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ABSTRACT 
 
Last year Joint Forces Command’s, Joint Experimentation Directorate (J9) initiated planning and development in 
technical support of the most complex experiment (URBAN RESOLVE) undertaken to date. The experiment trials 
(Summer 2004) will explore future concepts and technologies for achieving situational awareness and understanding 
when operating in a robust large-city urban environment.  In addition, the need for generating quantifiable results 
took on a renewed level of interest. The Commander, Joint Forces Command directed that future experiments 
provide findings that can survive critical scrutiny, particularly if those transformational products and solutions are to 
be promulgated across the Department. The authors’ add another chapter to last year’s paper, as they craft a system 
for providing more creditable and quantifiable data to support experiment findings. This paper will cover:  changes 
made in the initial plan for data collection and analysis as new challenges arose along the way; the technical issues 
related to the architectural choices; as well as the challenges awaiting the group of individuals charged with 
maintaining a nationwide, distributed federation and network whose ultimate goal is to provide cogent, traceable 
data generated from the federation and human-in-the-loop player inputs. In preparing for the experiment trials, initial 
data storage assumptions gave way to the realities of finding more robust methods of collection as bandwidth traffic 
increased as federation architectures were modified to support emerging user requirements. Innovative approaches 
on how near-real-time data would be collected were instantiated as attention turned towards the post-processing 
needs that would sustain the experiment analysis team in the months following the trials. Integrating scalable 
parallel processors and addressing issues dealing with the means for storing and retrieving extremely large quantities 
of data added to the challenges. Finally, major lessons learned will be addressed from a transformational 
perspective. 
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PRELUDE 
 

The reader should be aware that the title of this paper 
ends with “—Part II”. Those familiar with human-in-
the-loop simulations like JSAF (Joint Semi-Automated 
Forces) and joint experiments set in the year 2018, 
such as URBAN RESOLVE, realize that when one 
pushes the boundaries of simulation-support-to-
experimentation a discovery process, in its own right, 
is created as the bounds of “what can be done in 
simulation” is continually challenged and superseded. 
Over the course of the past year, what started as a 
concept for developing “a best approach for collecting 
and analyzing data” gave way to the practical 
experience gained through the number of integration 
events necessary to prepare for the formal trials. The 
authors’ felt it necessary to add another chapter to last 
year’s journey (Graebener, et. al., 2003).1  
 
 

INTRODUCTION 
 

The initial concept of how to approach data collection 
and analysis when faced with a simulation federation 
that could generate data records in the terabyte range 
has evolved over the past year. Whereas PART I laid 
out the challenges associated with extremely large data 
generation conditions and the initial approach for 
meeting the experiment data collection requirements, 
and significant detail of the major changes will follow.2 
 
This paper will cover:   
 
• Changes made in the initial plan for data collection 

and analysis as new challenges arose along the 
way, as well as technical issues related to the 
architectural choices;  

• Subsequent modifications in the data analysis tools 
to meet the changing user requirements, 

• Challenges awaiting the group of individuals 
charged with maintaining a nationwide distributed 

                                                
1 Last year’s paper will be referred to as PART I for the 
remainder of this paper. 
2 The authors recommend a review of last year’s paper 
to serve as a point of departure. Go to: 
http://www.alionscience.com/pdf/Data_Collection.pdf 
  

federation and network whose ultimate goal is to 
provide cogent, traceable data generated from the 
federation and human-in-the-loop player inputs.  

• Finally, lessons learned will be addressed from a 
transformational perspective. 

 
In preparing for this year’s experiment trials, initial 
data storage assumptions gave way to the realities of 
finding more robust methods of collection when 
network traffic increased as federation architectures 
were modified to support changing/emerging user 
requirements. Innovative approaches on how near-real-
time data would be collected were instantiated as 
attention turned towards the post-processing needs that 
would sustain the experiment analysis team in the 
months following the trials. Integrating scalable 
parallel processors and addressing issues dealing with 
the means for storing and retrieving extremely large 
quantities of data added to the challenges. (Table 1) 
 
Table 1. Data Collected During Dress Rehearsal Week. 
 

# of Data Records 
of Interest (stored 

in 576 tables) 

Percent of Total 
Data Logged 

Size of 
Database 

264 million 15-20 45 GB 
Average size of each record: 180 bytes  

 
BACKGROUND 

 
The original concept behind the FAARS (Future After 
Action Review System) toolkit was based on utilizing 
commercial-off-the-shelf (COTS) products for 
collecting simulation data.  The original design 
specifications for the FAARS toolkit comprises three 
separate modules; a Data Collection Module utilizing 
hlaResults as the federation data interceptor and 
storage transport, a Near Real Time Module utilizing 
MySQL as the data storage medium along with a 
Apache web server with PHP scripts as the data 
presentation and analysis medium, and  a Post Event 
Analysis Module  using  MySQL as the data storage 
medium and a custom written C++ user interface for 
accessing stored data for processing and analyses.  
Although this design works well and is being used in 
several joint experiments, it was not robust enough to 
support the URBAN RESOLVE series. Initial testing 
results using the complex urban terrain and tens of 
thousands of entities being detected by a large 
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constellation of sensors were adequately handled using 
Scalable Parallel Processor clusters, however the 
methodology of using hlaResults as the data collector 
no longer met the requirements.  The reasons for 
replacing hlaResults were:   
 
1) hlaResults only works with an NG-style RTI.  For 
the UR effort, we are using an s-style RTI, which is a 
different implementation loosely based on DMSOs 
RTI-NG v1.3 standard.  
 
2) When hlaResults subscribes to ALL entity traffic 
this overwhelms the physical network interface and 
causes packets to be dropped at the physical interface, 
effectively “missing” information. 
 
3) Due to the nature of how cluster computers function, 
a significant amount of the simulation event 
information could not be effectively be logged.3  Based 
on these factors, a different data logging architecture 
was needed. 
 

INTERCEPTOR/LOGGER 
 
The Interceptor/Logger application, an early version 
described in PART I, is an application process that 
resides on individual simulation nodes within the 
federation.4  The determining factor on where to utilize 
the mechanism is determined by which federates are 
publishing information needed for data collection.  The 
interceptor/logger, utilizing functionality in the RTI 
Application Programming Interface, inserts “hooks” 
into the published data streams by the RTI and then 
splits off two child processes; one process that writes 
and compresses the intercepted data into binary “log” 
files and a second process that decodes the data stream 
and inserts the decoded data into an embedded 
database application called SQLite.  A separate 
daemon process called “sqlited” handles incoming 
socket-based connection attempts to query information 
that has been stored in the local database.  Figure 1 is a 
diagram of the process. 
 

                                                
3 The data could not be intercepted and logged by the 
hlaResults product because a significant amount of 
simulation traffic would be exchanged between SPP 
cluster nodes running the simulation and not 
transmitted outside of the cluster, a necessary 
prerequisite for hlaResults. 
 
4 Developed by the Information Sciences Institute (ISI) 
at the University of Southern California, 

 
Figure 1. Interceptor/Logger Process 

 
Because of the methodology of running 
interceptor/loggers on each simulator with data of 
interest, a separate mechanism was needed to retrieve 
information stored at each simulator location.  A 
separate application process called “Aggregator” was 
developed that would handle the intercommunication 
between simulators logging data.  The Aggregator is 
configured in a tree-like fashion, with a “Root 
Aggregator” at the head of the tree and “Child 
Aggregators” in branches from the root.  The various 
branches reach out to the individual leaf instances of 
“sqlited” on each simulator.  The interface to the Root 
Aggregator takes a Structured Query Language-
formatted query and passes the query on to each branch 
Child Aggregators until the query finally reaches the 
individual instances of “sqlited”.  As each instance of 
“sqlited” responds with the requested data for the 
query, the Child Aggregators assemble the returned 
information in order of response and forwards the data 
on to the Root Aggregator which then assembles the 
complete returned information and forward it on to the 
original requestor.  The Aggregator model works on 
Transmission Control Protocol (TCP) socket-based 
connections between the Root Aggregator and 
subsequent Children Aggregators. 
 
Near Real Time Retrieval Of Data 
 
With the utilization of the ISI interceptor/logger, the 
possibility of retrieving simulation information in a 
“near real time” manner became a reality.  Typically, 
data collection efforts have had to wait until after 
collected logger files have been processed before any 
specific event information could be derived.  This is a 
vast improvement in functionality and provides a wide 
range of uses that are still being realized as we move 
forward in the software development effort. 
 
The Near Real Time data retrieval effort is based 
around the ability to query the ISI interceptor/logger 
application, retrieve the logged information from each 
node and store the retrieved information into a local 
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Relational Database Management System (RDBMS).  
The retrieved information is then used by the FAARS 
Near Real Time web server interface to allow users of 
the system to view various reports, charts and graphs 
based on the available information. 
 
The process of retrieving intercepted information from 
each of the active ISI interceptor/loggers is handled by 
a series of BASH shell scripts on the FAARS web 
server.  Each BASH shell script is targeted towards 
retrieving specific information, such as entity object 
states, and is used to process the retrieved information 
into the local RDBMS (aka cache).  The data retrieval 
process is based on three steps.  The first step is to send 
the request for information to the Root Aggregator. The 
methodology used by the retrieval process is based on 
making a TCP socket-based connection to the Root 
Aggregator and sending an SQL-formatted query.   The 
second step is to wait for a response and 
process/validate the retrieved data and write this data to 
a temporary file.  The expected response back from the 
Root Aggregator is a stream of plain ASCII text, which 
is tab-delimited for fields and is carriage return 
delimited for individual records.  This information is 
then written to a temporary file in this same tab-
delimited/carriage return delimited format.  The third 
and final step is to then load the temporary file's data 
into the local cache. 
 
The FAARS web server RDBMS cache uses MySQL 
v4.1.1. as the database engine.  The database schema 
for the cache is based primarily on the schema used by 
the ISI interceptor/logger. This helps in facilitating 
compatibility with the information that is being utilized 
in near real time and data being reviewed post event.  
The main difference between near real time and post 
event processing is the different indexing schemas 
utilized on the local cache.  The indices applied to the 
local cache database have been specifically tuned to 
support the types of queries that the FAARS web 
server uses for data displays. 
 
Storage Space Requirements 
 
When the overall design of the FAARS toolkit began to 
change to utilize the ISI interceptor/logger, physical 
storage space for collected data files and consolidated 
database became an issue.  With the switch to using a 
larger-scale database engine than previously used and 
the need to analyze larger amounts of data than 
previously anticipated, the need for more physical 
media space became apparent.  Where it was once 
thought that ten's of Gigabytes (GB) of storage space 
would be sufficient, it soon became apparent that this 
was not going to be acceptable.  The central 
importance of disk space is its centrality to all three 

aspects of the process:  storage of compressed logger 
files, storage space for staging uncompressed logger 
files while loading into consolidated database, and 
space needed for the final database tables and indices.  
What was finally settled on was a RAID 5 disk array 
totaling 1.7 Terabytes (TB) of disk space with a stand 
by disk array of 1.3 TB in size. 
 
Because of the distributed nature of logging data that 
has begun to be utilized, it has become necessary to 
develop means to: retrieve all of the saved binary data 
logs on each simulator where the ISI interceptor/logger 
was instantiated; prepare and decode the binary data 
files, and then; insert the decoded data into a 
consolidated database representing the complete 
accumulation of data for a particular event.  A process 
called “Data Staging” has been developed that 
accomplishes these tasks in an organized, efficient 
manner, making the best usage of available bandwidth, 
processing cycles and disk space. (See Figure 2)  The 
Data Staging process begins with retrieving the binary 
log files at the end of each day’s simulation run from 
each simulator logging data.  The data is moved and 
stored on the local storage point in a hierarchical 
format based on the event name, day of the event and 
the simulator where the log file was retrieved.  Once 
the data has been moved, Perl-based scripts are run 
against the individual binary log file to decode and 
format the binary data into plain-text, comma-separated 
value (CSV) flat files.  The translation of the data and 
the creation of the storage database schema are based 
on utilizing definitions found in the Federation Object 
Model (FOM) and Federation Execution Document 
(FED) for the federation in use.  Each CSV-formatted 
file represents a section of data to be inserted into the 
consolidated database for the event.  A final Perl-based 
script takes the CSV-format files and inserts the 
decoded data into the appropriate table within the 
consolidated database. 
 

 
 

Figure 2. Data Staging Process 
 
Database Engine Configuration Issues 
 
Previously, the MySQL v4.0.18 RDBMS was selected 
for storing the decoded logger data for Post Event 
analysis operations.  As a database engine, MySQL is 
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both an open-source and a commercial product line 
with a significant amount of engine performance tuning 
available for the end user to adjust based on specific 
needs. Through trial and observation, several 
adjustments to the database engine were decided on 
that would afford us the best performance for both the 
loading and the retrieval of data. 
 
Database Table Configuration Issues 
The MySQL database server engine supports several 
different table types, the default being MyISAM but 
provides support for BerkeleyDB, InnoDB, MERGE 
and MEMORY table types.  It was decided to stick 
with the default type of MyISAM mainly for the fact 
that once data is loaded into a table, the data in the 
table becomes static and read only.  Both BerkeleyDB 
and InnoDB table types are transaction safe, which for 
our purposes are not necessary. 
 
One of the primary concerns for the table definitions 
revolved around the number of rows the tables will 
contain.  During initial testing, it was discovered that 
the default number of rows that a MyISAM table could 
hold was less than the number of rows to be loaded.  
The overall data size for the table is determined by the 
types of fields used for the table and the data size for 
each type.  Examples of this would be an INTEGER 
field type, which can have a data size up to 4 bytes and 
VARCHAR field type, which can have a data size up 
to the length of the text value + 1 byte.  For the 
purposes of this experiment, there are three table 
settings that had to be set in order for the tables to scale 
to the number of rows anticipated.  By adjusting the 
AVG_ROW_LENGTH, MAX_ROWS and 
ROW_FORMAT variables for MyISAM tables, it was 
possible to adjust the number of rows of data that the 
table can have.  The ROW_FORMAT variable defines 
how the table rows should be stored.  The option value 
can be FIXED or DYNAMIC for static or variable 
length row formats.  When a table is defined that does 
not have BLOB or TEXT type columns, you can force 
the table format to FIXED or DYNAMIC with the 
ROW_FORMAT table option. This causes CHAR and 
VARCHAR columns to become CHAR for FIXED 
format or VARCHAR for DYNAMIC format.  The 
AVG_ROW_LENGTH variable defines an 
approximation of the average row length for a table. 
This should be set only for large tables with variable 
size records. With a MyISAM table type, MySQL uses 
the product of MAX_ROWS times AVG_ROW_ 
LENGTH to decide how big the resulting table will be.  
If neither of these variables is specified, the default 
maximum size for a table will be 4GB.  Overall, 
adjusting these variables are an absolute must to 
support the number of rows of data that have been 

observed for both the Near Real Time cache database 
and the Post Event consolidated database. 
 
Because of the number of rows of data being stored 
into tables, it is imperative that efficient indexing be 
applied based on a thorough analysis of how data is 
extracted from the databases. 
 
All columns used are not necessarily indexed, but only 
the columns that would enhance a typical query.  As an 
example, within most tables there are VARCHAR 
fields that hold RTI-determined object name values.  
The object name in question, for the most part, 
uniquely identifies a specific entity within the 
simulation.  Any column in a table that contains this 
type of data has an index applied to it because most of 
the queries posed utilize this column type as part of the 
qualifier of an SQL statement.  Other indices are 
applied on a table-by-table basis within both the Near 
Real Time cache and Post Event databases geared 
towards their unique needs, but painstaking research 
went into selecting the most efficient usage of indices 
as part of each database schema creation effort. 
 
 

NEAR REAL TIME PROCESSING 
 
An example of one of the tools used for near-real-time 
analysis is the Track Matrix. The track matrix table 
provides a tabular snapshot of the current (based on the 
last 30-35 minutes of simulation time before the query 
is submitted) number of tracks associated with each 
type of entity.  The row labels of this table are the 
actual truth types of entities being tracked at the current 
time.  The column labels represent the perception of 
the entities being tracked.  The column headings are 
exactly the same as the row headings because the set of 
possible perceptions is the same as the set of possible 
track types; Perceptions are determined by the 
SLAMEM simulation federate's sensor fusion center 
utilizing algorithms based on Bayes Rule. The resulting 
target type with the highest probability is the type 
associated with the track. The table entry in a given 
row and column is the number of tracks belonging to 
the corresponding row type that are perceived to be the 
given column type.  A column labeled 'Ambiguous' 
indicates that those tracks are not resolvable. This 
means that the sensor fusion process determined that 
two or more target types were equally probable as the 
type of target being tracked. 
 
Subsequent details associated with the Track Matrix 
are a series of additional tables and graphs segregating 
tracks into their ages, which is defined as the length of 
time between when the track was created and the last 
time it was updated.  By segregating tracks by their 
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age, it is possible to get a sense on how well sensors 
and, in some cases players, are aware of the entities 
being played within the simulation.   Older tracks can 
be perceived as having a higher probability of positive 
identification as opposed to tracks that persist for a 
shorter amount of time. 
 
 

POST EVENT PROCESSING 
 
In accordance with numerous authorities, the highest-
level decomposition of the Post Event Processing 
system was into a single control class, entity classes, 
and an interface class (inasmuch as the interface class 
was a straightforward application of Microsoft 
Foundation Class (MFC), it will not be discussed).  
There are three general entity classes, called Database, 
Processor, and Final_Results.  These roughly 
correspond to a traditional functional breakdown into 
input, transformation, and output.  To promote the 
greatest possible generality, interactions between the 
Database class and the other classes were performed 
using Open DataBase Connectivity (ODBC).  The 
Final_Results class encapsulates Microsoft Excel or a 
commercial graphical package called ChartDirector.  
Communications to and from that class uses either 
Microsoft’s OLE Automation or ChartDirector’s API.  
The Processor class, as well as most of the 
infrastructure of the system, was written using C++. 
 
The post processing system comprises eight overall 
functional areas, all invoked by the user. These 
functions are as follows: 
 

1. A Killer/Victim (K/V) Scoreboard, 
2. A Killer/Victim details display, 
3. An Entity Life Cycle summary screen, 
4. An Entity Details Display, 
5. A Sensor/Target (S/T) Scoreboard, 
6. A Sensor/Target details display,  
7. A Track Perception Matrix, and 
8. A timeline (String) depiction that displays, 

graphically, the events in the lifecycle of any 
specific entity. 

 
K/V Scoreboard 
As currently coded, the K/V Scoreboard is produced by 
querying for the number and enumerations of all killers 
and victims are obtained via simple SQL queries. For 
each possible combination of killer and victim, the 
Damage Assessment interaction is queried to obtain the 
relevant victim’s state. This is recorded, along with the 
entity causing the damage. Summations are performed 
by type (as indicated by enumeration values). The final 
results are presented in the form of an Excel 
spreadsheet or comma-separated value flat file. 

K/V Details Display 
To obtain the details of any Killer/Victim interaction, 
the user is first presented with a screen enabling him to 
choose a particular killer and victim.  Queries are 
performed against a lookup table to transform these 
English names into enumerations.  An SQL statement 
is then constructed and executed that extracts the 
relevant fields from the Damage Assessment 
interaction. 
 
Entity Life Cycle 
The Entity life cycle summary output is derived largely 
from the entity state objects.  All the entities used in 
the execution are gathered together into a vector.  For 
each entity thus obtained, its entity state object is 
queried to obtain the fields necessary to compute its 
final state.  This state is then determined and added to a 
running total. 
 
Entity Details Display 
Entity life cycle details are obtained from numerous 
objects.  The user first chooses an entity via a series of 
drop-downs.  To obtain the entity’s state changes, its 
entity state objects are scanned for all records 
indicating a change of state, whose details are then 
recorded.  The appropriate objects are then queried to 
ascertain the entity’s creation and deletion details; data 
on sensor hits and weapon fire events, and detonations 
occurring on or near the entity. 
 
S/T Scoreboard 
The Sensor/Target Scoreboard summary output is 
similar in structure and layout to the Killer/Victim 
Scoreboard with the exception of the data obtained for 
the matrix display.  For each possible combination of 
sensor platform and detected target, the Contact Report 
interaction is queried to obtain the relevant information 
concerning the detected target and the functional mode 
the sensor used to interrogate the target.  Summations 
are performed by sensor platform and by sensor mode 
(as indicated by enumeration values) with the final 
results being presented in the form of an Excel 
spreadsheet or comma-separated value flat file. 
 
S/T Details Display 
To obtain the details of any Sensor/Target interaction, 
the user is first presented with a screen enabling him to 
choose a particular sensor platform and detected target.  
Queries are performed against a lookup table to 
transform these English names into enumerations.  An 
SQL statement is then constructed and executed that 
extracts the relevant fields from the Contact Report 
interaction. 
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Figure 3. Track Perception Matrix 

          
 
Track Perception Matrix 
The Track Perception Matrix summary output is 
designed to show information concerning simulation 
Tracks and how they are being perceived by the sensor 
model being used by the federation.  For each possible 
combination of true entity types (truth guise) and 
perceived entity types (perceived guise), the Track and 
Track_probabilities interactions are queried to obtain 
the relevant information used to generate the display.  
The display consists of column headings representing 
the perceived guise possibilities, row headings 
representing the truth guise possibilities, and a diagonal 
across the table which represents where the truth guise 
and perceived guise intersect.  See Figure 3 for an 
example section from a Track Matrix.  The row and 
column heading extents are determined in advance by 
aggregating entity types together via a lookup table.  
The information displayed is then available for export 
to either an Excel spreadsheet or comma-separated 
value flat file.  
 
String Chart 
The String chart requires much of the same data as 
contained in the Entity Life Cycle details screen, and 
therefore uses the similar algorithms to gather data.  
However, instead of sending the results to an Excel 
spreadsheet, the data is fed to a commercial graphing 
product (ChartDirector).  This product produces a 
timeline whereby events are depicted as color-coded 
icons.  Placement of the icons at different y-axis values 
depicts the different events.  These are placed in proper 
time order, with the x-axis showing wall clock time. 

 
The String chart allows the user the choice of 
displaying the requested information in three possible 
ways with the data segregated into four sections: 
 

• Entity Event, 
• Blue Activities, 
• Track Events, and 
• Sensor/Target Events. 

 
The Track Events and Sensor/Target Events sections 
are also segregated to show all instances of individual 
track numbers and sensor name/mode combinations or 
actual target type and bumper number. Each section or 
subsection is then sorted by time. 
 
The Entity event section graphically depicts all changes 
that are derivable from an examination of objects 
received via the High Level Architecture (HLA) 
federation.  These include entity creation, entry into 
damage states (firepower, mobility, firepower and 
mobility, or total destruction), moves and stops, and 
entry into or exit from camouflage.  This section also 
records instances of the entity firing its weapon, 
receiving incoming fire, being deleted, or being 
recreated after a deletion. 
 
The Sensor/Target section can depict two types of 
information.  If the entity in question is being sensed, it 
will contain a comprehensive display of all the sensors 
that “saw” the entity, the sensor’s mode, the highest 
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acquisition, the highest correct perception, the 
perceived type, and the time of detection.  If the entity 
was within the footprint of the sensor but was not 
detected, a brief explanation of why is given. 
 
If the entity in question is itself a sensor, the chart 
displays a listing of all entities that were detected, their 
actual type and bumper number, the highest 
acquisition, the highest correct perception, the 
perceived type, the sensor mode employed, and the 
time of detection.  As before, if the entity was within 
the footprint of the sensor but was not detected, a brief 
explanation of why is given. 
 
The track events sections show all tracks associated 
with the entity.  For each track, a listing of the top three 
most probable entity types is given, along with the 
computed probability of the entity being of that type 
and the number of sensor hits used to determine it. 
 
The blue activities section is reserved for human 
actions, such as planning a mission, assigning it a 
priority, initiating an attack or mission abort, 
requesting a bomb damage assessment, etc.  All such 
user actions are sorted by time. 
 
In addition to the pictorial generated by ChartDirector, 
a file containing the corresponding raw data (in either 
CSV flat file form or as an Access database) is also 
generated to allow the analyst to examine the 
information used to generate the picture directly. 
 
 

CHALLENGES 
 
General Gordon Sullivan (Chief of Staff of the United 
States Army, 1991-95) once said, “You don’t know 
what you don’t know,” a statement that accurately 
describes today’s challenges in mining extremely large 
databases.  
 
Some of the challenges under initial assessment by the 
FAARS team: 
 
• Policies and procedures for allowing interested 

government agencies access to the data generated 
by the URBAN RESOLVE experiment. 

 
o The data storage server is connected to the 

DREN. What is the best approach for 
allowing others on-line access while 
minimizing the impact on the UR data 
collection and analysis effort? 

o Will the answer be purely policy driven or 
can software and hardware solutions enable 

the simultaneous utilization of the 
database? 

 
• Less than twenty percent of the collected data is of 

primary importance to the data analysts, at present.  
 

o What impact will occur when the remaining 
eighty percent of the data is transformed 
through the data staging process and 
available on the terabyte storage device?  

o Will new techniques be required?  
 

 
CONCLUSION 

 
The discovery process is not solely a characteristic of 
the joint experiment, but touches many aspects 
associated with the experimentation effort. As Joint 
Forces Command and the Joint Advanced Warfighting 
Program at IDA demand more from the simulation 
community the ripple affect moves throughout the 
various federates providing support. 
 
In this specific case, the data collection and analysis 
effort has met the near term challenges brought about 
by an experiment scenario that requires over one-
hundred-thousand entities; 1.8 million buildings and 
man-made urban structures to set the stage for 
achieving situational awareness in the 2018 timeframe. 
Use of hundreds of scalable parallel processors each 
logging the data generated during run-time was the 
impetus for the FAARS effort.  
 
New challenges that have arisen since PART I was 
published will pale as we contemplate the challenges 
that we face for the upcoming year’s trials. The good 
news story is the FAARS team, in fact the whole M&S 
team in J9, will continue to meet and overcome 
whatever challenges arise, and who knows, there might 
be another chapter awaiting... 
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