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ABSTRACT 
 
Mobile augmented reality (AR) is a method for providing a “head up display” to individual dismounted users.  A 
user wears a miniaturized computer system, tracking sensors, and a see-through graphics display. The system 
superimposes three-dimensional spatially registered graphics and sounds onto the user’s perception of the real 
world.  Because information can be presented in a head up and hands free way, it has the potential to revolutionize 
the way in which information is presented to individuals. 
 
A mobile AR system can insert friendly, neutral, and enemy computer-generated forces (CGFs) into the real world 
for training and mission rehearsal applications.  The CGFs are drawn realistically and properly occluded with 
respect to the real world.  The behaviors of the CGFs are generated from two Semi-Automated Forces (SAF) 
systems: JointSAF and OneSAF.  The AR user appears as an individual combatant entity in the SAF system.  The 
AR user's position and orientation are fed to the SAF system, and the state of the SAF entities is reflected in the AR 
display. The SAF entities react to the AR user just as they do any other individual combatant entity, and the AR user 
interacts with the CGFs in real time. 
 
In this paper, we document the development of a prototype mobile AR system for embedded training and its usage 
in MOUT-like situations.  We discuss the tradeoffs of the components of the hardware (tracking technologies, 
display technologies, computing technologies) and the software (networking, SAF systems, CGF generation, model 
construction), and we describe the lessons that have been learned from implementing several scenarios. 
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INTRODUCTION A system developed at the Naval Research Laboratory 
is the Battlefield Augmented Reality System-Embedded 
Trainer (BARS-ET).  BARS-ET is based on the 
components developed in the BARS program (Julier et 
al. 2000).  Assuming that future warfighters will have 
equipment capable of providing augmented reality—
wearable computers with head-mounted displays, such 
as the proposed Future Force Warrior system (Natick 
Soldier Center 2004)—it is prudent to take advantage 
of those resources to provide embedded training.    This 
technology allows warfighters to truly train as they 
fight.  

 
Modern wars are more often fought in cities than in 
open battlefields, and warfighter training has been 
updated to reflect this change.  Military Operations in 
Urban Terrain (MOUT) training is an important 
component of a warfighter’s initial and continued 
development.  Much of this training occurs in purpose-
built MOUT facilities, using simulated ammunition and 
half the team acting as the opposing forces (OPFOR).  
As an alternative, virtual reality (VR) training systems 
for MOUT operations are improving.  Both of those 
training modes have several drawbacks.  The MOUT 
facility training provides the trainee with a real-world 
experience, but there are manpower issues (must 
schedule two teams, or split one team so that half plays 
OPFOR), the exercise is not completely repeatable, and 
there are issues with the simulated munitions such as 
setup, injuries, and cleanup.  In contrast, the VR 
training provides a safe, controlled, and repeatable 
training scenario, but it deprives the trainee of many 
real-world cues that are not yet simulated, requires 
special equipment that is not easily moved for the most 
immersive simulations, and does not allow completely 
realistic navigation through the environment. 

 
Other groups have considered the use of AR for 
embedded training.  MARCETE (Kirkley et al. 2002) 
places an emphasis on working with SCORM datasets 
to provide distance education.  VICTER (Barham et al. 
2002) was built to fit within the limitations of the 
current Land Warrior system (Natick Soldier Center 
2001), replacing pieces of that system as necessary.  
 
In this paper, we will describe the research and 
development process for building BARS-ET.  Since 
there are several components to this system that are all 
interrelated, we are presenting this work in the form of 
lessons learned rather than a piece-wise description of 
the system.   

 
In an effort to create a training method that combines 
the control and repeatability of VR with the authenticity 
of the real world, we have researched and developed a 
prototype of an embedded training system that uses 
augmented reality (AR).  Augmented reality technology 
allows computer-generated information to be projected  
(in a sense) into the real world. For training, animated 
three-dimensional computer-generated forces are 
inserted into the environment.  The AR training system 
moves the repeatability and control of a VR system into 
a real-world training environment.  

 
LESSON 1: Build upon a solid Mobile AR platform 
 
Intended for enhancing situation awareness in urban 
operations, BARS is a man-portable system that makes 
computer-generated graphics and sounds appear to 
exist in the real world.  The user dons a backpack-
based apparatus consisting of a wearable computer, a 
see-through head-mounted display, tracking devices, 
and a wireless network module.  Location-specific 
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situation awareness information, such as the positions 
of friendly forces hidden by a wall, may be displayed 
so that it appears in its real-world position, no matter 
how the user moves around.   It is also possible to 
augment the view of a building to show its name, a plan 
of its interior, icons to represent reported hazard 
locations, and/or the names of adjacent streets.   

The BARS system software is a multi-tiered custom 
system written in Java and C++ developed on Linux 
and Microsoft Windows.  It supports many types of 
commercially available trackers and cameras. The 
graphics display use OpenGL and OpenSceneGraph.  
There is a distributed shared database that each user can 
access using a wireless network, so that BARS users 
can share data in real time.  The software system is 
currently used to conduct research and development for 
AR interaction, including speech, gestures, information 
representation, and so on. 

 
The centerpiece of the BARS project is the capability to 
display head-up battlefield intelligence information to a 
dismounted warrior, similar to the head-up display 
(HUD) systems designed for fighter pilot cockpits.  The 
system consists of a wearable computer (PC-
compatible), wireless network support (802.11b), and a 
tracked see-through Head Mounted Display (HMD) 
(Sony Glasstron, Microvision Nomad, or Trivisio).  
Three-dimensional (3D) data about the environment is 
collected (through surveying, sensors, or reports by 
other users) and made available to the system.  By 
using a Global Positioning System (GPS) unit and an 
inertial orientation tracker (such as the Intersense 
InertiaCube) it is possible to know where the user is 
located and the direction in which he is looking.  Figure 
1 shows the BARS wearable system.  Based on this 
data, the desired 3D data is rendered to appear as if it 
were in the real world.  

 
The driving problem for building BARS is to enhance 
situation awareness in a head-up and hands-free 
manner.  This information is projected in 3D, spatially 
registered in the real world.  Some examples of this 
data include street names, routes, trails, hazard 
locations, friendly positions, and so on.  This 
information is purposely made to stand out from the 
environment, even going as far as sampling the 
background view and drawing the data in contrasting 
colors.  Although the data is spatially registered, it 
should not “blend in” to the environment.  
 
Compared to providing situation awareness data, 
rendering synthetic forces in BARS has additional 
needs because even though the basic AR functionality 
is the same, the paradigms required to solve these 
problems are very different.  In the situation awareness 
mode, BARS adds information to the real-world view 
that the user would not normally see.  It is necessary for 
this information to stand out and appear artificial.  In 
the embedded training mode, BARS inserts cues into 
the real world view that, ideally, the user could not 
distinguish from reality.  For example, a team of 
trainees in a Military Operations for Urban Terrain 
(MOUT) training facility could work together against a 
an enemy force—some forces are real, some are virtual, 
and the blending would be seamless.  

 

 
Figure 1.  The BARS Wearable System  

 By starting with BARS to build our AR training 
system, we already have a stable platform with tested 
tracking, networking, and head-mounted display 
components.  Several steps were performed to create 
BARS-ET using the BARS components.  Animated 
computer-generated forces (CGFs) appear on the 
display, properly registered and occluded in the real 
world.  The CGF behaviors are controlled by a Semi-
Automated Forces (SAF) system, which leverages 
existing work in simulated forces and provides a well-
understood method of creating and controlling training 
scenarios.  Additionally, a weapon tracker was added, 
so that the system knows where the user is aiming and 
firing.  

Running a training session indoors requires special 
tracking considerations.  As the tracking system on the 
backpack is GPS-based, it only works outdoors.  For 
indoor demonstrations, a different tracking system is 
required.  Magnetism-based indoor trackers have not 
proven to have the accuracy needed for AR in our 
experience, mainly due to their susceptibility to 
distortion.  So, we use ultrasonic- or vision-based 
trackers, which require installation on site and careful 
surveying—similar actions would be necessary for 
running a session inside MOUT facility structures.  
BARS supports a wide variety of trackers, so no 
software changes were necessary.   
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LESSON 2: Use a see-through display that can 
occlude the real world 

 
The type of head-mounted display used can make or 
break the illusion of computer-generated forces existing 
in the real world.  If the graphics do not occlude the 
real world, they do not appear solid or realistic.  
Instead, the graphics, translucent on a non-occluding 
display, take on a ghostly and unrealistic appearance.  
Figure 2 shows two similar scenes, one through a non-
occluding display, and one through an occluding 
display.  Notice how the avatar is washed out in bright 
light in the non-occluding display. 
 

  
Figure 2.  Non-occluding and occluding displays 

 
There are two fundamentally different technologies 
used for AR graphic displays: optical see-through and 
video see-through.  The optical see-through displays 
use mirrors to optically combine the computer display, 
generated with LCD, LCOS, or lasers, with the view of 
the real world.  The video see-through display uses a 
camera in front of the user’s eye and a video overlay 
component to combine the computer graphics and the 
camera feed.  The optical display has the advantage of 
resolution—it does not alter what the user would 
normally see (except minor dimming), while the video 
display is limited to video resolutions, which are well 
below what the human eye can perceive, and gives a 
pixilated image.  It is also hard to match the display’s 
brightness and contrast to match the real world, as the 
camera reacts differently than the human eye to 
changes in lighting.  On the other hand, no optical 
display yet occludes the real world—the user can 
always see through the computer graphics, while the 
video display allows the computer graphics to block out 
the real world and appear more realistic.  The video-
based display also has some minor lag, in which the 
display shows an image a few milliseconds later than 
an unadorned user would perceive it.  This effect is 
noticeable but not particularly disturbing.  
 
For mobile AR applications for tactical situations (not 
training), the optical display, even with its faults, is 
better because the user’s view of the real world is not 
degraded and the ghostly appearance of tactical 
information does not detract from the utility of that 
information.  For this embedded training application, 

however, the benefits of the video display’s true 
occlusion outweigh the drawback of decreased 
resolution, and so it is our choice for now—when an 
optical see-through display becomes available with true 
occlusion capabilities, it will be the best choice.  
 

LESSON 3: Create an accurate occlusion model 
 
In BARS-ET, the user’s viewpoint in the real world is 
measured using the tracking system.  At the same time, 
the simulated forces exist in the computer’s 3D virtual 
world.  The user’s viewpoint in the real world is 
translated to a camera position in the virtual world and 
that world is rendered on the user’s display.  Assuming 
the system has been properly calibrated, the virtual 
forces are overlaid at the correct locations in the real 
world.  However, this does not yet fully solve the 
problem of integrating the virtual forces into the real 
world.  Imagine using BARS-ET and seeing a 
simulated force, which is supposed to be behind a 
building, rendered in front of the building.  This effect 
would ruin the illusion that the simulated force exists in 
the real environment.  Yet, if the system worked simply 
as described above, that behavior would result.  The 
system needs some understanding of the static 
structures within the training environment.  An 
occlusion model solves this problem.   
 

 
Figure 3. Stages in the development of AR models for 

embedded training. 
 
Figure 3 shows a sequence of images demonstrating the 
need for and construction of an occlusion model.  
Figure 3A shows the real-world scene with no 
augmentation.  In figure 3B, the same scene is shown 
but with simulated forces simply drawn over the scene 
at their locations in the world—there is no occlusion.  It 
is hard to tell if all of the forces are intended to be in 
front of the building, or if they are just drawn there due 
to limitations of the system.  Figure 3C shows the 
simulated forces occluded by a gray model, however, 
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the model also occludes some of the real world.  
Finally, figure 3D shows the scene rendered using a 
black model, which serves two purposes. First, the flat 
black polygons occlude the simulated forces properly, 
just like the gray model did.  Second, since black is the 
“see through” color for the display, the user sees the 
real world behind the occlusion model.  This solution 
was introduced for indoor applications by State et al 
(1996) and applied to outdoor models by Piekarski and 
Thomas (2002) for use in outdoor AR gaming.      
 
To build the occlusion model, every static structure in 
the training environment must be carefully surveyed 
and replicated using a 3D modeling application or the 
model-building facilities within BARS.   Techniques 
for creating environmental models for AR have been 
previously published (Julier et al. 2001).  It is very 
important for the model to be accurate, because if it is 
wrong, strange effects happen, such as avatars 
appearing behind solid walls.  Similar effects occur if 
the tracking system is not calibrated properly or if the 
tracker is inaccurate, but those errors are largely 
unavoidable with current technology—however, there 
is no reason to use a poorly constructed model to 
further compound those errors.   
 

LESSON 4: Use realistic CGF behaviors via 
Semi-Automated Forces 

 
Many hours have been put into the various Semi-
Automated Forces (SAF) systems available for 
simulating training scenarios.  Modular Semi-
Automated Forces (ModSAF) (Ceranowicz 1994) was 
an early version used extensively in the training 
community, and has spawned two current successors: 
OTBSAF and JointSAF. By creating an interface 
between these two SAF systems and BARS-ET, this 
work can be leveraged for interactive training in real-
world environments.   
 
Before describing the SAF interfaces, some alternatives 
for controlling the simulated forces will be recognized.  
One method supported in BARS is a simple scripting 
language in which forces can follow predetermined 
paths and do not react to the environment.  This method 
is unacceptable for reactive training scenarios.  Another 
method is to integrate BARS-ET with a game engine.  
The use of game technology in military trainers is 
gaining wider acceptance (Capps, McDowell, & Zyda 
2001).  However, these game-based systems do not yet 
have the defense user base and database library 
available to SAF.  Many potential users of BARS-ET 
already know how to use a SAF system and therefore 
require no extra education to set up complex scenarios 
for the AR training system.  One advantage of game 

engines, however, is that they are designed for smooth 
real-time interaction and animation, whereas SAF 
systems may not guarantee that smoothness.  A solution 
to this problem is described later in this section.  
 
The BARS architecture is built around an event-based 
shared distributed database.  Each BARS user has a 
local copy of the environmental database and network 
events are used to synchronize changes between users.  
The data distribution system is described in more detail 
in a previous paper (Brown et al 2003).  The way 
BARS-ET connects to a SAF system is through a 
bridge application.  This application implements both 
the BARS and SAF network protocols and translates 
events between the systems.  Figure 4 illustrates this 
concept.   
 

of Applications
BARS Network

AR Wearable
System

AR Wearable
System

VR Viewer

Application

VR Viewer

Bridge

entity state information

External SAF System

 
Figure 4. Sharing information between BARS and an 

external SAF system using a bridge application. 
 
Although the next two subsections give many details on 
the implementation of the OTBSAF and JSAF bridge 
applications., the bottom line is that each system 
provides a useful behavior system for driving the 
simulated forces.  Each SAF has new support for 
dismounted infantry that can handle fine-grained 
position and heading changes for the forces as well as 
pose changes (standing, running, lying prone, shooting, 
etc).  Thus, with the right translations and 
interpolations of the SAF updates, BARS-ET can show 
convincingly animated and reactive simulated forces.  
 
4.1 OTBSAF 
 
OTBSAF, the OneSAF Testbed Baseline SAF, is as the 
name suggests, a testbed for the OneSAF system being 
built by the US Army.  It is a branch of the older 
ModSAF system.  It primarily uses the Distributed 
Interactive Simulation (DIS) protocol to communicate 
between instances of OTBSAF applications. 
 
DIS is an Institute of Electrical and Electronics 
Engineers standard (IEEE 1995) that started out as the 
communications backbone for the SIMulation 
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NETwork (SIMNET) community.  The primary means 
of communication is through the transmission of 
Protocol Data Units (PDU), a bit-encoded packet that 
carries entity state and event information.  Each 
individual event or entity update can produce a PDU.  
OTBSAF uses the DIS protocol to distribute entity 
information over Internet Protocol (IP). OTBSAF also 
has an implementation of the High Level Architecture, 
however it was a limited implementation as the time of 
the development of our prototype, so DIS was used to 
connect OTBSAF with BARS.  
 
The OTBSAF bridge application implements the BARS 
networking as well as reading and writing DIS PDUs.  
Because most of BARS is written in Java, the DIS-
Java-VRML package from the Naval Postgraduate 
School (Naval Postgraduate School 2000) was 
integrated to handle the DIS receiving and transmitting 
duties.  
 
One fundamental mismatch in the way the BARS 
distribution system and DIS work is how entities are 
distributed and updated.  One issue is terminology: 
BARS uses “objects” and DIS uses “entities” to mean 
the same type of data, so these two terms will be used 
interchangeably in the remaining discussion.  In BARS, 
there is a “create object” event that notifies recipients 
that a new object has been created and specifies the 
initial state of the object.  Then, as the object changes, 
“change object” events are sent to change the object’s 
state on remote machines.  These events typically only 
indicate the change of a single aspect of the object, for 
example, its position but not its color, size, etc.  Finally, 
a “destroy object” event designates when an object 
should be removed from the scenario.  All recipients 
assume an object remains in the scenario until receiving 
one of these events. 
 
In DIS, the entity state PDU (ESPDU) carries all 
information about an entity’s state.  If only one aspect 
of an entity changes, for example its position but not its 
marking, orientation, etc., this information is sent in an 
ESPDU that still contains all other state information for 
the entity.  This design provides a high degree of 
redundancy over unreliable network transport, but it 
differs from BARS in three important ways: First, a 
remote application does not need to receive an explicit 
“create” PDU for an entity—if it receives an ESPDU 
for an unknown entity, that PDU contains enough data 
to go ahead and instantiate the entity.  Second, the 
ESPDU doesn’t indicate what parameter of an entity 
has changed since the last state update.  Finally, 
ESPDUs are sent regularly for each entity to keep them 
alive—if a remote system doesn’t receive an update for 
an entity after some timeout period, it can assume that 

the entity can be removed from the scenario. If this 
decision is wrong, the entity can be completely re-
instantiated once another ESPDU is received for that 
entity. 
 
The main goal of the OTBSAF bridge application is to 
maintain a one-to-one mapping of DIS entities to 
BARS objects, including any state changes to those 
entities that can be translated between the two systems.  
First, a lookup table was created to map BARS objects 
to DIS entities based on their ID numbers.  When a new 
object from either BARS or OTBSAF is discovered by 
the bridge application, its counterpart in the other 
domain is created, and the IDs are put into this table.  
This process happens when a BARS object creation 
event is seen, or when a DIS ESPDU for an unknown 
object is received.   
 
In maintaining this one-to-one mapping, the bridge 
application must also translate object changes.  When a 
BARS object change event is received, a new ESPDU 
is sent out containing a translation of this change, for 
the corresponding DIS entity.  An ESPDU containing 
only the information for this change cannot be sent, as 
the other fields would be blank and cause errors in the 
scenario.  So, a complete ESPDU must be sent, but 
with this new change reflected in it.  In order to 
construct this ESPDU, a second table is maintained, 
mapping a DIS entity ID to the last ESPDU received 
for that entity.  Instead of completely reconstructing the 
new ESPDU from the BARS object properties, the 
most recently received ESPDU is copied and the new 
information filled in.  This process ensures that any 
state information in the DIS entity that wasn’t 
translated to the BARS object is maintained between 
updates.  The complimentary process of mapping DIS 
entity changes to BARS object changes is simpler.  
When a new ESPDU is received, then for each 
parameter that can be translated, the parameter’s value 
is checked for any change, and if it has changed, a new 
BARS change event is sent.  
 
Another important aspect of maintaining the one-to-one 
mapping is dealing with destroyed entities.  When a 
BARS object is destroyed, the bridge just stops sending 
ESPDUs for that entity, and after a certain timeout 
period, remote applications will remove that object.  
When a DIS entity is destroyed, no explicit event is 
sent.  Thus, the bridge application must periodically 
check all of the objects in the map and check when the 
last ESPDU was received.  If this time exceeds the 
timeout period, the corresponding BARS object is 
explicitly killed.  Another side effect of the DIS timeout 
model is that BARS objects must be kept alive in 
OTBSAF.  Since BARS only sends events when the 
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database changes, relatively static entities are killed by 
OTBSAF because no updates are received.  So, 
periodically, the bridge goes through the entity map and 
sends an ESPDU for each BARS object to keep the 
corresponding DIS entities alive.  
 
One final important issue in maintaining the one-to-one 
mapping is dealing with dead reckoning.  The designers 
of DIS realized that sending a PDU for every position 
or orientation update for each entity does not scale and 
quickly uses up network capacity.  In order to prevent 
flooding the network with too many updates, they used 
dead reckoning to have each remote machine update an 
entity in between receiving ESPDUs.  The originating 
machine also maintains a model of the process, and 
when it sees that the dead reckoned values on the 
remote machines should exceed some threshold, or 
some amount of time has elapsed, then a new ESPDU 
is send to correct the entity state on the remote 
machines.  Unfortunately, BARS, not designed for 
simulation, does not have any native notion of dead 
reckoning, and the bridge had to fill the gap.  The 
bridge does a naïve version of dead reckoning to 
maintain the corresponding BARS object between 
ESPDU updates for a DIS entity.  Going the other way, 
dead reckoning just isn’t supported yet—DIS entities 
created in response to BARS objects have empty dead 
reckoning fields and do not change between ESPDU 
updates.  They do, however, change as often as the 
BARS object changes.  
 
Once the process for maintaining the one-to-one 
mapping between DIS entities and BARS objects was 
in place, the actual semantic translation of the entity 
types and parameter values had to be tackled. For the 
translations of entity types, BARS needed some work.  
It already supported some object types that were direct 
matches to the OTBSAF entity types.  New object types 
were added for the entity types it didn’t support.  Only 
a handful of entity types are supported, including 
humans of various types (friendly, enemy, neutral) and 
common vehicles.  A third-party library was inserted 
into BARS to provide the human animation and some 
vehicle models.   
 
The translation of entity parameters was less 
straightforward.  BARS uses a simple coordinate 
system based in meters in three dimensions from an 
arbitrary origin, while OTBSAF uses the Global 
Coordinate System (GCS), which is latitude, longitude, 
and altitude.  The conversion between the two systems 
uses a third-party library to translate GCS into 
Universal Transverse Mercator (UTM), and since UTM 
uses meters in three dimensions from a grid point on 
the globe, a simple offset correction yields the BARS 

coordinate.  The reverse of this process converts BARS 
coordinates into GCS.  For other parameter types, the 
authors’ best judgement was used to map the meaning 
of the ESPDU bit fields into values supported by 
BARS, for example, the pose of an individual 
combatant (stand, run, kneel, etc).  Unfortunately, these 
conversions are hard-coded, and because the meanings 
of the ESPDU bit fields vary based on the application 
sending the PDUs, these conversions will need to be 
changed should we use another DIS-based SAF system 
or even s newer revision of OTBSAF.  
 
Finally, the SAF system had to be notified when the 
BARS user was firing.  The tracked weapon uses a 
simple momentary contact button that the user presses 
to indicate a firing.  When the button is pressed, BARS 
collects the tracker data, creates a very simple ballistic 
model, and sends an event to the bridge application.  
The bridge then creates a fire PDU to send to OTBSAF.  
In addition, the bridge receives fire PDUs from 
OTBSAF and can indicate when the user is hit by the 
synthetic forces.  
 
Although OTBSAF and JSAF both grew out of 
ModSAF, they’ve taken different paths in their support 
of DIS and its proposed replacement, the High Level 
Architecture (HLA) (Institute of Electrical and 
Electronics Engineers 2000).  Next we will describe 
how BARS was connected to JSAF using HLA. 
 
4.2 JSAF 
 
JSAF is a collection of libraries and programs that are 
oriented toward real-time large-scale distributed 
simulation.  JSAF is actively used as a tool that 
validates the applicability of integrating transition 
technologies into the modern warfighter’s inventory of 
capabilities and tools.  Its current development is 
sponsored by US Joint Forces Command, Joint 
Experimentation Directorate (J9), and has been integral 
in the US Navy’s Fleet Battle Experiments.  JSAF 
primarily uses the HLA as its communication layer.   
 
The High Level Architecture (HLA) is an IEEE 
standard that was developed as a means by which the 
Modeling and Simulation (M&S) community could 
share a common architecture for distributed modeling 
and simulation. There are three underlying portions of 
this framework; the rules, the federation interface 
specification, and the object model template.  The HLA 
federation interface defines the common framework for 
the interconnection of interacting simulations, and is of 
particular interest to our understanding JSAF.  The 
HLA Runtime Infrastructure (RTI) and a set of services 
implement this interface.  The RTI and these services 
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allow interacting simulations to efficiently exchange 
information in a coordinated fashion, when they 
participate in a distributed federation. 
 
For any object or interaction, JSAF determines the 
locality of related entities for this communication and 
sends the necessary information via the RTI if they are 
known to be upon a different processor.  For example, 
if a DI fired upon another DI on the same JSAF 
process, the simulation would handle this interaction 
internally.  But if the second DI was known to be in 
another federate (in our case a BARS bridge), then the 
interaction would go out via the RTI.  The only 
limitation to remember is that JSAF must publish this 
interaction (a default setting).  To complete this 
communication, the federate expecting to receive this 
interaction must correspondingly subscribe to this 
interaction. 
 
The JSAF bridge application implements the BARS 
networking paradigm as well as implementing an RTI 
interface to communicate with JSAF.  JSAF has a set of 
libraries supporting the Agile FOM Interface (AFI).  By 
using this interface, JSAF creates a mapping of its 
internal data representations into an external 
representation.  This mapping is necessary for JSAF to 
participate in different federations without 
modification.  The mappings are stored in special files, 
called reader files that are interpreted at run-time.  The 
unexpected advantage to this approach is that these 
libraries can be used by other applications, such as our 
SAF Bridge, to create a pseudo-JSAF federate.  By 
including a subset of the JSAF support libraries, it is 
possible to create SAF representations of BARS objects 
in the bridge.  This has many advantages: 
 

• The transparent communication between the 
bridge and JSAF by RTI object updates and 
interactions (i.e., calls and formatting issues 
handled by the internal JSAF libraries).  

• Using the same terrain databases and JSAF’s 
terrain libraries to ease position translations 
between BARS and JSAF. 

• Leverage physical models in JSAF to handle 
weapon behavior (ballistics, damage, etc.). 

 
In BARS and JSAF there are corresponding “events” 
that relate to the creation, change and destruction of an 
entity.  In BARS, these specific events trigger the 
dissemination of the salient object state changes to 
other applications, such as the SAF Bridge.  When it 
receives this information, it is necessary to translate the 
data into the appropriate object updates such that it may 
be sent via the RTI to JSAF.  BARS typically updates 
positions at a much higher rate than a system such as 

JSAF desires.  So we track the updates for our BARS 
user in a lookup table, and use the simulation time 
libraries we inherit from the JSAF interface code to 
limit the update rate to a more reasonable one (1 Hz).  
An exception to this rule is when there are significant 
orientation and movement changes in the BARS user 
(i.e., begin walking, change facing, etc.).  Location 
coordinates and heading data are converted between 
BARS and JSAF using the same methods described 
previously for OTBSAF. 
 
JSAF has a corresponding mechanism for object 
updates.  The SAF Bridge catches incoming updates at 
the rate they arrive and store the information in another 
lookup table (STL map).  In this case, we also store a 
pointer to the JSAF platform object that relates to the 
object update.  This allows the SAF Bridge application 
to use the built-in dead reckoning code from JSAF to 
interpolate the current position of a moving entity 
without having to receive constant updates.  The dead-
reckoning algorithm cuts down on network traffic.  In 
essence, each entity would have a set frequency to 
update its position.  Remote machines would calculate 
a new position based on dead reckoning.  The 
originating machine on the other hand would 
simultaneously calculate its ground truth position and 
its new dead-reckoning position, and if they differed by 
some delta, a new update would be broadcast to the 
network.  This aspect of dead reckoning has a side 
effect due to the normal effects of network latency.  For 
example, the SAF Bridge sends position updates to 
BARS at 10 Hz and a new JSAF update arrives 
indicating that at some point in the past the entity being 
tracked had turned.  This leads to a visual artifact in the 
BARS environment display when the SAF entity 
“jumps” to its new location. 
 
In a similar fashion, the interaction between an “armed” 
BARS user and JSAF DIs requires additional 
management.  The SAF system needed to be informed 
whenever the BARS user was firing.  The tracked 
weapon uses a simple momentary contact button that 
the user presses to indicate a firing.  The tracker data is 
used to call the JSAF provided ballistics library and 
determine if any of the synthetic forces have been hit.  
If the target is hit, a “fire” interaction is sent by the RTI 
to JSAF.  Once received, JSAF can compute the 
damage and if necessary change the status of the SAF 
entity (damaged, dead, etc.).  By using the 
corresponding libraries inherited from JSAF, the BARS 
user can also be targeted and damaged by SAF entities.  
We have yet to implement a mechanism to indicate 
incoming weapon fire and damage to the BARS user. 
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LESSON 5: Incorporate other high-impact but 
low-cost realism enhancements 

 
Stimulating as many senses as possible is believed by 
many to provide a more realistic and effective virtual 
training environment—providing tactile, aural, and 
visual cues enhance a user’s feeling of presence and 
memory of the virtual experience.  Much work has 
been performed on stimulating the various senses in 
virtual and augmented reality—but most of this work is 
developed on and for desktop workstations.  Wearable 
computers, while becoming ever more powerful, still 
lag behind high-end workstations in performance and 
available resources.  Additionally, some of the 
supporting equipment for these effects is not practically 
man-portable.  However, there are two low-impact 
(with respect to development time and product weight) 
enhancements that offer a high payoff: spatialized 
audio and animated humans.  
 
Spatialized audio enhances the training experience by 
giving the user more information about the 
environment (footsteps behind the trainee, for example) 
and making the experience more realistic and 
memorable (Dinh et al. 1999).  Additionally, the 
implementation requires only a software library and a 
set of headphones.  To render the graphical display, the 
system must keep track of the user’s attitude in the 
virtual world along with the locations of the simulated 
forces.  Since this virtual world information is 
available, it is not a great leap to support spatialized 
audio.  Sounds can be attached to objects (example: 
helicopter) or specific events (example: gunfire) in the 
virtual world.  A 3D sound API is updated continuously 
with the positions of the user and simulated forces.  
BARS-ET supports the Virtual Audio Server (VAS) 
(Fouad, Ballas, & Brock 2000) and Microsoft’s 
DirectX (Microsoft 2004).  The API takes simple 
monophonic sound files and renders them in the user’s 
headphones so that they sound like they have distinct 
positions in the real world.  The trainee can hear 
simulated forces come up from behind and can hear 
simulated bullets flying by.  
 
The first implementation of BARS-ET used static 
VRML models for the computer-generated forces, and 
seeing the static models slide around the environment 
was not convincing to the first users of the system.  
Adding realistically animated humans to the system 
was another low-impact improvement that paid off 
well.  In this case, only a third-party software library 
was added.  The DI-Guy animation system (Boston 
Dynamics 2004) was integrated into the BARS-ET 
graphics renderer.  Combined with the occlusion 

model, the forces realistically emerge from buildings 
and walk around corners. 
 

LESSON 6: Coordinating data sets can be hard 
 
The general mechanism for using BARS-ET for 
training, in conjunction with a SAF system, has been 
described.  However, in order to use BARS-ET with a 
SAF system in a meaningful way, they must both use 
the same terrain database, converted into their 
respective formats.  BARS-ET uses a custom database 
format but can also load VRML models.  Both 
OTBSAF and JSAF use the Compact Terrain Database 
(CTDB) format to store terrain information for a 
scenario, and for building structures, the Multi-
Elevation Structure (MES) format is used.  
Unfortunately, the two SAFs currently use different 
revisions of CTDB, and although databases can be 
converted between the revisions, the conversion 
process isn’t perfect.   
 
To synchronize the databases between SAF and BARS-
ET, one or more conversions must be made.  The 
easiest conversion path is to start with the CTDB/MES 
files needed for a scenario—luckily, many MOUT 
facilities have been modeled already and the data is 
available through the proper channels.  If this data isn’t 
available, the implementers have a long surveying task 
ahead.  This data can be converted to a 3D solid model 
format, which can then be changed to a flat black 
occlusion model through human intervention.  The 
model is then exported to VRML to create a file that 
BARS-ET can read.  Assuming the original model was 
surveyed carefully and the conversions worked well, 
the the model in BARS will match the model in SAF, 
which matches what is in the real world.  That 
condition is necessary for the training system to work.   
 
Once the terrain is available to the SAF system, a 
scenario can be created using the features in that 
system.  In the SAF system, the BARS-ET user shows 
up as just another DI entity, so scenarios can be created 
to involve the BARS-ET user just like any other 
human-controlled SAF entity.  Additionally, these 
scenarios can be saved and repeated as necessary 
during a training exercise.  
 

LESSON 7: Test and Validate 
 
As with any system, test and validation are important 
pieces of the development cycle.  During construction 
of BARS-ET we have talked with many subject matter 
experts to help guide some of the user-oriented 
decisions we had to make.  We have had many people 
try the system on-site at NRL and have used their 

2004 Paper No. 1575 Page 10 of 12 
 
 
 



 
 
 

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2004 

feedback to refine the system.  In addition, we 
transported the system to I/ITSEC 2003 for anyone 
attending the show to try out.  Such an event made the 
weak points of BARS-ET very obvious. 
 
One weak point of BARS-ET is the time and effort 
required to set up the system for each venue.  The 
training environment must be modeled to build the 
occlusion model and SAF database.  Some venues 
already have SAF databases, however, the level of 
accuracy and detail may not be enough for the 
occlusion model.  A model of a training environment, 
when viewed in a VR application, may appear to be a 
perfect match.  However, when that model is overlaid 
on the real world using an AR system, many 
imperfections become apparent.  If the model is too 
inaccurate, the location must be surveyed to build the 
occlusion model.  BARS can connect with commercial 
surveying equipment, such as the Leica TotalStation, to 
interactively build the model quickly and accurately 
 
Tracking is another consideration during system set up. 
If the training environment is indoors, then an indoor 
tracking system has to be installed.  Current tracking 
systems that are accurate enough to work in AR 
typically require careful surveying of the tracker 
components (beacons or fiducial markers).  However, 
with careful planning, this is a one-time cost for each 
training venue.   
 
The weapon aiming accuracy does not even approach 
that of a real weapon.  This deficiency results from 
fundamental limitations in the accuracy of the tracking 
system.  Our solution is to draw a weapon avatar on the 
display that lines up with the real tracked weapon, 
again, within the limitations of the tracking system.  
The user thus aims the virtual weapon at the virtual 
forces instead of the real weapon.  This is effective, 
except when the weapon is not in the user’s display.  
The weapon can still be aimed, but is subject to tracker 
error.  Instead of actively tracking the weapon, a future 
version of BARS-ET could integrate a passive laser-
based fire detector to more accurately register where 
the trainee fired.  The importance of the virtual weapon 
aiming accuracy is under consideration, as well as 
possible negative training effects.  
 
Some users could not adjust for the deficiencies of the 
video-based display.  As mentioned previously, those 
effects are lower resolution, slight lag when moving 
quickly, and a difference in brightness and contrast 
compared to the real world source.   These effects 
distorted the view of the real world enough that the 
users felt they were in a completely virtual world, 

which works against the purpose of an AR training 
system.  Most users did not experience this problem.  
 
User reaction to the training system was generally 
positive.  Many users who have been through MOUT 
training liked the concept and the initial 
implementation.   
 

 
Figure 5. A conference attendee tries the system. 

 
CONCLUSIONS AND FUTURE WORK 

 
We designed a system that can help trainees in 
situations requiring engagement between individual 
combatants, such as those in MOUT scenarios.  By 
using mobile AR, synthetic forces are inserted and 
engaged realistically in the real world.  A connection to 
a SAF system allows the synthetic forces to behave 
intelligently and gives trainers a familiar interface with 
which to control the scenario.  This system gives the 
trainee the benefits of both live training and of having 
synthetic actors for a predictable, repeatable scenario.   
 
Although the basic pieces are in place to use mobile AR 
for embedded training, there is still much work to be 
done.   We have in mind several improvements as 
future work.  These improvements would yield a more 
effective system: 
 

• Implement a method to convert BARS terrain 
models into the CTDB format used by the 
SAF systems, thereby allowing the original 
site model to be built using the model 
construction facilities in BARS (currently, 
conversion is only possible in the opposite 
direction, from CTDB to BARS).  

• Make the synthetic forces look more realistic 
in the AR display.  The forces are currently 
drawn without respect to environmental 
conditions, shadows, or any occluding items 
that are not already in the occlusion model. 

• Increase the accuracy of the weapon tracking 
system.  The current tracking methods are 
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accurate enough for measuring the user’s 
viewpoint, but even slight errors in tracking 
the weapon will greatly reduce the accuracy of 
the user’s aim. 

• Test the system at an actual MOUT facility.  
• Draw upon virtual reality-based user tests to 

develop a method of testing training 
effectiveness using BARS-ET and use that 
method to run user studies to validate the 
system. 
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