 
firing execution in a variety of MOUT contexts will be 
refined, detailed, and implemented, so that high level 
tasks and decisions can be expressed in terms of 
abstractions of lower level tasks and decisions.  This 
provides a basis for implementation, and also allows 
for a modular development process, where lower level 
behavior elements may be elaborated or simplified in 

accordance with iterative development conclusions 
regarding their effective level of realism.   
 
The second thrust is to integrate the improved OPFOR 
behaviors with VIRTE.  This integration is currently 
planned through integration with OOS, the OneSAF 
Objective System, to which VIRTE will transition.  
This would also make the realistic OPFOR behaviors 
developed accessible to other simulations using OOS. 
 
A third thrust is the development of tools to support 
the Behavior Modeling Methodology.  The modeling 
process includes requirements gathering, knowledge 
elicitation, behavior design, parameter identification, 
population construction, simulated IC instantiation, 
behavior assignment, testing, validation, and 
evaluation.  Tools will be developed to support each of 
these steps.  The validation step is especially important 
on the implemented weapon firing behaviors to 
determine that there is an adequate level of realism.  
Validation metrics which include both statistical 
comparison and observation should be used to test 
simulated entities in an array of explicitly defined 
conditions for which a specification was developed 
outlining the acceptable OPFOR actions given each 
condition or set of conditions.  
 
The fourth thrust is to expand the breadth of contexts 
in which the automated OPFORs can function.  The 
current implementation addressed the highest priority 
OPFOR behavior - realistic weapon firing and related 
behaviors within rooms being cleared.  The next 
priority would fill out the defensive situations within a 
building--hallways, hall way intersections, and 
stairwells, including both defending and ambushing 
behaviors.  The next highest priority context is 
defending against an enemy (US soldiers) attacking 
from the outside.  Additional behaviors would include 
defending a building, proper position/cover selection, 
defending and ambushing at road intersections, firing 
around corners and from behind walls, and scanning 
behavior.  The third priority context is the OPFOR 
engaged in offensive MOUT operations, primarily 
from outside the buildings that the trainees are 
defending.  Behaviors include tactical movement down 
roads, crossing intersections, entering defended 
buildings, reconnaissance and surveillance, and the 
use of fire to destroy or disrupt the defense.  The last 
priority context for the OPFOR are offensive 
operations within buildings, since training U.S. 
soldiers to defend a portion of a building from attack 
from within it, is a low priority. 
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RELATED WORK 
 
There is a considerable history of work in the 
development of behavior sets for complementary focus 
areas other than weapon firing.  (Wray et al, 2002) 
describe an approach and architecture for defining 
simulated ICs that can navigate and engage in combat 
in MOUT environments, using the Unreal Tournament 
game engine as a simulation platform.  This approach 
is based on the Soar cognitive architecture, which not 
only models IC decisions and actions, but also 
cognitive states and artifacts such as goals and 
memory.  Here, the emphasis on realism is achieved 
with attempts to actually model human reactions and 
deliberative abilities given the parameters of a 
simulated environment.  (Reece et al, 2000) present a 
set of path planning algorithms for MOUT 
environments, which consider factors like threat 
avoidance and opportunities for concealment.  
(McDonald et al, 2001) developed CGF behaviors that 
also incorporate issues associated with different rules 
of engagement into the tactical decision-making rules.  
(Henninger and Taylor, 2002) and (Middleton et al, 
1997) prepared studies which focus on weapon firing 
and suppression tactics and techniques.   
 
The notion of using a visual environment to specify 
behaviors for simulated autonomous entities has a 
number of precedents in academia and in industry.  
(MacKenzie et al, 1997) describe the MISSIONLAB 
system that allows an author to specify the behavior of 
multiple robots.  The author does this visually using 
similar hierarchical state and transition links.  
KHOROS (www.khoral.com) is a popular visual editor 
for image processing that allows users to string 
together operators into a flow diagram.  Each operator 
comes from a standard library, or is defined by the 
user using standard C code.  In industry, there are few 
visual editors for games.  Perhaps most notable is the 
Motivate package from the Motion Factory 
(www.motion-factory.com).  Its use is limited to 
development companies and is not freely available for 
research use.  Also, visualization toolkits have been 
developed for the interpretation of behaviors defined 
with the Soar architecture described above. 
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