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ABSTRACT

The need to present quantifiable results from simulations to support transformational findings is driving the creation of very
large and geographically dispersed data collections. The Joint Experimentation Directorate (J9) of United States Joint Forces
Command (USJFCOM) and the Joint Advanced Warfighting Project (JAWP) is conducting a series of Urban Resolve
experiments to investigate concepts for applying future technologies to joint urban warfare. The recently concluded phase I of
the experiment utilized and integrated multiple scalable parallel processors (SPP) sites distributed across the United States
from supercomputing centers at Maui and at Wright-Patterson to J9 at Norfolk, Virginia. This computational power is
required to model futuristic sensor technology and the complexity of urban environments. For phase I the simulation
generated more than two terabytes of raw data at rate of over ten gigabytes per hour. The size and distributed nature of this
type of data collection pose significant challenges in developing the corresponding data-intensive applications that manage
and analyze them.

Building on lessons learned in developing data management tools for Urban Resolve, we present our next generation data
management and analysis tool, called Simulation Data Grid (SDG). The design principles driving the design of SDG are 1)
minimize network communication overhead (especially across SPPs) by storing data near the point of generation and only
selectively propagating the data as needed, and 2) maximize the use of SPP computational resources and storage by
distributing analyses across SPP sites to reduce, filter and aggregate. Our key implementation principle is to leverage existing
open standards and infrastructure from Grid Computing. We show how our services interface and build on top of Open Grid
Services Architecture standard and existing toolkits (Globus). SDG services include distributed data query/analysis, data
cataloging, and data gathering/slicing/distribution. We envision SDG to be a general-purpose tool useful for a range of
simulation domains.
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INTRODUCTION

The specific motivation to develop the data logging and
retrieval system described in this paper is to support
simulations by the JUSJFCOM wusing Joint Semi
Autonomous Forces (JSAF) software. JSAF provides
entity-level simulation of ground, air and naval forces.
Simulation of civilian entities is performed by a separate
simulator. Simulation of multiple sensor platforms is
performed by a program called Simulation of the Locations
and Attack of Mobile Enemy Missiles (SLAMEM). JSAF
scales from a single Central Processing Unit (CPU) to
hundreds of CPU's. Individual simulators run on a single
CPU. The High-Level Architecture (HLA)
publish/subscribe  software architecture is used to
communicate results between simulators. A software router
network enables the system to scale to hundreds of
processors.

In the last two years a requirement for a large increase in
the number and the fidelity of simulated entities justified
the upgrade of JSAF simulations from workstations on a
local-area network, simulating a few hundred or thousand
entities to a wide-area network including multiple Beowulf
clusters and hundreds of processors simulating hundreds of
thousands of entities.

An important part of the simulations is to log what happens
for near real time and after action analysis. The broad range
of analysis requires that nearly all data be logged. The
mechanism used is to log data when it is published. The
earliest implementation included in the simulation a
software logger, which subscribed to, and received all data
published anywhere in the simulation. The total size of the
logged data was limited to two gigabytes (GB). This
worked when the number of processors and the number of
simulated entities was small.

In 2003, to support larger simulations on Beowulf clusters
Information Sciences Institute (ISI) implemented a
distributed logger. Data is logged locally on each processor
running a simulator. Near real time data queries are
supported by a simple tree system to broadcast a query and
concatenate results. After action queries are supported by
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transferring compressed binary files to a single host and
expanding into a single monolithic database.

In 2005, this implementation is no longer adequate. The
current size of a database for a two-week exercise, omitting
nonessential data, is over a terabyte. The time required to
transfer data to a single site and insert it into a database is
inconvenient. Maintenance of hardware and software to
support multiple large databases (one per exercise) on a
single system is difficult. The current system cannot
support anticipated future increases in the size and fidelity
of exercises and the amount of data to be logged.

This paper describes SDG, the data logging system
designed and implemented to support large JSAF
simulations. SDG utilizes the resources of the systems
generating the data, distributed processors and storage.
Logging resources thus scale as processors are added to
support the simulation.

SIMULATION DATA GRID
Overview

Simulation Data Grid is a distributed data management
application/middleware that helps people deal with very
large, geographically dispersed data sets over
heterogeneous environments.

SDG provides data handling capabilities that are essential to
current and future simulation analysis needs of the
USJFCOM. 1t is able to collect and store high volume/high
rate data from geographically distributed data sources, to
browse high-level summaries and overviews of the stored
data, to query details of the stored data, and to discover
what part of the data has changed.

These capabilities are applicable to multiple domains where
large amounts of data are generated, such as distributed
event-based simulation (e.g. JSAF), live instrumented
exercises, and instrumented physics experiments.
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The collected data and the analysis tools provided are of
potential use to a variety of people working with the
simulation. To the military analysts the logged data can be
used to compute effectiveness measures, such as situation
awareness. They can compare and contrast simulation
ground truth against sensor observations. The simulation
developers can use the same logged data for validation and
verification. They can query the logs to check simulation
events/patterns against expected behavior to find anomalous
behavior. The logging can easily be adapted to log resource
usage, such as CPU, memory and network usage.
Infrastructure managers can use these data to discover faults
and resource usage bottlenecks.

The initial performance goal of SDG is to be able to support
JSAF simulations running with one million entities. Such
high entity counts would generate, to within an order of
magnitude, about 100 GB of data per hour. Over a typical
two-week event, about eight terabytes of data would need to
be collected. Large-scale JSAF simulations are typically
distributed across multiple geographically dispersed sites.
In the Urban Resolve experiments the simulation was
distributed across two supercomputers and multiple
workstations at different sites. The sites include Maui High
Performance Computing Center (MHPCC), Aeronautical
Systems Center (ASC), J9, Space and Naval Warfare
Systems Command (SPAWAR), and Topographic
Engineering Center (TEC).

Leveraging Grid Computing

SDG is intended to operate in a joint experimentation
environment, where the computing software and hardware
elements may be quickly assembled on an as needed basis.
The constituent elements may change depending on need
and on resource availability. Each Urban Resolve exercise
in a literal sense is setting up a virtual computing
organization to solve a significant problem. This virtual
organization spans multiple administrative domains each
with its own security policies, and each offering its unique
combination of computing, networking and storage
capabilities.

The goal of Grid Computing is to provide pervasive
dependable access to distributed computing resources. The
Grid Computing vision, if realized, promises access to
computing as easily as people currently access the power
grid through their wall sockets. The main focus of SDG is
data collection and analysis. But, in order for SDG to work
effectively in a joint environment it must also address many
of the same issues that face Grid Computing.
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Grid computing research focuses on developing an
interoperable common infrastructure that provides
dependable  consistent access to distributed and
decentralized computing resources. It addresses the
problem of coordinated resource sharing and problem
solving in dynamic, multi-institutional virtual organizations
(Foster et al., 2001).

To emphasize the focus on developing interoperable tools
and interfaces that work across platforms and organizations,
Foster proposes that grid computing coordinate resources
that are not subject to centralized control using standard,
open, general-purpose protocols and interfaces to deliver
nontrivial qualities of service (Foster et al, 2002).

Below we describe the Globus Toolkit, an open source
implementation of Grid Computing services (Foster et al.,
2002). Through out the paper, we refer back to this
description to point ways SDG can potentially leverage
these services.

Globus components are classified into five types (Foster,
2005). Common Runtime components provide a set of
libraries and tools to allow Globus services to be platform-
independent. Many Globus services are based on web
services as defined by the World Wide Web Consortium.
These services use eXtensible Markup Language (XML) as
the data interchange format, Simple Object Access Protocol
(SOAP) for messaging and Web Services Description
Language (WSDL) for service interface description. Some
Globus services, like GridFTP that were developed earlier,
do not follow the web services framework.

Security components provide services related to user
authentication, authorization, secured communications, and
credential management. Security is a very important aspect
of distributed simulations, but it is not the focus of this

paper.

Data Management components provide services related to
distributed data management, which includes data
transportation, data replication and data access.

Information Services provide registries to allow services to
register themselves, to discover other services and to
monitor the status of services.

Execution Management components provide the ability to
initiate, monitor, manage, schedule, and/or coordinate
remote computations. These components can interface with
batch job schedulers typically found at supercomputing
sites.
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Data movement components include GridFTP and Reliable
File Transfer Service (RFT). GridFTP provides secure,
robust, fast, efficient, standards based data transfer
protocol. Version 4 provides striped transfer mode, where
multiple nodes work together to transfer their own portion
of the file. RFT, built on top of GridFTP, is a web service
that provides the ability to recover from client-side failure
by storing the transfer state in databases. Also, it provides a
job scheduler to manage multiple transfers.

Data replication components include Replica Location
Service, which provides a distributed registry that maps
logical file names to physical file names. Also, the Data
Publishing and Replication service provides pull-based
services that automatically create local file replicas based
on user request.

The Data Access and Integration (DAI) data management
component is a federated service that provides registries to
discovery data sources, factories to represent data sources,
and data services to access data source in different formats
(relational databases, XML databases, flat files).

DATA REQUIREMENTS AND OPERATIONAL
EXPERIENCES FROM URBAN RESOLVE

J9 and JAWP, staged several training and integration
exercises in early 2004, followed by four experiments, each
two weeks long, from June through October. Several sites
participated in the events. TEC site at Fort Belvoir,
Virginia, had 30+ workstations and Saber, a quad-CPU
machine with four terabytes of disk space that we used for
after event storage. The SPAWAR site at San Diego,
California, had 20+ workstations. The J9 Distributed
Continuous Experimentation Environment at Suffolk,
Virginia, had 50+ workstations and a 16-node mini-cluster.
The ASC Wright Patterson Air Force Base at Dayton, Ohio,
had the Glenn cluster with 128 dual CPU nodes. The
MHPCC site at Maui, Hawaii, had the Koa cluster with 128
dual CPU nodes.

The experiments typically ran five days a week, ten hours a
day. Simulators might run all night, but with little activity
and wusually with logging disabled. Depending on
availability and requirements, one or both of Glenn and Koa
were used. Up to two hundred thousand clutter entities were
simulated on the large clusters. (In this simulation, civilian
entities are termed clutter, in that they serve to mask
military entities.) Several thousand non-clutter entities were
simulated on the other sites. A single node on the large
clusters simulated 1000-2000 clutter entities.
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Data logging was performed in two modes, near real time
and after action. Real time data was inserted in an SQLite
database. A node simulating 1000 clutter items would
generate an SQLite database of approximately 50 MB in an
hour. The databases were deleted and reinitialized when
they grew to over a gigabyte. If 100 nodes of the cluster
were used for clutter simulators, approximately 5 gigabytes
per hour of data was generated. For after action use,
compressed binary data was stored in an archive directory.
Binary compressed data is approximately 1/7™ the size of
the corresponding database. Each night, the archived data
was transferred to Saber, and expanded and decoded into a
single MySQL database.

Clutter data from the Glenn and Koa clusters was not
entered into the Saber database, due to size limitations.
Data from 100 nodes on Glenn for a ten-day event would
have been close to a terabyte. Data from TEC, SPAWAR,
J9 and J9 mini-cluster for non-clutter entities were entered
into the MySQL database. Urban Resolve Phase I exercise
generated about a terabyte of data in the MySQL database.

The nightly data transfer was about 15 gigabytes of
compressed data. Network transfer rate to Saber was
approximately ten megabits per second. Three or four hours
was required to do the transfer. Decoding and indexing the
data into the MySQL database took 12 hours if everything
worked perfectly. Human error and other factors usually
prevented a day’s data from being entered into the database
before the next day’s event started. It was usually at least
several days after an event before the complete after action
database was ready on Saber.

The logging methodology used for the four exercises in
2004 was adequate. It was the first attempt at logging data
from hundreds of processors distributed geographically
around the country simulating thousands of non-clutter
entities. SDG is intended to remove deficiencies in the 2004
methodology and upgrade what was essentially an
experimental system into a production system. The design
parameters for SDG specifically address the following list
of deficiencies in the 2004 system:

1. Near real time and after action data logging are
implemented differently. Near real time queries are
restricted by the use of simple aggregators.

2. The use of a single database on Saber does not have
the capacity to include clutter data from the Glenn
and Koa clusters.

3. Data transfers, decoding and indexing are time
consuming and error prone, delaying the availability
of the database. A goal is to have the complete
database kept up to data continuously.
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4. Retrieval of data and database generation for
multiple exercises is inconvenient.

5. Expansion to more compute nodes, more entities per
compute node and more data per entity is impossible.
Disk storage, compute power, and network
bandwidth all impose serious limitations.

6. The system does not respond gracefully to hardware
and network problems. Saber is a single point of
failure that makes all data unavailable.

7. Complex queries that may be useful to analysts are
slow or impossible.

Database queries used in Urban Resolve are generally
summary in nature. They count how many events or entities
(database rows) meet specified criteria. Complex join
operations were rarely, or never, used. Were it not for this
constraint on the queries, an efficient distributed design
would be more difficult.

SDG MODELS
User's Conceptual Model

As described in the previous section, in the current system
data collected from the simulation are distributed and
replicated at multiple locations. There is one access
mechanism to query the data during simulation runtime,
and another when the simulation is over. From the user's
perspective, these data access complexities are unnecessary.

SDG adds a data access middleware layer that hides these
complexities and presents a simple coherent view of data to
the user. From their desktops SDG users should be able to
access and analyze the data without having to know':

1. How to access the data and what is the network
interconnection topology (Access transparency).

2. Where is the data located (Location transparency)

3. Whether the data source has moved (Migration
transparency)

4. Whether the data is from a replicated source
(replication transparency)

'"Tanenbaum & van Steen (2002) defines three additional
transparency goals for distributed systems. Some of
these goals are beyond the current scope of SDG, and
some are not applicable.
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5. Whether data sources are shared (Concurrency
transparency).

Users interact with SDG through one of SDG's top-level
Managers. Users submit queries to a top-level Manager, and
they receive query results from a top-level Manager.

SDG is capable of handling static data sets (no new data
added), as well as dynamic data sets (new data continuously
being added). For dynamic data sets, users can register
static queries with top-level managers, and receive
asynchronous query results.

SDG provides feedback to the users regarding the queries
they submit by letting them know the resources required to
execute the query and the resources currently available.

Fallacies of Distributed Data computing

In 1991, Peter Deutsch articulated Eight Fallacies of
Distributed Computing (Deutsch, 2005):
1. The network is reliable
Latency is zero
Bandwidth is infinite
The network is secure
The topology doesn't change
There is one administrator
The transport cost is zero
The network is homogeneous

NN BB

Distributed software systems developed under these
assumptions tend to be brittle. They later have to be re-
engineered to work around these assumptions.

Potential additional fallacies related to Distributed Data
Computing:

9. Disk capacity is infinite

10. Disk latency is zero

11. Disk bandwidth is infinite

12. Data processing cost is zero

The initial design of the 2004 system was based on the
assumption that there is sufficient local disk space to store
the logged data. But, we found nodes on supercomputer
clusters tend to have less local disk space than the average
desktop computer. We had to first implement a near-
realtime system, then an off-site after action post-
processing system.

SDG manages these potential pitfalls through a unique
division of labor. SDG hides some of the networking details
from the user by explicitly managing the five transparencies
listed above, but exposes other details (e.g., resource usage



Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2005

and storage options) to allow users to examine and if
needed override default behavior and manage those details
themselves.

To address the Distributed Data Computing Fallacies, we
intend to provide multiple data services with varying levels
of capabilities to let the user select the appropriate services
for the tasks at hand (Table 1). These storage options trade-
off storage size, query speed and query preprocessing time.
For the Urban Resolve exercises approximately 50% of the
messages were not logged because these messages were
internal simulation bookkeeping messages. For example,
Clutter Intersection (ClutterInt) messages that determine
which car should enter an intersection next usually are of no
interest to the analysts.

Table 1 Range of storage options that trades-off
storage size, query speed and preprocessing time.

Storage Storage Query | Query pre-

Options Size Speed | processing
Do not log Zero N/A None
Compressed Small Very Small
(raw) slow
Text (decoded) | Medium | Slow Small
Database Medium | Medium | Medium
DB w/ indexing | Large Fast Large
Cube (D = # of | Large, for | Fast Large, for
dimensions) high D high D

Typically, a user may want to include a compressed storage
option to keep an archive of the simulation data. Then, the
user may wish to select another storage option, for all or a
partial subset of the messages, for faster querying. If the
user chose multiple storage options, he has the option of
deleting/truncating data storage to recover disk space.

Designer's Conceptual Model

SDG Managers perform all of the data access/
query/management tasks. Conceptually, there are three
types of Managers: top-level, data source and worker.

Top-level managers have published addresses. Users
connect through the top-level managers. To minimize
network traffic typically there is at least one top-level
manager for each local area network. Top-level managers
know how to connect to each other. Non-top-level
managers know how to connect to at least one top-level
manager (Figure 1).
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Data Source managers store the actual data. Other
applications insert data into Data Source Managers through
defined Application Programming Interfaces (APIs).

Worker managers perform most of the work within the
system. When given a data processing task, the top-level
manager decomposes a task into sub-tasks. Depending on
the nature of the task the top-level manager enlists one or
more managers worker, data source or other top-level
managers. It then assigns sub-tasks to these managers and
data source managers. Finally, it defines a data flow
topology linking together the sub-task executions.

The mapping of the tasks onto managers must take into
account and take advantage of a heterogeneous computing
environment. The networking infrastructure within a local
cluster typically uses Gigabit Ethernet, or even faster
proprictary Myrinet. The inter-cluster networking
infrastructure is typically orders of magnitude slower.
Computation must be moved closer to the data sources to
avoid transportation penalties.

The storage hierarchy varies from cluster to cluster. For
example, the original configuration of the Koa cluster at
Maui Supercomputing Center does not include local hard
drives. A ten terabyte Storage Area network (SAN) mount
on Global File System(GFS) functions as the only
secondary storage. The Glenn cluster at ASC has a total of
ten terabyte storage mounted on local hard drives, and ten
terabyte SAN storage mounted on GFS.

USE CASES

In this section we describe various use cases to capture the
functional requirements for SDG. Also, we describe how to
map these requirements to Grid Computing functionality
provided by Globus. We divide the use cases into three
categories: How SDG  manages itself (system
administrators), how SDG manages the data sets (data
administrators), and how SDG is used to query/analyze data
(data analysts).

System Administrators

System administrative functions are used to manage the
SDG system itself. The functions needed include the ability
to remotely manage and control startup and shutdown of
managers, the ability to remotely monitor the health of
managers, and the ability to map task decomposition
hierarchies and data flow diagrams onto the managers.
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These system administration functionalities match well with
Globus' Execution Management components and
Information Services' Monitoring and Discovery System
(MDS). MDS's Index Service is able to register services, as
well as maintain resource properties associated with the
service. MDS's Trigger Service can be used to send alerts
when certain conditions occur, such as when a local disk is
nearing capacity. Execution Management provides ways to
submit, cancel and manage remote job executions.

B L]

Figure 1 Designer's Conceptual Model. Dashed loops
indicate the boundary of local area networks.

Data Administrators

Data administrative functions are used to manage the data
collected and stored within the system.

Monitor Data/Resource Usage Statistics. Monitor the rate
and size of data flowing into the SDG system, monitor the
available disk capacity, monitor network usage, and
monitor CPU usage.

Archive data sources. Copy/move data sources into one
centralized location. This is useful for archiving data into a
centralized SAN or a tape archival system.

Merge/split data sources. Combine multiple data sources
into one source. Partition one data source into multiple data
sources. These operations are useful to take advantage of
parallelism when extra compute resources are available.

Here we again plan to leverage MDS. MDS is able to
interface with cluster monitoring tools, such as Ganglia
(Ganglia, 2005), to produce up-to-date system load/usage
information. In addition, GridFTP, Reliable File Transfer
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service and Replica Location Service also play important
roles.

Data Analysts

Select Queries. User sends a select Structured Query
Language (SQL) query to a top-level manager. The top-
level manager returns the query result in a result set table.
The underlying data is stored in multiple locations, but to
the user it appears to be one big centralized database.

We further classify select queries into aggregation queries,
union queries and simple queries. Aggregation queries
involve operators like sum, min, max, and average. Union
queries access data from more than one table and/or results
from sub-queries. Simple queries do not involve
aggregation operators or unions.

Sample simple queries include: return all entity weapon
damage reports within the last 30 minutes; and return red
tank movements within the last 10 minutes.

Sample union queries include: return all entities that were
painted by a sensor; and return marking information of the
entity that fired a weapon within the last 10 minutes

Sample aggregate queries include: count the sensor tracks
grouped by sensor type, or group by degree of assuredness;
return killer/victim scoreboards; and return sensor/target
scoreboards

For simple select queries SDG managers only need to
concatenate results returned by sub-tasks without further
processing. The previous implementation supports simple
queries. The next section describes our current effort to
extend to aggregation queries and multidimensional
analysis.

Resource Usage Explanation Queries. This is similar to
MySQL's EXPLAIN command. Given a select query, SDG
traces through the execution of the query, and explains
which resources and how much were used to answer the

query.

Canned Queries. User defines periodic/trigger select
queries. Based on the defined period, or the trigger, SDG
executes the query and asynchronously returns the result to
the user.

Sample uses include: receive alerts when a missile is
launched; and automatically update killer-victim scoreboard
when a weapon is fired.
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The Globus' Data Access and Integration (DAI) service
provides a common web services interface for accessing
heterogeneous data sources (files, relational, XML). The
relational part of the interface allows clients to submit SQL
queries to Data services and to receive query result sets
from the Data services. Also, DAI supports asynchronous
delivery, which may be useful for periodic canned queries.
In addition, Distributed Query Processing (DQP) service
layers distributed join capabilities on top of DAL

However, one key reservation we have about using
DAI/DQP is the overhead of using SOAP/XML based
communication for query result processing. Using standards
based communication make sense if the data sources are
heterogeneous. But, in our case we are focused just on
relational data. Furthermore, scalability to handle very large
simulation data sets is one of our overriding concerns.

DISTRIBUTED MULTIDIMENSIONAL ANALYSES

In this section we focus on the implementation of select
aggregate queries, such as the Sensor/Target Scoreboards.

Background: Sensor/Target Scoreboards

One of the key focus areas of Urban Resolve Phase I is to
study the effectiveness of future Intelligence, Surveillance
and Reconnaissance (ISR) sensors in helping soldiers
operate in complex urban environments. The Sensor/Target
(S/T) Scoreboard provides a visual way of quickly
comparing the relative effectiveness of individual sensor
platforms and sensor modes against different types of
targets. S/T Scoreboard is a specific instance of the more
general multidimensional analysis.

In the Urban Resolve federation, a simulated sensor entity
lays down sensor footprints to delimit sensor coverage
sweep. For each target entity within the footprint, a contact
report is generated to hold the result of the sensor detection.
The contact report includes information about the sensor
entity, the platform the sensor entity is mounted on, the
sensor mode, the target entity, the detection status, the
perceived target type, the perceived target location, the
perceived target velocity and so on.

Sensor/Target scoreboards have the capability of providing
summary views by aggregating individual sensor platforms
into sensor platform types, such as high altitude, medium
altitude, and low altitude. And, it aggregates individual
target entity objects into target classes, which can range
from the generic (like Civilian Large Trucks) to the specific
(like Russian MAZ-543 MEL). As described by Graebener
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(Graebener, 2003), the current implementation of the
scoreboard provides four levels of details. The information
provided are:

1. Table of contact report counts broken down by
sensor platform types and by target classes.

2. Given a sensor platform type and a target class, table
of number of contact report counts broken down by
sensor platforms and by sensor mode.

3. Given a sensor platform and a sensor mode, list of
target objects.

4. Given a target object, list detailed target object
attributes.

Initially, the S/T Scoreboard displays the level one
aggregate table of sensor platform types and target classes.
By clicking on a table cell (i.e., specifying a particular
platform type and target class), the S/T scoreboard brings
up the level two display of sensor platforms and sensor
modes. Sensor modes are methods detection, such as
Moving Target Indicator (MTI) and Synthetic Aperture
radar (SAR) Spot and SAR strip.

Analysis of S/T Scoreboard from Multidimensional
Perspective

The current implementation of S/T Scoreboards projects the
contact reports along three dimensions for analysis. The
three dimensions are sensor platform, target object and
sensor mode. In addition, sensor platforms are aggregated
into sensor platform types, and target objects are aggregated
into target classes. Figure 3 depicts these three dimensions
as linear partial orderings. These dimensions can be crossed
to create lattices, as shown in Figure 2.

With respect to the right lattice in Figure 2, the information
contained in level one S/T scoreboard correspond to the
node fc, sensor platform type by target class. The level two
information corresponds to slices of node pcm, where p is
restricted to a particular sensor type, ¢, and entity class, c.
Levels three and four correspond to target objects specified
by cells in node pom.

The four levels of the S/T scoreboard present information
useful to the analysts. But, other nodes within the lattices
may be of potential interests. For example, node cm
summarizes the effectiveness of sensor modes with respect
to target class. Or, node pc summarizes the effectiveness of
sensor platforms with respect to target class. In addition,
other dimensions not used in S/T Scoreboards may be of
potential interest, for example detection status, time,
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location, terrain classification (high-rises, low-rises, flat),
weather conditions, and so on.

* 1 any * 1 any * 1 any

t : sensor platform type c : target class m : sensor mode

p : sensor platform o0 : target object
Figure 2 Three possible dimensions to partition the data
for analysis.
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Figure 3 Lattices are generated by crossing the
dimensions. Crossing the sensor dimension with the
target dimension generates the lattice on the left.
Crossing the left lattice with the sensor mode dimension
generates the lattice on the right.
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Multidimensional Analysis

S/T Scoreboard falls into a analysis class called
multidimensional analysis, or sometimes called On-Line
Analytical Processing (OLAP) or data warehousing
(Kimbal et. al., 1998). Other types of scoreboards, like
Killer/Victim and Truth/Perception, are also
multidimensional in nature. Conceptually, the data structure
used to store multidimensional analysis data is the cube.
The two-dimensional array data structure used to store a
two-dimensional scoreboard is extended to higher
dimensions.

Users could query the OLAP system for the entire cube, but
typically the users are more interested in projections and
partial views of the cube. Operations on the cube include
roll-up, drill-down and slice & dice. Roll-up aggregates
data along a dimension to hide details. This corresponds to
walking up the dimension lattice. Drill-down partitions data
along a dimension to reveal more details. This corresponds
to walking down the dimension lattice. Slice & dice selects
subsets of the cube elements.
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Query and Data Characteristics

Query and data characteristics within the simulation differ
from traditional OLAP assumptions in two significant
ways: 1) a query is concurrent with insertions, and 2) the
data is distributed.

Typically, OLAP is performed on historical data. For
example, retail chains may keep sales transaction records to
determine their best performing stores, or emerging
consumer trends. This analysis is usually performed off-
line. The analysis need not be updated as individual sales
transactions occur.

In addition, data is typically sent to a centralized facility to
be analyzed. In our case, it is not feasible to centralize the
data because of the amount of data and near-realtime nature
of the query. Our data is logged locally at the point of
generation. If there are 100 simulation nodes, then we have
100 local logs.

Previous works have studied distributed OLAP
implementations (Goil and Choudhary, 2001; Beynon et.
al., 2002). Typically, they employ some type of data
partitioning scheme to perform load balancing and/or to
reduce input/output (I/O) overhead. For example, in the
chunking data partitioning scheme the data cube is
partitioned into smaller sub-cubes. The number of
dimensions of the sub-cubes remains the same, but now
each dimension holds just a subset of the possible
dimension values.

In our case these data partitioning schemes are not
applicable. The simulation setup and placement dictate our
data partitioning scheme. Moving these messages creates
network traffic that may disrupt the actual simulation. Since
we are not able to preposition data, we are investigating
cube compression techniques to minimize storage and the
I/O needed to aggregate the local cubes. These techniques
include partial cube materialization (Harinarayan, 1996)
that selectively pre-computes a subset of lattice nodes,
coalesced cubes (Sismanis and Roussopoulos, 2004;
Sismanis et al., 2002), and shell fragments (Li et al., 2004)
that offer compact ways of storing the cube.

IMPLEMENTATION STATUS AND
EXPERIMENTAL RESULTS

Implementation of a Simple Distributed Sensor Target
Scoreboard
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OLAP systems on single processors are widely used and
described in the literature. Two implementations are
frequently used. Multidimensional On-Line Analytical
Processing (MOLAP) stores multidimensional data in an
explicit multidimensional structure. Relational On-Line
Analytical Processing (ROLAP) stores multidimensional
data in a relational database. MOLAP provides faster access
to data. ROLAP stores sparse data more efficiently. We
chose ROLAP for the implementation of SDG for two
reasons. First, we want the ability to scale to very large data
sets with potentially high number of dimensions. ROLAP
implementations tend to provide better scaling with respect
to storage. Second, the current logger is implemented on
top of relational databases. We want to maintain backward
compatibility to allow the analysts to use SQL to directly
query underlying logged data.

We develop the system and implement features in an
incremental fashion in order to deliver capabilities to J9 in a
reasonable fashion. This has the added benefit of providing
feedback, which can be applied to future development. We
identified the sensor target scoreboard, discussed earlier, as
a critical feature representative of many key features that
would ultimately be required, and that could be
implemented quickly and efficiently.

We chose one week of archived data from one Urban
Resolve event as test data. The sensor target scoreboard is
prepared from a table in the database named
I _ContactReport. We are interested in deriving a unique
value for the type of sensor, the type of target and the
detection status for each row of the table. This information
is used to create a three-dimensional table of counts for
each unique combination. Other information is discarded at
this time. Future enhancements will incorporate information
such as time and location to create a five-dimensional table
(or larger).

The I ContactReport table from our test case has
approximately 18 million records. One column, node,
identifies the machine on which the row was generated. To
simulate the distributed generation of the data we created
four new databases based on applying a regular expression
to the value in the node column. Only 16 columns were
copied to the four new databases. Two additional columns
were added to identify unique combinations of the target
and of the sensor.

Next, a procedure was applied to each of the four new
databases. In a real exercise, this procedure would be
applied independently and concurrently on each computer
maintaining a database.
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The procedure consists of the following steps using MySQL
commands:

1. Create a table of unique combinations of sensor
values and unique combinations of target values.
Assign an enumerated type to each.

2. Create a row in the table for each combination of
sensor type, target type and detection status that
occurs in the I ContactReport table. Compute a
column count giving the number of times the
combination occurs. With appropriate indexing this
takes six minutes for six million records in one of the
four sub-databases.

3. Add rows to the table for “wildcards” as appropriate
for a data cube. A row is created for any sensor, any
target, any detection status, three wildcards. This
should equal the number of rows in the contact table
for a three-dimensional table. Do the same for all
permissible use of two wildcards and one wildcard.

This procedure is applied when a new dataset is introduced
to the system. It is then applied to any new data that is
added to the system. The data cube is always up to date.

There are now four relatively small databases containing
complete and nearly instantaneously accessible information
on the count of any combination of sensor types, target
types and detection types. A user query to a top-level data
manager is relayed to low level data managers connected to
each of the four subdatabases. The responses are merged by
combining responses with the same dimension value and
summing the count field. The result is returned to the user.

CONCLUSION

The use of large clusters (hundreds of nodes or more) of
processors to meet the demand for high performance
computing is becoming a mature technology. The extension
to use multiple clusters is likewise common, but less
mature. The use of OLAP technology to analyze large data
sets also is becoming a mature technology. To support
USJFCOM and JAWP we have combined distributed
clusters and OLAP. Using this approach, and innovation in
key areas, we are able to support our customer's current and
expanding needs. A key principle is to store data close to its
source to minimize network traffic. A second principle is to
utilize the computational and storage resources of
distributed clusters for database functions. These two
principles reinforce, rather than interfere with, each other in
the design and implementation of the data grid. A key area
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of innovation is the intelligent manager. The intelligent
manager categorizes a query, creates an execution plan,
distributes the work for the query, aggregates the results,
and delivers the results. The queries required and
commonly used by JSAF analysts are efficiently executed
by this system. Fault tolerance and realistic data archiving
are additional benefits of our implementation. We will
maintain and extend the system to include more processors,
more clusters, larger datasets and more robust queries as
required by our customer.
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