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ABSTRACT

Mobile augmented reality (AR) is a method for providing a “head up display” to individual dismounted users. A
user wears a miniaturized computer system, tracking sensors, and a see-through graphics display. The system
superimposes three-dimensional spatially registered graphics and sounds onto the user’s perception of the real
world. Because information can be presented in a head up and hands free way, it has the potential to revolutionize
the way in which information is presented to individuals.

A mobile AR system can insert friendly, neutral, and enemy computer-generated forces (CGFs) into the real world
for training and mission rehearsal applications. The CGFs are drawn realistically and properly occluded with
respect to the real world. The behaviors of the CGFs are generated from two Semi-Automated Forces (SAF)
systems: JointSAF and OneSAF. The AR user appears as an individual combatant entity in the SAF system. The
AR user's position and orientation are fed to the SAF system, and the state of the SAF entities is reflected in the AR
display. The SAF entities react to the AR user just as they do any other individual combatant entity, and the AR user
interacts with the CGF's in real time.

In this paper, we document the development of a prototype mobile AR system for embedded training and its usage
in MOUT-like situations. We discuss the tradeoffs of the components of the hardware (tracking technologies,
display technologies, computing technologies) and the software (networking, SAF systems, CGF generation, model
construction), and we describe the lessons that have been learned from implementing several scenarios.
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INTRODUCTION

Modern wars are more often fought in cities than in
open battlefields, and warfighter training has been
updated to reflect this change. Military Operations in
Urban Terrain (MOUT) training is an important
component of a warfighter’s initial and continued
development. Much of this training occurs in purpose-
built MOUT facilities, using simulated ammunition and
half the team acting as the opposing forces (OPFOR).
As an alternative, virtual reality (VR) training systems
for MOUT operations are improving. Both of those
training modes have several drawbacks. The MOUT
facility training provides the trainee with a real-world
experience, but there are manpower issues (must
schedule two teams, or split one team so that half plays
OPFOR), the exercise is not completely repeatable, and
there are issues with the simulated munitions such as
setup, injuries, and cleanup. In contrast, the VR
training provides a safe, controlled, and repeatable
training scenario, but it deprives the trainee of many
real-world cues that are not yet simulated, requires
special equipment that is not easily moved for the most
immersive simulations, and does not allow completely
realistic navigation through the environment.

In an effort to create a training method that combines
the control and repeatability of VR with the authenticity
of the real world, we have researched and developed a
prototype of an embedded training system that uses
augmented reality (AR). Augmented reality technology
allows computer-generated information to be projected
(in a sense) into the real world. For training, animated
three-dimensional —computer-generated forces are
inserted into the environment. The AR training system
moves the repeatability and control of a VR system into
a real-world training environment.
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A system developed at the Naval Research Laboratory
is the Battlefield Augmented Reality System-Embedded
Trainer (BARS-ET). BARS-ET is based on the
components developed in the BARS program (Julier et
al. 2000). Assuming that future warfighters will have
equipment capable of providing augmented reality—
wearable computers with head-mounted displays, such
as the proposed Future Force Warrior system (Natick
Soldier Center 2004)—it is prudent to take advantage
of those resources to provide embedded training. This
technology allows warfighters to truly train as they
fight.

Other groups have considered the use of AR for
embedded training. MARCETE (Kirkley et al. 2002)
places an emphasis on working with SCORM datasets
to provide distance education. VICTER (Barham et al.
2002) was built to fit within the limitations of the
current Land Warrior system (Natick Soldier Center
2001), replacing pieces of that system as necessary.

In this paper, we will describe the research and
development process for building BARS-ET. Since
there are several components to this system that are all
interrelated, we are presenting this work in the form of
lessons learned rather than a piece-wise description of
the system.

LESSON 1: Build upon a solid Mobile AR platform

Intended for enhancing situation awareness in urban
operations, BARS is a man-portable system that makes
computer-generated graphics and sounds appear to
exist in the real world. The user dons a backpack-
based apparatus consisting of a wearable computer, a
see-through head-mounted display, tracking devices,
and a wireless network module. Location-specific
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situation awareness information, such as the positions
of friendly forces hidden by a wall, may be displayed
so that it appears in its real-world position, no matter
how the user moves around. It is also possible to
augment the view of a building to show its name, a plan
of its interior, icons to represent reported hazard
locations, and/or the names of adjacent streets.

The centerpiece of the BARS project is the capability to
display head-up battlefield intelligence information to a
dismounted warrior, similar to the head-up display
(HUD) systems designed for fighter pilot cockpits. The
system consists of a wearable computer (PC-
compatible), wireless network support (802.11b), and a
tracked see-through Head Mounted Display (HMD)
(Sony Glasstron, Microvision Nomad, or Trivisio).
Three-dimensional (3D) data about the environment is
collected (through surveying, sensors, or reports by
other users) and made available to the system. By
using a Global Positioning System (GPS) unit and an
inertial orientation tracker (such as the Intersense
InertiaCube) it is possible to know where the user is
located and the direction in which he is looking. Figure
1 shows the BARS wearable system. Based on this
data, the desired 3D data is rendered to appear as if it
were in the real world.

Aireless Input
© A Device

Recelver ° pmpended

Tomputer

F igure 1. The BARS Wearable System

Running a training session indoors requires special
tracking considerations. As the tracking system on the
backpack is GPS-based, it only works outdoors. For
indoor demonstrations, a different tracking system is
required. Magnetism-based indoor trackers have not
proven to have the accuracy needed for AR in our
experience, mainly due to their susceptibility to
distortion. So, we use ultrasonic- or vision-based
trackers, which require installation on site and careful
surveying—similar actions would be necessary for
running a session inside MOUT facility structures.
BARS supports a wide variety of trackers, so no
software changes were necessary.
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The BARS system software is a multi-tiered custom
system written in Java and C++ developed on Linux
and Microsoft Windows. It supports many types of
commercially available trackers and cameras. The
graphics display use OpenGL and OpenSceneGraph.
There is a distributed shared database that each user can
access using a wireless network, so that BARS users
can share data in real time. The software system is
currently used to conduct research and development for
AR interaction, including speech, gestures, information
representation, and so on.

The driving problem for building BARS is to enhance
situation awareness in a head-up and hands-free
manner. This information is projected in 3D, spatially
registered in the real world. Some examples of this
data include street names, routes, trails, hazard
locations, friendly positions, and so on. This
information is purposely made to stand out from the
environment, even going as far as sampling the
background view and drawing the data in contrasting
colors. Although the data is spatially registered, it
should not “blend in” to the environment.

Compared to providing situation awareness data,
rendering synthetic forces in BARS has additional
needs because even though the basic AR functionality
is the same, the paradigms required to solve these
problems are very different. In the situation awareness
mode, BARS adds information to the real-world view
that the user would not normally see. It is necessary for
this information to stand out and appear artificial. In
the embedded training mode, BARS inserts cues into
the real world view that, ideally, the user could not
distinguish from reality. For example, a team of
trainees in a Military Operations for Urban Terrain
(MOUT) training facility could work together against a
an enemy force—some forces are real, some are virtual,
and the blending would be seamless.

By starting with BARS to build our AR training
system, we already have a stable platform with tested
tracking, networking, and head-mounted display
components. Several steps were performed to create
BARS-ET using the BARS components. Animated
computer-generated forces (CGFs) appear on the
display, properly registered and occluded in the real
world. The CGF behaviors are controlled by a Semi-
Automated Forces (SAF) system, which leverages
existing work in simulated forces and provides a well-
understood method of creating and controlling training
scenarios. Additionally, a weapon tracker was added,
so that the system knows where the user is aiming and
firing.
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LESSON 2: Use a see-through display that can
occlude the real world

The type of head-mounted display used can make or
break the illusion of computer-generated forces existing
in the real world. If the graphics do not occlude the
real world, they do not appear solid or realistic.
Instead, the graphics, translucent on a non-occluding
display, take on a ghostly and unrealistic appearance.
Figure 2 shows two similar scenes, one through a non-
occluding display, and one through an occluding
display. Notice how the avatar is washed out in bright
light in the non-occluding display.

-
Figure 2. Non-occluding and occluding displays

There are two fundamentally different technologies
used for AR graphic displays: optical see-through and
video see-through. The optical see-through displays
use mirrors to optically combine the computer display,
generated with LCD, LCOS, or lasers, with the view of
the real world. The video see-through display uses a
camera in front of the user’s eye and a video overlay
component to combine the computer graphics and the
camera feed. The optical display has the advantage of
resolution—it does not alter what the user would
normally see (except minor dimming), while the video
display is limited to video resolutions, which are well
below what the human eye can perceive, and gives a
pixilated image. It is also hard to match the display’s
brightness and contrast to match the real world, as the
camera reacts differently than the human eye to
changes in lighting. On the other hand, no optical
display yet occludes the real world—the user can
always see through the computer graphics, while the
video display allows the computer graphics to block out
the real world and appear more realistic. The video-
based display also has some minor lag, in which the
display shows an image a few milliseconds later than
an unadorned user would perceive it. This effect is
noticeable but not particularly disturbing.

For mobile AR applications for tactical situations (not
training), the optical display, even with its faults, is
better because the user’s view of the real world is not
degraded and the ghostly appearance of tactical
information does not detract from the utility of that
information. For this embedded training application,
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however, the benefits of the video display’s true
occlusion outweigh the drawback of decreased
resolution, and so it is our choice for now—when an
optical see-through display becomes available with true
occlusion capabilities, it will be the best choice.

LESSON 3: Create an accurate occlusion model

In BARS-ET, the user’s viewpoint in the real world is
measured using the tracking system. At the same time,
the simulated forces exist in the computer’s 3D virtual
world. The user’s viewpoint in the real world is
translated to a camera position in the virtual world and
that world is rendered on the user’s display. Assuming
the system has been properly calibrated, the virtual
forces are overlaid at the correct locations in the real
world. However, this does not yet fully solve the
problem of integrating the virtual forces into the real
world.  Imagine using BARS-ET and seeing a
simulated force, which is supposed to be behind a
building, rendered in front of the building. This effect
would ruin the illusion that the simulated force exists in
the real environment. Yet, if the system worked simply
as described above, that behavior would result. The
system needs some understanding of the static

structures within the training environment.  An
occlusion model solves this problem.

I 4
Figure 3. Stages in the development of AR models for

embedded training.

Figure 3 shows a sequence of images demonstrating the
need for and construction of an occlusion model.
Figure 3A shows the real-world scene with no
augmentation. In figure 3B, the same scene is shown
but with simulated forces simply drawn over the scene
at their locations in the world—there is no occlusion. It
is hard to tell if all of the forces are intended to be in
front of the building, or if they are just drawn there due
to limitations of the system. Figure 3C shows the
simulated forces occluded by a gray model, however,
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the model also occludes some of the real world.
Finally, figure 3D shows the scene rendered using a
black model, which serves two purposes. First, the flat
black polygons occlude the simulated forces properly,
just like the gray model did. Second, since black is the
“see through” color for the display, the user sees the
real world behind the occlusion model. This solution
was introduced for indoor applications by State et al
(1996) and applied to outdoor models by Piekarski and
Thomas (2002) for use in outdoor AR gaming.

To build the occlusion model, every static structure in
the training environment must be carefully surveyed
and replicated using a 3D modeling application or the
model-building facilities within BARS.  Techniques
for creating environmental models for AR have been
previously published (Julier et al. 2001). It is very
important for the model to be accurate, because if it is
wrong, strange effects happen, such as avatars
appearing behind solid walls. Similar effects occur if
the tracking system is not calibrated properly or if the
tracker is inaccurate, but those errors are largely
unavoidable with current technology—however, there
is no reason to use a poorly constructed model to
further compound those errors.

LESSON 4: Use realistic CGF behaviors via
Semi-Automated Forces

Many hours have been put into the various Semi-
Automated Forces (SAF) systems available for
simulating training scenarios. Modular Semi-
Automated Forces (ModSAF) (Ceranowicz 1994) was
an early version used extensively in the training
community, and has spawned two current successors:
OTBSAF and JointSAF. By creating an interface
between these two SAF systems and BARS-ET, this
work can be leveraged for interactive training in real-
world environments.

Before describing the SAF interfaces, some alternatives
for controlling the simulated forces will be recognized.
One method supported in BARS is a simple scripting
language in which forces can follow predetermined
paths and do not react to the environment. This method
is unacceptable for reactive training scenarios. Another
method is to integrate BARS-ET with a game engine.
The use of game technology in military trainers is
gaining wider acceptance (Capps, McDowell, & Zyda
2001). However, these game-based systems do not yet
have the defense user base and database library
available to SAF. Many potential users of BARS-ET
already know how to use a SAF system and therefore
require no extra education to set up complex scenarios
for the AR training system. One advantage of game
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engines, however, is that they are designed for smooth
real-time interaction and animation, whereas SAF
systems may not guarantee that smoothness. A solution
to this problem is described later in this section.

The BARS architecture is built around an event-based
shared distributed database. Each BARS user has a
local copy of the environmental database and network
events are used to synchronize changes between users.
The data distribution system is described in more detail
in a previous paper (Brown et al 2003). The way
BARS-ET connects to a SAF system is through a
bridge application. This application implements both
the BARS and SAF network protocols and translates
events between the systems. Figure 4 illustrates this

concept.
System
AR Wearable BARS Network
System

of Applications

Bridge
Application

j fentity state information

External SAF System

Figure 4. Sharing information between BARS and an
external SAF system using a bridge application.

Although the next two subsections give many details on
the implementation of the OTBSAF and JSAF bridge
applications., the bottom line is that each system
provides a useful behavior system for driving the
simulated forces. Each SAF has new support for
dismounted infantry that can handle fine-grained
position and heading changes for the forces as well as
pose changes (standing, running, lying prone, shooting,
etc). Thus, with the right translations and
interpolations of the SAF updates, BARS-ET can show
convincingly animated and reactive simulated forces.

4.1 OTBSAF

OTBSAF, the OneSAF Testbed Baseline SAF, is as the
name suggests, a testbed for the OneSAF system being
built by the US Army. It is a branch of the older
ModSAF system. It primarily uses the Distributed
Interactive Simulation (DIS) protocol to communicate
between instances of OTBSAF applications.

DIS is an Institute of Electrical and Electronics
Engineers standard (IEEE 1995) that started out as the
communications backbone for the SIMulation
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NETwork (SIMNET) community. The primary means
of communication is through the transmission of
Protocol Data Units (PDU), a bit-encoded packet that
carries entity state and event information. Each
individual event or entity update can produce a PDU.
OTBSAF uses the DIS protocol to distribute entity
information over Internet Protocol (IP). OTBSAF also
has an implementation of the High Level Architecture,
however it was a limited implementation as the time of
the development of our prototype, so DIS was used to
connect OTBSAF with BARS.

The OTBSAF bridge application implements the BARS
networking as well as reading and writing DIS PDUs.
Because most of BARS is written in Java, the DIS-
Java-VRML package from the Naval Postgraduate
School (Naval Postgraduate School 2000) was
integrated to handle the DIS receiving and transmitting
duties.

One fundamental mismatch in the way the BARS
distribution system and DIS work is how entities are
distributed and updated. One issue is terminology:
BARS uses “objects” and DIS uses “entities” to mean
the same type of data, so these two terms will be used
interchangeably in the remaining discussion. In BARS,
there is a “create object” event that notifies recipients
that a new object has been created and specifies the
initial state of the object. Then, as the object changes,
“change object” events are sent to change the object’s
state on remote machines. These events typically only
indicate the change of a single aspect of the object, for
example, its position but not its color, size, etc. Finally,
a “destroy object” event designates when an object
should be removed from the scenario. All recipients
assume an object remains in the scenario until receiving
one of these events.

In DIS, the entity state PDU (ESPDU) carries all
information about an entity’s state. If only one aspect
of an entity changes, for example its position but not its
marking, orientation, etc., this information is sent in an
ESPDU that still contains all other state information for
the entity. This design provides a high degree of
redundancy over unreliable network transport, but it
differs from BARS in three important ways: First, a
remote application does not need to receive an explicit
“create” PDU for an entity—if it receives an ESPDU
for an unknown entity, that PDU contains enough data
to go ahead and instantiate the entity. Second, the
ESPDU doesn’t indicate what parameter of an entity
has changed since the last state update. Finally,
ESPDUs are sent regularly for each entity to keep them
alive—if a remote system doesn’t receive an update for
an entity after some timeout period, it can assume that
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the entity can be removed from the scenario. If this
decision is wrong, the entity can be completely re-
instantiated once another ESPDU is received for that
entity.

The main goal of the OTBSAF bridge application is to
maintain a one-to-one mapping of DIS entities to
BARS objects, including any state changes to those
entities that can be translated between the two systems.
First, a lookup table was created to map BARS objects
to DIS entities based on their ID numbers. When a new
object from either BARS or OTBSAF is discovered by
the bridge application, its counterpart in the other
domain is created, and the IDs are put into this table.
This process happens when a BARS object creation
event is seen, or when a DIS ESPDU for an unknown
object is received.

In maintaining this one-to-one mapping, the bridge
application must also translate object changes. When a
BARS object change event is received, a new ESPDU
is sent out containing a translation of this change, for
the corresponding DIS entity. An ESPDU containing
only the information for this change cannot be sent, as
the other fields would be blank and cause errors in the
scenario. So, a complete ESPDU must be sent, but
with this new change reflected in it. In order to
construct this ESPDU, a second table is maintained,
mapping a DIS entity ID to the last ESPDU received
for that entity. Instead of completely reconstructing the
new ESPDU from the BARS object properties, the
most recently received ESPDU is copied and the new
information filled in. This process ensures that any
state information in the DIS entity that wasn’t
translated to the BARS object is maintained between
updates. The complimentary process of mapping DIS
entity changes to BARS object changes is simpler.
When a new ESPDU is received, then for each
parameter that can be translated, the parameter’s value
is checked for any change, and if it has changed, a new
BARS change event is sent.

Another important aspect of maintaining the one-to-one
mapping is dealing with destroyed entities. When a
BARS object is destroyed, the bridge just stops sending
ESPDUs for that entity, and after a certain timeout
period, remote applications will remove that object.
When a DIS entity is destroyed, no explicit event is
sent. Thus, the bridge application must periodically
check all of the objects in the map and check when the
last ESPDU was received. If this time exceeds the
timeout period, the corresponding BARS object is
explicitly killed. Another side effect of the DIS timeout
model is that BARS objects must be kept alive in
OTBSAF. Since BARS only sends events when the
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database changes, relatively static entities are killed by
OTBSAF because no updates are received. So,
periodically, the bridge goes through the entity map and
sends an ESPDU for each BARS object to keep the
corresponding DIS entities alive.

One final important issue in maintaining the one-to-one
mapping is dealing with dead reckoning. The designers
of DIS realized that sending a PDU for every position
or orientation update for each entity does not scale and
quickly uses up network capacity. In order to prevent
flooding the network with too many updates, they used
dead reckoning to have each remote machine update an
entity in between receiving ESPDUs. The originating
machine also maintains a model of the process, and
when it sees that the dead reckoned values on the
remote machines should exceed some threshold, or
some amount of time has elapsed, then a new ESPDU
is send to correct the entity state on the remote
machines. Unfortunately, BARS, not designed for
simulation, does not have any native notion of dead
reckoning, and the bridge had to fill the gap. The
bridge does a naive version of dead reckoning to
maintain the corresponding BARS object between
ESPDU updates for a DIS entity. Going the other way,
dead reckoning just isn’t supported yet—DIS entities
created in response to BARS objects have empty dead
reckoning fields and do not change between ESPDU
updates. They do, however, change as often as the
BARS object changes.

Once the process for maintaining the one-to-one
mapping between DIS entities and BARS objects was
in place, the actual semantic translation of the entity
types and parameter values had to be tackled. For the
translations of entity types, BARS needed some work.
It already supported some object types that were direct
matches to the OTBSAF entity types. New object types
were added for the entity types it didn’t support. Only
a handful of entity types are supported, including
humans of various types (friendly, enemy, neutral) and
common vehicles. A third-party library was inserted
into BARS to provide the human animation and some
vehicle models.

The translation of entity parameters was less
straightforward. = BARS uses a simple coordinate
system based in meters in three dimensions from an
arbitrary origin, while OTBSAF uses the Global
Coordinate System (GCS), which is latitude, longitude,
and altitude. The conversion between the two systems
uses a third-party library to translate GCS into
Universal Transverse Mercator (UTM), and since UTM
uses meters in three dimensions from a grid point on
the globe, a simple offset correction yields the BARS
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coordinate. The reverse of this process converts BARS
coordinates into GCS. For other parameter types, the
authors’ best judgement was used to map the meaning
of the ESPDU bit fields into values supported by
BARS, for example, the pose of an individual
combatant (stand, run, kneel, etc). Unfortunately, these
conversions are hard-coded, and because the meanings
of the ESPDU bit fields vary based on the application
sending the PDUs, these conversions will need to be
changed should we use another DIS-based SAF system
or even s newer revision of OTBSAF.

Finally, the SAF system had to be notified when the
BARS user was firing. The tracked weapon uses a
simple momentary contact button that the user presses
to indicate a firing. When the button is pressed, BARS
collects the tracker data, creates a very simple ballistic
model, and sends an event to the bridge application.
The bridge then creates a fire PDU to send to OTBSAF.
In addition, the bridge receives fire PDUs from
OTBSAF and can indicate when the user is hit by the
synthetic forces.

Although OTBSAF and JSAF both grew out of
ModSAF, they’ve taken different paths in their support
of DIS and its proposed replacement, the High Level
Architecture (HLA) (Institute of Electrical and
Electronics Engineers 2000). Next we will describe
how BARS was connected to JSAF using HLA.

4.2 JSAF

JSAF is a collection of libraries and programs that are
oriented toward real-time large-scale distributed
simulation. JSAF is actively used as a tool that
validates the applicability of integrating transition
technologies into the modern warfighter’s inventory of
capabilities and tools. Its current development is
sponsored by US Joint Forces Command, Joint
Experimentation Directorate (J9), and has been integral
in the US Navy’s Fleet Battle Experiments. JSAF
primarily uses the HLA as its communication layer.

The High Level Architecture (HLA) is an IEEE
standard that was developed as a means by which the
Modeling and Simulation (M&S) community could
share a common architecture for distributed modeling
and simulation. There are three underlying portions of
this framework; the rules, the federation interface
specification, and the object model template. The HLA
federation interface defines the common framework for
the interconnection of interacting simulations, and is of
particular interest to our understanding JSAF. The
HLA Runtime Infrastructure (RTI) and a set of services
implement this interface. The RTI and these services
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allow interacting simulations to efficiently exchange
information in a coordinated fashion, when they
participate in a distributed federation.

For any object or interaction, JSAF determines the
locality of related entities for this communication and
sends the necessary information via the RTI if they are
known to be upon a different processor. For example,
if a DI fired upon another DI on the same JSAF
process, the simulation would handle this interaction
internally. But if the second DI was known to be in
another federate (in our case a BARS bridge), then the
interaction would go out via the RTI. The only
limitation to remember is that JSAF must publish this
interaction (a default setting). To complete this
communication, the federate expecting to receive this
interaction must correspondingly subscribe to this
interaction.

The JSAF bridge application implements the BARS
networking paradigm as well as implementing an RTI
interface to communicate with JSAF. JSAF has a set of
libraries supporting the Agile FOM Interface (AFI). By
using this interface, JSAF creates a mapping of its
internal data representations into an external
representation. This mapping is necessary for JSAF to
participate  in  different  federations  without
modification. The mappings are stored in special files,
called reader files that are interpreted at run-time. The
unexpected advantage to this approach is that these
libraries can be used by other applications, such as our
SAF Bridge, to create a pseudo-JSAF federate. By
including a subset of the JSAF support libraries, it is
possible to create SAF representations of BARS objects
in the bridge. This has many advantages:

e The transparent communication between the
bridge and JSAF by RTI object updates and
interactions (i.e., calls and formatting issues
handled by the internal JSAF libraries).

o Using the same terrain databases and JSAF’s
terrain libraries to ease position translations
between BARS and JSAF.

e Leverage physical models in JSAF to handle
weapon behavior (ballistics, damage, etc.).

In BARS and JSAF there are corresponding “events”
that relate to the creation, change and destruction of an
entity. In BARS, these specific events trigger the
dissemination of the salient object state changes to
other applications, such as the SAF Bridge. When it
receives this information, it is necessary to translate the
data into the appropriate object updates such that it may
be sent via the RTI to JSAF. BARS typically updates
positions at a much higher rate than a system such as
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JSAF desires. So we track the updates for our BARS
user in a lookup table, and use the simulation time
libraries we inherit from the JSAF interface code to
limit the update rate to a more reasonable one (1 Hz).
An exception to this rule is when there are significant
orientation and movement changes in the BARS user
(i.e., begin walking, change facing, etc.). Location
coordinates and heading data are converted between
BARS and JSAF using the same methods described
previously for OTBSAF.

JSAF has a corresponding mechanism for object
updates. The SAF Bridge catches incoming updates at
the rate they arrive and store the information in another
lookup table (STL map). In this case, we also store a
pointer to the JSAF platform object that relates to the
object update. This allows the SAF Bridge application
to use the built-in dead reckoning code from JSAF to
interpolate the current position of a moving entity
without having to receive constant updates. The dead-
reckoning algorithm cuts down on network traffic. In
essence, each entity would have a set frequency to
update its position. Remote machines would calculate
a new position based on dead reckoning. The
originating machine on the other hand would
simultaneously calculate its ground truth position and
its new dead-reckoning position, and if they differed by
some delta, a new update would be broadcast to the
network. This aspect of dead reckoning has a side
effect due to the normal effects of network latency. For
example, the SAF Bridge sends position updates to
BARS at 10 Hz and a new JSAF update arrives
indicating that at some point in the past the entity being
tracked had turned. This leads to a visual artifact in the
BARS environment display when the SAF entity
“jumps” to its new location.

In a similar fashion, the interaction between an “armed”
BARS wuser and JSAF DIs requires additional
management. The SAF system needed to be informed
whenever the BARS user was firing. The tracked
weapon uses a simple momentary contact button that
the user presses to indicate a firing. The tracker data is
used to call the JSAF provided ballistics library and
determine if any of the synthetic forces have been hit.
If the target is hit, a “fire” interaction is sent by the RTI
to JSAF. Once received, JSAF can compute the
damage and if necessary change the status of the SAF
entity (damaged, dead, etc.). By using the
corresponding libraries inherited from JSAF, the BARS
user can also be targeted and damaged by SAF entities.
We have yet to implement a mechanism to indicate
incoming weapon fire and damage to the BARS user.
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LESSON 5: Incorporate other high-impact but
low-cost realism enhancements

Stimulating as many senses as possible is believed by
many to provide a more realistic and effective virtual
training environment—providing tactile, aural, and
visual cues enhance a user’s feeling of presence and
memory of the virtual experience. Much work has
been performed on stimulating the various senses in
virtual and augmented reality—but most of this work is
developed on and for desktop workstations. Wearable
computers, while becoming ever more powerful, still
lag behind high-end workstations in performance and
available resources.  Additionally, some of the
supporting equipment for these effects is not practically
man-portable. However, there are two low-impact
(with respect to development time and product weight)
enhancements that offer a high payoff: spatialized
audio and animated humans.

Spatialized audio enhances the training experience by
giving the wuser more information about the
environment (footsteps behind the trainee, for example)
and making the experience more realistic and
memorable (Dinh et al. 1999). Additionally, the
implementation requires only a software library and a
set of headphones. To render the graphical display, the
system must keep track of the user’s attitude in the
virtual world along with the locations of the simulated
forces.  Since this virtual world information is
available, it is not a great leap to support spatialized
audio. Sounds can be attached to objects (example:
helicopter) or specific events (example: gunfire) in the
virtual world. A 3D sound API is updated continuously
with the positions of the user and simulated forces.
BARS-ET supports the Virtual Audio Server (VAS)
(Fouad, Ballas, & Brock 2000) and Microsoft’s
DirectX (Microsoft 2004). The API takes simple
monophonic sound files and renders them in the user’s
headphones so that they sound like they have distinct
positions in the real world. The trainee can hear
simulated forces come up from behind and can hear
simulated bullets flying by.

The first implementation of BARS-ET used static
VRML models for the computer-generated forces, and
seeing the static models slide around the environment
was not convincing to the first users of the system.
Adding realistically animated humans to the system
was another low-impact improvement that paid off
well. In this case, only a third-party software library
was added. The DI-Guy animation system (Boston
Dynamics 2004) was integrated into the BARS-ET
graphics renderer. Combined with the occlusion
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model, the forces realistically emerge from buildings
and walk around corners.

LESSON 6: Coordinating data sets can be hard

The general mechanism for using BARS-ET for
training, in conjunction with a SAF system, has been
described. However, in order to use BARS-ET with a
SAF system in a meaningful way, they must both use
the same terrain database, converted into their
respective formats. BARS-ET uses a custom database
format but can also load VRML models. Both
OTBSAF and JSAF use the Compact Terrain Database
(CTDB) format to store terrain information for a
scenario, and for building structures, the Multi-
Elevation  Structure (MES) format is used.
Unfortunately, the two SAFs currently use different
revisions of CTDB, and although databases can be
converted between the revisions, the conversion
process isn’t perfect.

To synchronize the databases between SAF and BARS-
ET, one or more conversions must be made. The
easiest conversion path is to start with the CTDB/MES
files needed for a scenario—luckily, many MOUT
facilities have been modeled already and the data is
available through the proper channels. If this data isn’t
available, the implementers have a long surveying task
ahead. This data can be converted to a 3D solid model
format, which can then be changed to a flat black
occlusion model through human intervention. The
model is then exported to VRML to create a file that
BARS-ET can read. Assuming the original model was
surveyed carefully and the conversions worked well,
the the model in BARS will match the model in SAF,
which matches what is in the real world. That
condition is necessary for the training system to work.

Once the terrain is available to the SAF system, a
scenario can be created using the features in that
system. In the SAF system, the BARS-ET user shows
up as just another DI entity, so scenarios can be created
to involve the BARS-ET user just like any other
human-controlled SAF entity.  Additionally, these
scenarios can be saved and repeated as necessary
during a training exercise.

LESSON 7: Test and Validate

As with any system, test and validation are important
pieces of the development cycle. During construction
of BARS-ET we have talked with many subject matter
experts to help guide some of the user-oriented
decisions we had to make. We have had many people
try the system on-site at NRL and have used their



Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2004

feedback to refine the system. In addition, we
transported the system to I/ITSEC 2003 for anyone
attending the show to try out. Such an event made the
weak points of BARS-ET very obvious.

One weak point of BARS-ET is the time and effort
required to set up the system for each venue. The
training environment must be modeled to build the
occlusion model and SAF database. Some venues
already have SAF databases, however, the level of
accuracy and detail may not be enough for the
occlusion model. A model of a training environment,
when viewed in a VR application, may appear to be a
perfect match. However, when that model is overlaid
on the real world using an AR system, many
imperfections become apparent. If the model is too
inaccurate, the location must be surveyed to build the
occlusion model. BARS can connect with commercial
surveying equipment, such as the Leica TotalStation, to
interactively build the model quickly and accurately

Tracking is another consideration during system set up.
If the training environment is indoors, then an indoor
tracking system has to be installed. Current tracking
systems that are accurate enough to work in AR
typically require careful surveying of the tracker
components (beacons or fiducial markers). However,
with careful planning, this is a one-time cost for each
training venue.

The weapon aiming accuracy does not even approach
that of a real weapon. This deficiency results from
fundamental limitations in the accuracy of the tracking
system. Our solution is to draw a weapon avatar on the
display that lines up with the real tracked weapon,
again, within the limitations of the tracking system.
The user thus aims the virtual weapon at the virtual
forces instead of the real weapon. This is effective,
except when the weapon is not in the user’s display.
The weapon can still be aimed, but is subject to tracker
error. Instead of actively tracking the weapon, a future
version of BARS-ET could integrate a passive laser-
based fire detector to more accurately register where
the trainee fired. The importance of the virtual weapon
aiming accuracy is under consideration, as well as
possible negative training effects.

Some users could not adjust for the deficiencies of the
video-based display. As mentioned previously, those
effects are lower resolution, slight lag when moving
quickly, and a difference in brightness and contrast
compared to the real world source.  These effects
distorted the view of the real world enough that the
users felt they were in a completely virtual world,
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which works against the purpose of an AR training
system. Most users did not experience this problem.

User reaction to the training system was generally
positive. Many users who have been through MOUT
concept and the

training liked the initial

implementation.

Figure 5. A conference attendee tries the system.
CONCLUSIONS AND FUTURE WORK

We designed a system that can help trainees in
situations requiring engagement between individual
combatants, such as those in MOUT scenarios. By
using mobile AR, synthetic forces are inserted and
engaged realistically in the real world. A connection to
a SAF system allows the synthetic forces to behave
intelligently and gives trainers a familiar interface with
which to control the scenario. This system gives the
trainee the benefits of both live training and of having
synthetic actors for a predictable, repeatable scenario.

Although the basic pieces are in place to use mobile AR
for embedded training, there is still much work to be
done.  We have in mind several improvements as
future work. These improvements would yield a more
effective system:

e Implement a method to convert BARS terrain
models into the CTDB format used by the
SAF systems, thereby allowing the original
sitte. model to be built using the model
construction facilities in BARS (currently,
conversion is only possible in the opposite
direction, from CTDB to BARS).

e Make the synthetic forces look more realistic
in the AR display. The forces are currently
drawn without respect to environmental
conditions, shadows, or any occluding items
that are not already in the occlusion model.

e Increase the accuracy of the weapon tracking
system. The current tracking methods are
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accurate enough for measuring the user’s
viewpoint, but even slight errors in tracking
the weapon will greatly reduce the accuracy of
the user’s aim.

e Test the system at an actual MOUT facility.

e Draw upon virtual reality-based user tests to
develop a method of testing training
effectiveness using BARS-ET and use that
method to run user studies to validate the
system.
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