Interservice/Industry Simulation, and Education Conference (I/ITSEC) 2004

Successful Joint Experimentation Starts at the Data Collection Trail—Part 11

Robert J. Graebener, Gregory Rafuse, Robert Miller & Ke-Thia Yao
M&S Team, Experimentation Engineering Department, J9 USJFCOM
Suffolk, Virginia
rgracben@ida.org, grafuse@alionscience.com, rmiller@alionscience.com & kyao@isi.edu

ABSTRACT

Last year Joint Forces Command’s, Joint Experimentation Directorate (J9) initiated planning and development in
technical support of the most complex experiment (URBAN RESOLVE) undertaken to date. The experiment trials
(Summer 2004) will explore future concepts and technologies for achieving situational awareness and understanding
when operating in a robust large-city urban environment. In addition, the need for generating quantifiable results
took on a renewed level of interest. The Commander, Joint Forces Command directed that future experiments
provide findings that can survive critical scrutiny, particularly if those transformational products and solutions are to
be promulgated across the Department. The authors’ add another chapter to last year’s paper, as they craft a system
for providing more creditable and quantifiable data to support experiment findings. This paper will cover: changes
made in the initial plan for data collection and analysis as new challenges arose along the way; the technical issues
related to the architectural choices; as well as the challenges awaiting the group of individuals charged with
maintaining a nationwide, distributed federation and network whose ultimate goal is to provide cogent, traceable
data generated from the federation and human-in-the-loop player inputs. In preparing for the experiment trials, initial
data storage assumptions gave way to the realities of finding more robust methods of collection as bandwidth traffic
increased as federation architectures were modified to support emerging user requirements. Innovative approaches
on how near-real-time data would be collected were instantiated as attention turned towards the post-processing
needs that would sustain the experiment analysis team in the months following the trials. Integrating scalable
parallel processors and addressing issues dealing with the means for storing and retrieving extremely large quantities
of data added to the challenges. Finally, major lessons learned will be addressed from a transformational
perspective.

ABOUT THE AUTHORS

Bob Graebener, Colonel, United States Army (Retired), has been a member of the professional staff at the Institute
for Defense Analyses (IDA) since March 1997. He is currently a Research Staff Member at IDA and has primarily
involved in supporting JFCOM J7/J9 in Modeling and Simulation related matters for the past nine years. He is
currently working towards a doctoral degree in Systems Engineering from GWU.

Gregory Rafuse is a data collection analyst and developer and is currently the lead developer for the data collection
toolkit. He is a Software Engineer with Alion Science and Technology. Mr. Rafuse has previously served seven
years with the US Army as a Field Artillery Crewman. He also possesses an AAS in Computer Information
Systems (CIS) from McLennan Community College and is pursuing a BS in CIS from Strayer University.

Robert Miller is a Senior Software Engineer with Alion Science and Technology. He brings over 11 years of
experience to the current effort of designing, coding, and testing software for the Future After Action Review
System. He holds a Bachelors Degree in Engineering from The Cooper Union School of Engineering and a Masters
Degree in Computer Science from the City University of New York.

Ke-Thia Yao is a research scientist in the Distributed Scalable Systems Division of the University of Southern
California Information Sciences Institute. Currently, he is working on the JESPP project, which has the goal of
supporting very large-scale distributed military simulation involving millions of entities. Within the JESPP project
he is developing a suite of monitoring/logging/analysis tools to help users better understand the computational and
behavioral properties of large-scale simulations. He received his B.S. degree in EECS from UC Berkeley, and his
M.S. and Ph.D. degrees in Computer Science from Rutgers University. For his Ph.D. thesis he implemented a spatial
and physical reasoning system that automatically generated grids for novel geometries for computational fluid
dynamics simulators.

2004 Paper No. 1579 Page 1 of 8

Interservice/Industry Simulation, and Education Conference (I/ITSEC) 2004

Successful Joint Experimentation Starts at the Data Collection Trail—Part 11

Robert J. Graebener, Gregory Rafuse, Robert Miller & Ke-Thia Yao
M&S Team, Experimentation Engineering Department, J9 USJFCOM
Suffolk, Virginia
rgracben@ida.org, grafuse@alionscience.com, rmiller@alionscience.com & kyao@isi.edu

PRELUDE

The reader should be aware that the title of this paper
ends with “—Part II”. Those familiar with human-in-
the-loop simulations like JSAF (Joint Semi-Automated
Forces) and joint experiments set in the year 2018,
such as URBAN RESOLVE, realize that when one
pushes the boundaries of simulation-support-to-
experimentation a discovery process, in its own right,
is created as the bounds of “what can be done in
simulation” is continually challenged and superseded.
Over the course of the past year, what started as a
concept for developing “a best approach for collecting
and analyzing data” gave way to the practical
experience gained through the number of integration
events necessary to prepare for the formal trials. The
authors’ felt it necessary to add another chapter to last
year’s journey (Graebener, et. al., 2003)."

INTRODUCTION

The initial concept of how to approach data collection
and analysis when faced with a simulation federation
that could generate data records in the terabyte range
has evolved over the past year. Whereas PART 1 laid
out the challenges associated with extremely large data
generation conditions and the initial approach for
meeting the experiment data collection requirements,
and significant detail of the major changes will follow.”

This paper will cover:

e Changes made in the initial plan for data collection
and analysis as new challenges arose along the
way, as well as technical issues related to the
architectural choices;

e Subsequent modifications in the data analysis tools
to meet the changing user requirements,

e Challenges awaiting the group of individuals
charged with maintaining a nationwide distributed

' Last year’s paper will be referred to as PART I for the
remainder of this paper.
* The authors recommend a review of last year’s paper

to serve as a point of departure. Go to:
http://www.alionscience.com/pdf/Data_Collection.pdf

2004 Paper No. 1579 Page 2 of 8

federation and network whose ultimate goal is to
provide cogent, traceable data generated from the
federation and human-in-the-loop player inputs.

e Finally, lessons learned will be addressed from a
transformational perspective.

In preparing for this year’s experiment trials, initial
data storage assumptions gave way to the realities of
finding more robust methods of collection when
network traffic increased as federation architectures
were modified to support changing/emerging user
requirements. Innovative approaches on how near-real-
time data would be collected were instantiated as
attention turned towards the post-processing needs that
would sustain the experiment analysis team in the
months following the trials. Integrating scalable
parallel processors and addressing issues dealing with
the means for storing and retrieving extremely large
quantities of data added to the challenges. (Table 1)

Table 1. Data Collected During Dress Rehearsal Week.

of Data Records
of Interest (stored
in 576 tables)
264 million 15-20 45 GB
Average size of each record: 180 bytes

Size of
Database

Percent of Total
Data Logged

BACKGROUND

The original concept behind the FAARS (Future After
Action Review System) toolkit was based on utilizing
commercial-off-the-shelf (COTS) products for
collecting simulation data. = The original design
specifications for the FAARS toolkit comprises three
separate modules; a Data Collection Module utilizing
hlaResults as the federation data interceptor and
storage transport, a Near Real Time Module utilizing
MySQL as the data storage medium along with a
Apache web server with PHP scripts as the data
presentation and analysis medium, and a Post Event
Analysis Module using MySQL as the data storage
medium and a custom written C++ user interface for
accessing stored data for processing and analyses.
Although this design works well and is being used in
several joint experiments, it was not robust enough to
support the URBAN RESOLVE series. Initial testing
results using the complex urban terrain and tens of
thousands of entities being detected by a large

Interservice/Industry Simulation, and Education Conference (I/ITSEC) 2004

constellation of sensors were adequately handled using
Scalable Parallel Processor clusters, however the
methodology of using hlaResults as the data collector
no longer met the requirements. The reasons for
replacing hlaResults were:

1) hlaResults only works with an NG-style RTI. For
the UR effort, we are using an s-style RTI, which is a
different implementation loosely based on DMSOs
RTI-NG v1.3 standard.

2) When hlaResults subscribes to ALL entity traffic
this overwhelms the physical network interface and
causes packets to be dropped at the physical interface,
effectively “missing” information.

3) Due to the nature of how cluster computers function,
a significant amount of the simulation event
information could not be effectively be logged.” Based
on these factors, a different data logging architecture
was needed.

INTERCEPTOR/LOGGER

The Interceptor/Logger application, an early version
described in PART 1, is an application process that
resides on individual simulation nodes within the
federation.” The determining factor on where to utilize
the mechanism is determined by which federates are
publishing information needed for data collection. The
interceptor/logger, utilizing functionality in the RTI
Application Programming Interface, inserts “hooks”
into the published data streams by the RTI and then
splits off two child processes; one process that writes
and compresses the intercepted data into binary “log”
files and a second process that decodes the data stream
and inserts the decoded data into an embedded
database application called SQLite. A separate
daemon process called “sqlited” handles incoming
socket-based connection attempts to query information
that has been stored in the local database. Figure 1isa
diagram of the process.

* The data could not be intercepted and logged by the
hlaResults product because a significant amount of
simulation traffic would be exchanged between SPP
cluster nodes running the simulation and not
transmitted outside of the cluster, a necessary
prerequisite for hlaResults.

* Developed by the Information Sciences Institute (ISI)
at the University of Southern California,

2004 Paper No. 1579 Page 3 of 8

LOGGER

SIMULATOR

ARCHIER
UND{E0 CHET
INTERCEFPTOR \
DECODER

RTI

TP
™R

FAARS Wb Senrer =qlited

SQlite DB

Figure 1. Interceptor/Logger Process

Because of the methodology of running
interceptor/loggers on each simulator with data of
interest, a separate mechanism was needed to retrieve
information stored at each simulator location. A
separate application process called “Aggregator” was
developed that would handle the intercommunication
between simulators logging data. The Aggregator is
configured in a tree-like fashion, with a “Root
Aggregator” at the head of the tree and “Child
Aggregators” in branches from the root. The various
branches reach out to the individual leaf instances of
“sqlited” on each simulator. The interface to the Root
Aggregator takes a Structured Query Language-
formatted query and passes the query on to each branch
Child Aggregators until the query finally reaches the
individual instances of “sqlited”. As each instance of
“sqlited” responds with the requested data for the
query, the Child Aggregators assemble the returned
information in order of response and forwards the data
on to the Root Aggregator which then assembles the
complete returned information and forward it on to the
original requestor. The Aggregator model works on
Transmission Control Protocol (TCP) socket-based
connections between the Root Aggregator and
subsequent Children Aggregators.

Near Real Time Retrieval Of Data

With the utilization of the ISI interceptor/logger, the
possibility of retrieving simulation information in a
“near real time” manner became a reality. Typically,
data collection efforts have had to wait until after
collected logger files have been processed before any
specific event information could be derived. This is a
vast improvement in functionality and provides a wide
range of uses that are still being realized as we move
forward in the software development effort.

The Near Real Time data retrieval effort is based
around the ability to query the ISI interceptor/logger
application, retrieve the logged information from each
node and store the retrieved information into a local

Interservice/Industry Simulation, and Education Conference (I/ITSEC) 2004

Relational Database Management System (RDBMS).
The retrieved information is then used by the FAARS
Near Real Time web server interface to allow users of
the system to view various reports, charts and graphs
based on the available information.

The process of retrieving intercepted information from
each of the active ISI interceptor/loggers is handled by
a series of BASH shell scripts on the FAARS web
server. Each BASH shell script is targeted towards
retrieving specific information, such as entity object
states, and is used to process the retrieved information
into the local RDBMS (aka cache). The data retrieval
process is based on three steps. The first step is to send
the request for information to the Root Aggregator. The
methodology used by the retrieval process is based on
making a TCP socket-based connection to the Root
Aggregator and sending an SQL-formatted query. The
second step is to wait for a response and
process/validate the retrieved data and write this data to
a temporary file. The expected response back from the
Root Aggregator is a stream of plain ASCII text, which
is tab-delimited for fields and is carriage return
delimited for individual records. This information is
then written to a temporary file in this same tab-
delimited/carriage return delimited format. The third
and final step is to then load the temporary file's data
into the local cache.

The FAARS web server RDBMS cache uses MySQL
v4.1.1. as the database engine. The database schema
for the cache is based primarily on the schema used by
the ISI interceptor/logger. This helps in facilitating
compatibility with the information that is being utilized
in near real time and data being reviewed post event.
The main difference between near real time and post
event processing is the different indexing schemas
utilized on the local cache. The indices applied to the
local cache database have been specifically tuned to
support the types of queries that the FAARS web
server uses for data displays.

Storage Space Requirements

When the overall design of the FAARS toolkit began to
change to utilize the ISI interceptor/logger, physical
storage space for collected data files and consolidated
database became an issue. With the switch to using a
larger-scale database engine than previously used and
the need to analyze larger amounts of data than
previously anticipated, the need for more physical
media space became apparent. Where it was once
thought that ten's of Gigabytes (GB) of storage space
would be sufficient, it soon became apparent that this
was not going to be acceptable. The central
importance of disk space is its centrality to all three

2004 Paper No. 1579 Page 4 of 8

aspects of the process: storage of compressed logger
files, storage space for staging uncompressed logger
files while loading into consolidated database, and
space needed for the final database tables and indices.
What was finally settled on was a RAID 5 disk array
totaling 1.7 Terabytes (TB) of disk space with a stand
by disk array of 1.3 TB in size.

Because of the distributed nature of logging data that
has begun to be utilized, it has become necessary to
develop means to: retrieve all of the saved binary data
logs on each simulator where the ISI interceptor/logger
was instantiated; prepare and decode the binary data
files, and then; insert the decoded data into a
consolidated database representing the complete
accumulation of data for a particular event. A process
called “Data Staging” has been developed that
accomplishes these tasks in an organized, efficient
manner, making the best usage of available bandwidth,
processing cycles and disk space. (See Figure 2) The
Data Staging process begins with retrieving the binary
log files at the end of each day’s simulation run from
each simulator logging data. The data is moved and
stored on the local storage point in a hierarchical
format based on the event name, day of the event and
the simulator where the log file was retrieved. Once
the data has been moved, Perl-based scripts are run
against the individual binary log file to decode and
format the binary data into plain-text, comma-separated
value (CSV) flat files. The translation of the data and
the creation of the storage database schema are based
on utilizing definitions found in the Federation Object
Model (FOM) and Federation Execution Document
(FED) for the federation in use. Each CSV-formatted
file represents a section of data to be inserted into the
consolidated database for the event. A final Perl-based
script takes the CSV-format files and inserts the
decoded data into the appropriate table within the
consolidated database.

[daily]
DECODE

SABER™ FS

SABER DB

WySOL DB

Archivel
hleta bl
= .daff.az]

= fed
=omt

=ewent=f
“sites

undecoded’

decoded!

[daihy]
IMPORT

“ SABER = ENET Mosi ramE

Figure 2. Data Staging Process
Database Engine Configuration Issues
Previously, the MySQL v4.0.18 RDBMS was selected

for storing the decoded logger data for Post Event
analysis operations. As a database engine, MySQL is

Interservice/Industry Simulation, and Education Conference (I/ITSEC) 2004

both an open-source and a commercial product line
with a significant amount of engine performance tuning
available for the end user to adjust based on specific
needs. Through trial and observation, several
adjustments to the database engine were decided on
that would afford us the best performance for both the
loading and the retrieval of data.

Database Table Configuration Issues

The MySQL database server engine supports several
different table types, the default being MyISAM but
provides support for BerkeleyDB, InnoDB, MERGE
and MEMORY table types. It was decided to stick
with the default type of MyISAM mainly for the fact
that once data is loaded into a table, the data in the
table becomes static and read only. Both BerkeleyDB
and InnoDB table types are transaction safe, which for
our purposes are not necessary.

One of the primary concerns for the table definitions
revolved around the number of rows the tables will
contain. During initial testing, it was discovered that
the default number of rows that a MyISAM table could
hold was less than the number of rows to be loaded.
The overall data size for the table is determined by the
types of fields used for the table and the data size for
each type. Examples of this would be an INTEGER
field type, which can have a data size up to 4 bytes and
VARCHAR field type, which can have a data size up
to the length of the text value + 1 byte. For the
purposes of this experiment, there are three table
settings that had to be set in order for the tables to scale
to the number of rows anticipated. By adjusting the
AVG_ROW_LENGTH, MAX ROWS and
ROW_FORMAT variables for MyISAM tables, it was
possible to adjust the number of rows of data that the
table can have. The ROW_FORMAT variable defines
how the table rows should be stored. The option value
can be FIXED or DYNAMIC for static or variable
length row formats. When a table is defined that does
not have BLOB or TEXT type columns, you can force
the table format to FIXED or DYNAMIC with the
ROW_FORMAT table option. This causes CHAR and
VARCHAR columns to become CHAR for FIXED
format or VARCHAR for DYNAMIC format. The
AVG_ROW_LENGTH variable defines an
approximation of the average row length for a table.
This should be set only for large tables with variable
size records. With a MyISAM table type, MySQL uses
the product of MAX ROWS times AVG ROW
LENGTH to decide how big the resulting table will be.
If neither of these variables is specified, the default
maximum size for a table will be 4GB. Overall,
adjusting these variables are an absolute must to
support the number of rows of data that have been

2004 Paper No. 1579 Page 5 of 8

observed for both the Near Real Time cache database
and the Post Event consolidated database.

Because of the number of rows of data being stored
into tables, it is imperative that efficient indexing be
applied based on a thorough analysis of how data is
extracted from the databases.

All columns used are not necessarily indexed, but only
the columns that would enhance a typical query. As an
example, within most tables there are VARCHAR
fields that hold RTI-determined object name values.
The object name in question, for the most part,
uniquely identifies a specific entity within the
simulation. Any column in a table that contains this
type of data has an index applied to it because most of
the queries posed utilize this column type as part of the
qualifier of an SQL statement. Other indices are
applied on a table-by-table basis within both the Near
Real Time cache and Post Event databases geared
towards their unique needs, but painstaking research
went into selecting the most efficient usage of indices
as part of each database schema creation effort.

NEAR REAL TIME PROCESSING

An example of one of the tools used for near-real-time
analysis is the Track Matrix. The track matrix table
provides a tabular snapshot of the current (based on the
last 30-35 minutes of simulation time before the query
is submitted) number of tracks associated with each
type of entity. The row labels of this table are the
actual truth types of entities being tracked at the current
time. The column labels represent the perception of
the entities being tracked. The column headings are
exactly the same as the row headings because the set of
possible perceptions is the same as the set of possible
track types; Perceptions are determined by the
SLAMEM simulation federate's sensor fusion center
utilizing algorithms based on Bayes Rule. The resulting
target type with the highest probability is the type
associated with the track. The table entry in a given
row and column is the number of tracks belonging to
the corresponding row type that are perceived to be the
given column type. A column labeled 'Ambiguous'
indicates that those tracks are not resolvable. This
means that the sensor fusion process determined that
two or more target types were equally probable as the
type of target being tracked.

Subsequent details associated with the Track Matrix
are a series of additional tables and graphs segregating
tracks into their ages, which is defined as the length of
time between when the track was created and the last
time it was updated. By segregating tracks by their

Interservice/Industry Simulation, and Education Conference (I/ITSEC) 2004

age, it is possible to get a sense on how well sensors
and, in some cases players, are aware of the entities
being played within the simulation. Older tracks can
be perceived as having a higher probability of positive
identification as opposed to tracks that persist for a
shorter amount of time.

POST EVENT PROCESSING

In accordance with numerous authorities, the highest-
level decomposition of the Post Event Processing
system was into a single control class, entity classes,
and an interface class (inasmuch as the interface class
was a straightforward application of Microsoft
Foundation Class (MFC), it will not be discussed).
There are three general entity classes, called Database,
Processor, and Final Results. These roughly
correspond to a traditional functional breakdown into
input, transformation, and output. To promote the
greatest possible generality, interactions between the
Database class and the other classes were performed
using Open DataBase Connectivity (ODBC). The
Final Results class encapsulates Microsoft Excel or a
commercial graphical package called ChartDirector.
Communications to and from that class uses either
Microsoft’s OLE Automation or ChartDirector’s API.
The Processor class, as well as most of the
infrastructure of the system, was written using C++.

The post processing system comprises eight overall
functional areas, all invoked by the user. These
functions are as follows:

A Killer/Victim (K/V) Scoreboard,

A Killer/Victim details display,

An Entity Life Cycle summary screen,

An Entity Details Display,

A Sensor/Target (S/T) Scoreboard,

A Sensor/Target details display,

A Track Perception Matrix, and

A timeline (String) depiction that displays,
graphically, the events in the lifecycle of any
specific entity.

e A Sl

K/V Scoreboard

As currently coded, the K/V Scoreboard is produced by
querying for the number and enumerations of all killers
and victims are obtained via simple SQL queries. For
each possible combination of killer and victim, the
Damage Assessment interaction is queried to obtain the
relevant victim’s state. This is recorded, along with the
entity causing the damage. Summations are performed
by type (as indicated by enumeration values). The final
results are presented in the form of an Excel
spreadsheet or comma-separated value flat file.

2004 Paper No. 1579 Page 6 of 8

K/V Details Display

To obtain the details of any Killer/Victim interaction,
the user is first presented with a screen enabling him to
choose a particular killer and victim. Queries are
performed against a lookup table to transform these
English names into enumerations. An SQL statement
is then constructed and executed that extracts the
relevant fields from the Damage Assessment
interaction.

Entity Life Cycle

The Entity life cycle summary output is derived largely
from the entity state objects. All the entities used in
the execution are gathered together into a vector. For
each entity thus obtained, its entity state object is
queried to obtain the fields necessary to compute its
final state. This state is then determined and added to a
running total.

Entity Details Display

Entity life cycle details are obtained from numerous
objects. The user first chooses an entity via a series of
drop-downs. To obtain the entity’s state changes, its
entity state objects are scanned for all records
indicating a change of state, whose details are then
recorded. The appropriate objects are then queried to
ascertain the entity’s creation and deletion details; data
on sensor hits and weapon fire events, and detonations
occurring on or near the entity.

S/T Scoreboard

The Sensor/Target Scoreboard summary output is
similar in structure and layout to the Killer/Victim
Scoreboard with the exception of the data obtained for
the matrix display. For each possible combination of
sensor platform and detected target, the Contact Report
interaction is queried to obtain the relevant information
concerning the detected target and the functional mode
the sensor used to interrogate the target. Summations
are performed by sensor platform and by sensor mode
(as indicated by enumeration values) with the final
results being presented in the form of an Excel
spreadsheet or comma-separated value flat file.

S/T Details Display

To obtain the details of any Sensor/Target interaction,
the user is first presented with a screen enabling him to
choose a particular sensor platform and detected target.
Queries are performed against a lookup table to
transform these English names into enumerations. An
SQL statement is then constructed and executed that
extracts the relevant fields from the Contact Report
interaction.

Interservice/Industry Simulation, and Education Conference (I/ITSEC) 2004

| FPerception

AD
10smm || 1zomm || asa ARMED || BARBED
LESERE HeiTzer (| MeRTARN | 255 sp S DM NEEE G] | S gim e REREE] | BRSO RERIER
VEHICLE
- D
- D
[_aamzsose | [e [= T o [o1
- D
[Asmep covLian | [I Ce 00 - -
[earecowre | [L] [e -]
[ewes | | (I | | |

| B
[

I I I I n

Figure 3. Track Perception Matrix

Track Perception Matrix

The Track Perception Matrix summary output is
designed to show information concerning simulation
Tracks and how they are being perceived by the sensor
model being used by the federation. For each possible
combination of true entity types (truth guise) and
perceived entity types (perceived guise), the Track and
Track probabilities interactions are queried to obtain
the relevant information used to generate the display.
The display consists of column headings representing
the perceived guise possibilities, row headings
representing the truth guise possibilities, and a diagonal
across the table which represents where the truth guise
and perceived guise intersect. See Figure 3 for an
example section from a Track Matrix. The row and
column heading extents are determined in advance by
aggregating entity types together via a lookup table.
The information displayed is then available for export
to either an Excel spreadsheet or comma-separated
value flat file.

String Chart

The String chart requires much of the same data as
contained in the Entity Life Cycle details screen, and
therefore uses the similar algorithms to gather data.
However, instead of sending the results to an Excel
spreadsheet, the data is fed to a commercial graphing
product (ChartDirector). This product produces a
timeline whereby events are depicted as color-coded
icons. Placement of the icons at different y-axis values
depicts the different events. These are placed in proper
time order, with the x-axis showing wall clock time.

2004 Paper No. 1579 Page 7 of 8

The String chart allows the user the choice of
displaying the requested information in three possible
ways with the data segregated into four sections:

Entity Event,

Blue Activities,
Track Events, and
Sensor/Target Events.

The Track Events and Sensor/Target Events sections
are also segregated to show all instances of individual
track numbers and sensor name/mode combinations or
actual target type and bumper number. Each section or
subsection is then sorted by time.

The Entity event section graphically depicts all changes
that are derivable from an examination of objects
received via the High Level Architecture (HLA)
federation. These include entity creation, entry into
damage states (firepower, mobility, firepower and
mobility, or total destruction), moves and stops, and
entry into or exit from camouflage. This section also
records instances of the entity firing its weapon,
receiving incoming fire, being deleted, or being
recreated after a deletion.

The Sensor/Target section can depict two types of
information. If the entity in question is being sensed, it
will contain a comprehensive display of all the sensors
that “saw” the entity, the sensor’s mode, the highest

Interservice/Industry Simulation, and Education Conference (I/ITSEC) 2004

acquisition, the highest correct perception, the
perceived type, and the time of detection. If the entity
was within the footprint of the sensor but was not
detected, a brief explanation of why is given.

If the entity in question is itself a sensor, the chart
displays a listing of all entities that were detected, their
actual type and bumper number, the highest
acquisition, the highest correct perception, the
perceived type, the sensor mode employed, and the
time of detection. As before, if the entity was within
the footprint of the sensor but was not detected, a brief
explanation of why is given.

The track events sections show all tracks associated
with the entity. For each track, a listing of the top three
most probable entity types is given, along with the
computed probability of the entity being of that type
and the number of sensor hits used to determine it.

The blue activities section is reserved for human
actions, such as planning a mission, assigning it a
priority, initiating an attack or mission abort,
requesting a bomb damage assessment, etc. All such
user actions are sorted by time.

In addition to the pictorial generated by ChartDirector,
a file containing the corresponding raw data (in either
CSV flat file form or as an Access database) is also
generated to allow the analyst to examine the
information used to generate the picture directly.

CHALLENGES

General Gordon Sullivan (Chief of Staff of the United
States Army, 1991-95) once said, “You don’t know
what you don’t know,” a statement that accurately
describes today’s challenges in mining extremely large
databases.

Some of the challenges under initial assessment by the
FAARS team:

e Policies and procedures for allowing interested
government agencies access to the data generated
by the URBAN RESOLVE experiment.

o The data storage server is connected to the
DREN. What is the best approach for
allowing others on-line access while
minimizing the impact on the UR data
collection and analysis effort?

o Will the answer be purely policy driven or
can software and hardware solutions enable

2004 Paper No. 1579 Page 8 of 8

the simultaneous utilization of the

database?

e Less than twenty percent of the collected data is of
primary importance to the data analysts, at present.

o What impact will occur when the remaining
eighty percent of the data is transformed
through the data staging process and
available on the terabyte storage device?

o Will new techniques be required?

CONCLUSION

The discovery process is not solely a characteristic of
the joint experiment, but touches many aspects
associated with the experimentation effort. As Joint
Forces Command and the Joint Advanced Warfighting
Program at IDA demand more from the simulation
community the ripple affect moves throughout the
various federates providing support.

In this specific case, the data collection and analysis
effort has met the near term challenges brought about
by an experiment scenario that requires over one-
hundred-thousand entities; 1.8 million buildings and
man-made urban structures to set the stage for
achieving situational awareness in the 2018 timeframe.
Use of hundreds of scalable parallel processors each
logging the data generated during run-time was the
impetus for the FAARS effort.

New challenges that have arisen since PART I was
published will pale as we contemplate the challenges
that we face for the upcoming year’s trials. The good
news story is the FAARS team, in fact the whole M&S
team in J9, will continue to meet and overcome
whatever challenges arise, and who knows, there might
be another chapter awaiting...

REFERENCES

Dehncke, Rae W., Graebener, Robert J. 2004. Urban
Resolve: Joint Experimentation Raises the Bar for
M&S. Orlando: IITSEC 2004 Paper.

Graebener, Robert J., Rafuse, Gregory, Miller, Robert,
and Ke-Thia Yao. 2003. The Road to Successful
Joint Experimentation Starts at the Data
Collection Trail. Orlando: IITSEC 2003 Paper.

