
 

 

 

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2005 

2005 Paper No. 2292 Page 1 of 11 

Simulation Data Grid: Joint Experimentation Data Management and Analysis 

Ke-Thia Yao and Gene Wagenbreth 
Information Sciences Institute 

University of Southern California 
Marina del Rey, California

kyao@isi.edu, genew@isi.edu

ABSTRACT 

The need to present quantifiable results from simulations to support transformational findings is driving the creation of very 
large and geographically dispersed data collections. The Joint Experimentation Directorate (J9) of United States Joint Forces 
Command (USJFCOM) and the Joint Advanced Warfighting Project (JAWP) is conducting a series of Urban Resolve 
experiments to investigate concepts for applying future technologies to joint urban warfare. The recently concluded phase I of 
the experiment utilized and integrated multiple scalable parallel processors (SPP) sites distributed across the United States 
from supercomputing centers at Maui and at Wright-Patterson to J9 at Norfolk, Virginia. This computational power is 
required to model futuristic sensor technology and the complexity of urban environments. For phase I the simulation 
generated more than two terabytes of raw data at rate of over ten gigabytes per hour. The size and distributed nature of this 
type of data collection pose significant challenges in developing the corresponding data-intensive applications that manage 
and analyze them. 

Building on lessons learned in developing data management tools for Urban Resolve, we present our next generation data 
management and analysis tool, called Simulation Data Grid (SDG). The design principles driving the design of SDG are 1) 
minimize network communication overhead (especially across SPPs) by storing data near the point of generation and only 
selectively propagating the data as needed, and 2) maximize the use of SPP computational resources and storage by 
distributing analyses across SPP sites to reduce, filter and aggregate. Our key implementation principle is to leverage existing 
open standards and infrastructure from Grid Computing. We show how our services interface and build on top of Open Grid 
Services Architecture standard and existing toolkits (Globus). SDG services include distributed data query/analysis, data 
cataloging, and data gathering/slicing/distribution. We envision SDG to be a general-purpose tool useful for a range of 
simulation domains. 
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INTRODUCTION 

The specific motivation to develop the data logging and 
retrieval system described in this paper is to support 
simulations by the JUSJFCOM using Joint Semi 
Autonomous Forces (JSAF) software. JSAF provides 
entity-level simulation of ground, air and naval forces. 
Simulation of civilian entities is performed by a separate 
simulator. Simulation of multiple sensor platforms is 
performed by a program called Simulation of the Locations 
and Attack of Mobile Enemy Missiles (SLAMEM). JSAF 
scales from a single Central Processing Unit (CPU) to 
hundreds of CPU's. Individual simulators run on a single 
CPU. The High-Level Architecture (HLA) 
publish/subscribe software architecture is used to 
communicate results between simulators. A software router 
network enables the system to scale to hundreds of 
processors. 

In the last two years a requirement for a large increase in 
the number and the fidelity of simulated entities justified 
the upgrade of JSAF simulations from workstations on a 
local-area network, simulating a few hundred or thousand 
entities to a wide-area network including multiple Beowulf 
clusters and hundreds of processors simulating hundreds of 
thousands of entities. 

An important part of the simulations is to log what happens 
for near real time and after action analysis. The broad range 
of analysis requires that nearly all data be logged. The 
mechanism used is to log data when it is published. The 
earliest implementation included in the simulation a 
software logger, which subscribed to, and received all data 
published anywhere in the simulation. The total size of the 
logged data was limited to two gigabytes (GB). This 
worked when the number of processors and the number of 
simulated entities was small. 

In 2003, to support larger simulations on Beowulf clusters 
Information Sciences Institute (ISI) implemented a 
distributed logger. Data is logged locally on each processor 
running a simulator. Near real time data queries are 
supported by a simple tree system to broadcast a query and 
concatenate results. After action queries are supported by 

transferring compressed binary files to a single host and 
expanding into a single monolithic database.  

In 2005, this implementation is no longer adequate. The 
current size of a database for a two-week exercise, omitting 
nonessential data, is over a terabyte. The time required to 
transfer data to a single site and insert it into a database is 
inconvenient. Maintenance of hardware and software to 
support multiple large databases (one per exercise) on a 
single system is difficult. The current system cannot 
support anticipated future increases in the size and fidelity 
of exercises and the amount of data to be logged. 

This paper describes SDG, the data logging system 
designed and implemented to support large JSAF 
simulations. SDG utilizes the resources of the systems 
generating the data, distributed processors and storage. 
Logging resources thus scale as processors are added to 
support the simulation. 

SIMULATION DATA GRID 

Overview 

Simulation Data Grid is a distributed data management 
application/middleware that helps people deal with very 
large, geographically dispersed data sets over 
heterogeneous environments. 

SDG provides data handling capabilities that are essential to 
current and future simulation analysis needs of the 
USJFCOM. It is able to collect and store high volume/high 
rate data from geographically distributed data sources, to 
browse high-level summaries and overviews of the stored 
data, to query details of the stored data, and to discover 
what part of the data has changed. 

These capabilities are applicable to multiple domains where 
large amounts of data are generated, such as distributed 
event-based simulation (e.g. JSAF), live instrumented 
exercises, and instrumented physics experiments. 
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The collected data and the analysis tools provided are of 
potential use to a variety of people working with the 
simulation. To the military analysts the logged data can be 
used to compute effectiveness measures, such as situation 
awareness. They can compare and contrast simulation 
ground truth against sensor observations. The simulation 
developers can use the same logged data for validation and 
verification. They can query the logs to check simulation 
events/patterns against expected behavior to find anomalous 
behavior. The logging can easily be adapted to log resource 
usage, such as CPU, memory and network usage. 
Infrastructure managers can use these data to discover faults 
and resource usage bottlenecks. 

The initial performance goal of SDG is to be able to support 
JSAF simulations running with one million entities. Such 
high entity counts would generate, to within an order of 
magnitude, about 100 GB of data per hour. Over a typical 
two-week event, about eight terabytes of data would need to 
be collected. Large-scale JSAF simulations are typically 
distributed across multiple geographically dispersed sites. 
In the Urban Resolve experiments the simulation was 
distributed across two supercomputers and multiple 
workstations at different sites. The sites include Maui High 
Performance Computing Center (MHPCC), Aeronautical 
Systems Center (ASC),  J9, Space and Naval Warfare 
Systems Command (SPAWAR), and Topographic 
Engineering Center (TEC). 

Leveraging Grid Computing 

SDG is intended to operate in a joint experimentation 
environment, where the computing software and hardware 
elements may be quickly assembled on an as needed basis. 
The constituent elements may change depending on need 
and on resource availability. Each Urban Resolve exercise 
in a literal sense is setting up a virtual computing 
organization to solve a significant problem. This virtual 
organization spans multiple administrative domains each 
with its own security policies, and each offering its unique 
combination of computing, networking and storage 
capabilities. 

The goal of Grid Computing is to provide pervasive 
dependable access to distributed computing resources. The 
Grid Computing vision, if realized, promises access to 
computing as easily as people currently access the power 
grid through their wall sockets. The main focus of SDG is 
data collection and analysis. But, in order for SDG to work 
effectively in a joint environment it must also address many 
of the same issues that face Grid Computing. 

Grid computing research focuses on developing an 
interoperable common infrastructure that provides 
dependable consistent access to distributed and 
decentralized computing resources. It addresses the 
problem of coordinated resource sharing and problem 
solving in dynamic, multi-institutional virtual organizations 
(Foster et al., 2001).  

To emphasize the focus on developing interoperable tools 
and interfaces that work across platforms and organizations, 
Foster proposes that grid computing coordinate resources 
that are not subject to centralized control using standard, 
open, general-purpose protocols and interfaces to deliver 
nontrivial qualities of service (Foster et al, 2002). 

Below we describe the Globus Toolkit, an open source 
implementation of Grid Computing services (Foster et al., 
2002). Through out the paper, we refer back to this 
description to point ways SDG can potentially leverage 
these services.  

Globus components are classified into five types (Foster, 
2005). Common Runtime components provide a set of 
libraries and tools to allow Globus services to be platform-
independent. Many Globus services are based on web 
services as defined by the World Wide Web Consortium. 
These services use eXtensible Markup Language (XML) as 
the data interchange format, Simple Object Access Protocol 
(SOAP) for messaging and Web Services Description 
Language (WSDL) for service interface description. Some 
Globus services, like GridFTP that were developed earlier, 
do not follow the web services framework. 

Security components provide services related to user 
authentication, authorization, secured communications, and 
credential management. Security is a very important aspect 
of distributed simulations, but it is not the focus of this 
paper. 

Data Management components provide services related to 
distributed data management, which includes data 
transportation, data replication and data access. 

Information Services provide registries to allow services to 
register themselves, to discover other services and to 
monitor the status of services. 

Execution Management components provide the ability to 
initiate, monitor, manage, schedule, and/or coordinate 
remote computations. These components can interface with 
batch job schedulers typically found at supercomputing 
sites. 
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Data movement components include GridFTP and Reliable 
File Transfer Service (RFT). GridFTP provides secure, 
robust, fast, efficient, standards based data transfer 
protocol. Version 4 provides striped transfer mode, where 
multiple nodes work together to transfer their own portion 
of the file. RFT, built on top of GridFTP, is a web service 
that provides the ability to recover from client-side failure 
by storing the transfer state in databases. Also, it provides a 
job scheduler to manage multiple transfers. 

Data replication components include Replica Location 
Service, which provides a distributed registry that maps 
logical file names to physical file names. Also, the Data 
Publishing and Replication service provides pull-based 
services that automatically create local file replicas based 
on user request. 

The Data Access and Integration (DAI) data management 
component is a federated service that provides registries to 
discovery data sources, factories to represent data sources, 
and data services to access data source in different formats 
(relational databases, XML databases, flat files). 

DATA REQUIREMENTS AND OPERATIONAL 
EXPERIENCES FROM URBAN RESOLVE 

J9 and JAWP, staged several training and integration 
exercises in early 2004, followed by four experiments, each 
two weeks long, from June through October. Several sites 
participated in the events. TEC site at Fort Belvoir, 
Virginia, had 30+ workstations and Saber, a quad-CPU 
machine with four terabytes  of disk space that we used for 
after event storage. The SPAWAR site at San Diego, 
California, had 20+ workstations. The J9 Distributed 
Continuous Experimentation Environment at Suffolk, 
Virginia, had 50+ workstations and a 16-node mini-cluster. 
The ASC Wright Patterson Air Force Base at Dayton, Ohio, 
had the Glenn cluster with 128 dual CPU nodes. The 
MHPCC site at Maui, Hawaii, had the Koa cluster with 128 
dual CPU nodes. 

The experiments typically ran five days a week, ten hours a 
day. Simulators might run all night, but with little activity 
and usually with logging disabled. Depending on 
availability and requirements, one or both of Glenn and Koa 
were used. Up to two hundred thousand clutter entities were 
simulated on the large clusters. (In this simulation, civilian 
entities are termed clutter, in that they serve to mask 
military entities.) Several thousand non-clutter entities were 
simulated on the other sites. A single node on the large 
clusters simulated 1000-2000 clutter entities. 

Data logging was performed in two modes, near real time 
and after action. Real time data was inserted in an SQLite 
database. A node simulating 1000 clutter items would 
generate an SQLite database of approximately 50 MB in an 
hour. The databases were deleted and reinitialized when 
they grew to over a gigabyte. If 100 nodes of the cluster 
were used for clutter simulators, approximately 5 gigabytes 
per hour of data was generated. For after action use, 
compressed binary data was stored in an archive directory. 
Binary compressed data is approximately 1/7th the size of 
the corresponding database. Each night, the archived data 
was transferred to Saber, and expanded and decoded into a 
single MySQL database. 

Clutter data from the Glenn and Koa clusters was not 
entered into the Saber database, due to size limitations. 
Data from 100 nodes on Glenn for a ten-day event would 
have been close to a terabyte. Data from TEC, SPAWAR, 
J9 and J9 mini-cluster for non-clutter entities were entered 
into the MySQL database. Urban Resolve Phase I exercise 
generated about a terabyte of data in the MySQL database. 

The nightly data transfer was about 15 gigabytes of 
compressed data. Network transfer rate to Saber was 
approximately ten megabits per second. Three or four hours 
was required to do the transfer. Decoding and indexing the 
data into the MySQL database took 12 hours if everything 
worked perfectly. Human error and other factors usually 
prevented a day’s data from being entered into the database 
before the next day’s event started. It was usually at least 
several days after an event before the complete after action 
database was ready on Saber. 

The logging methodology used for the four exercises in 
2004 was adequate. It was the first attempt at logging data 
from hundreds of processors distributed geographically 
around the country simulating thousands of non-clutter 
entities. SDG is intended to remove deficiencies in the 2004 
methodology and upgrade what was essentially an 
experimental system into a production system. The design 
parameters for SDG specifically address the following list 
of deficiencies in the 2004 system: 

1. Near real time and after action data logging are 
implemented differently. Near real time queries are 
restricted by the use of simple aggregators. 

2. The use of a single database on Saber does not have 
the capacity to include clutter data from the Glenn 
and Koa clusters. 

3. Data transfers, decoding and indexing are time 
consuming and error prone, delaying the availability 
of the database. A goal is to have the complete 
database kept up to data continuously. 
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4. Retrieval of data and database generation for 
multiple exercises is inconvenient. 

5. Expansion to more compute nodes, more entities per 
compute node and more data per entity is impossible. 
Disk storage, compute power, and network 
bandwidth all impose serious limitations. 

6. The system does not respond gracefully to hardware 
and network problems. Saber is a single point of 
failure that makes all data unavailable. 

7. Complex queries that may be useful to analysts are 
slow or impossible. 

Database queries used in Urban Resolve are generally 
summary in nature. They count how many events or entities 
(database rows) meet specified criteria. Complex join 
operations were rarely, or never, used. Were it not for this 
constraint on the queries, an efficient distributed design 
would be more difficult. 

SDG MODELS 

User's Conceptual Model 

As described in the previous section, in the current system 
data collected from the simulation are distributed and 
replicated at multiple locations. There is one access 
mechanism to query the data during simulation runtime, 
and another when the simulation is over. From the user's 
perspective, these data access complexities are unnecessary. 

SDG adds a data access middleware layer that hides these 
complexities and presents a simple coherent view of data to 
the user. From their desktops SDG users should be able to 
access and analyze the data without having to know1: 

1. How to access the data and what is the network 
interconnection topology (Access transparency). 

2. Where is the data located (Location transparency) 

3. Whether the data source has moved (Migration 
transparency) 

4. Whether the data is from a replicated source 
(replication transparency) 

                                                           
1Tanenbaum & van Steen (2002) defines three additional 

transparency goals for distributed systems. Some of 
these goals are beyond the current scope of SDG, and 
some are not applicable. 

5. Whether data sources are shared (Concurrency 
transparency). 

Users interact with SDG through one of SDG's top-level 
Managers. Users submit queries to a top-level Manager, and 
they receive query results from a top-level Manager. 

SDG is capable of handling static data sets (no new data 
added), as well as dynamic data sets (new data continuously 
being added). For dynamic data sets, users can register 
static queries with top-level managers, and receive 
asynchronous query results.  

SDG provides feedback to the users regarding the queries 
they submit by letting them know the resources required to 
execute the query and the resources currently available. 

Fallacies of Distributed Data computing 

In 1991, Peter Deutsch articulated Eight Fallacies of 
Distributed Computing (Deutsch, 2005): 

1. The network is reliable 
2.  Latency is zero 
3.  Bandwidth is infinite 
4.  The network is secure 
5.  The topology doesn't change 
6.  There is one administrator  
7.  The transport cost is zero 
8.  The network is homogeneous 

Distributed software systems developed under these 
assumptions tend to be brittle. They later have to be re-
engineered to work around these assumptions. 

Potential additional fallacies related to Distributed Data 
Computing: 

9. Disk capacity is infinite 
10. Disk latency is zero 
11. Disk bandwidth is infinite 
12. Data processing cost is zero 

The initial design of the 2004 system was based on the 
assumption that there is sufficient local disk space to store 
the logged data. But, we found nodes on supercomputer 
clusters tend to have less local disk space than the average 
desktop computer. We had to first implement a near-
realtime system, then an off-site after action post-
processing system. 

SDG manages these potential pitfalls through a unique 
division of labor. SDG hides some of the networking details 
from the user by explicitly managing the five transparencies 
listed above, but exposes other details (e.g., resource usage 
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and storage options) to allow users to examine and if 
needed override default behavior and manage those details 
themselves. 

To address the Distributed Data Computing Fallacies, we 
intend to provide multiple data services with varying levels 
of capabilities to let the user select the appropriate services 
for the tasks at hand (Table 1). These storage options trade-
off storage size, query speed and query preprocessing time. 
For the Urban Resolve exercises approximately 50% of the 
messages were not logged because these messages were 
internal simulation bookkeeping messages. For example, 
Clutter Intersection (ClutterInt) messages that determine 
which car should enter an intersection next usually are of no 
interest to the analysts. 

Typically, a user may want to include a compressed storage 
option to keep an archive of the simulation data. Then, the 
user may wish to select another storage option, for all or a 
partial subset of the messages, for faster querying. If the 
user chose multiple storage options, he has the option of 
deleting/truncating data storage to recover disk space. 

Designer's Conceptual Model 

SDG Managers perform all of the data access/ 
query/management tasks. Conceptually, there are three 
types of Managers: top-level, data source and worker. 

Top-level managers have published addresses. Users 
connect through the top-level managers. To minimize 
network traffic typically there is at least one top-level 
manager for each local area network. Top-level managers 
know how to connect to each other. Non-top-level 
managers know how to connect to at least one top-level 
manager (Figure 1). 

Data Source managers store the actual data. Other 
applications insert data into Data Source Managers through 
defined Application Programming Interfaces (APIs). 

Worker managers perform most of the work within the 
system. When given a data processing task, the top-level 
manager decomposes a task into sub-tasks. Depending on 
the nature of the task the top-level manager enlists one or 
more managers worker, data source or other top-level 
managers. It then assigns sub-tasks to these managers and 
data source managers. Finally, it defines a data flow 
topology linking together the sub-task executions. 

The mapping of the tasks onto managers must take into 
account and take advantage of a heterogeneous computing 
environment. The networking infrastructure within a local 
cluster typically uses Gigabit Ethernet, or even faster 
proprietary Myrinet. The inter-cluster networking 
infrastructure is typically orders of magnitude slower. 
Computation must be moved closer to the data sources to 
avoid transportation penalties.  

The storage hierarchy varies from cluster to cluster. For 
example, the original configuration of the Koa cluster at 
Maui Supercomputing Center does not include local hard 
drives. A ten terabyte Storage Area network (SAN) mount 
on Global File System(GFS) functions as the only 
secondary storage. The Glenn cluster at ASC has a total of 
ten terabyte storage mounted on local hard drives, and ten 
terabyte SAN storage mounted on GFS. 

USE CASES 

In this section we describe various use cases to capture the 
functional requirements for SDG. Also, we describe how to 
map these requirements to Grid Computing functionality 
provided by Globus. We divide the use cases into three 
categories: How SDG manages itself (system 
administrators), how SDG manages the data sets (data 
administrators), and how SDG is used to query/analyze data 
(data analysts). 

System Administrators 

System administrative functions are used to manage the 
SDG system itself. The functions needed include the ability 
to remotely manage and control startup and shutdown of 
managers, the ability to remotely monitor the health of 
managers, and the ability to map task decomposition 
hierarchies and data flow diagrams onto the managers. 

Table 1 Range of storage options that trades-off 
storage size, query speed and preprocessing time. 

Storage 
Options 

Storage 
Size 

Query 
Speed 

Query pre-
processing 

Do not log Zero N/A None 

Compressed 
(raw) 

Small Very 
slow 

Small 

Text (decoded) Medium Slow Small 

Database Medium Medium Medium 

DB w/ indexing Large Fast Large 

Cube (D = # of 
dimensions) 

Large, for 
high D 

Fast Large, for 
high D 
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These system administration functionalities match well with 
Globus' Execution Management components and 
Information Services' Monitoring and Discovery System 
(MDS). MDS's Index Service is able to register services, as 
well as maintain resource properties associated with the 
service. MDS's Trigger Service can be used to send alerts 
when certain conditions occur, such as when a local disk is 
nearing capacity. Execution Management provides ways to 
submit, cancel and manage remote job executions. 
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Figure 1 Designer's Conceptual Model. Dashed loops 
indicate the boundary of local area networks. 

Data Administrators 

Data administrative functions are used to manage the data 
collected and stored within the system. 

Monitor Data/Resource Usage Statistics. Monitor the rate 
and size of data flowing into the SDG system, monitor the 
available disk capacity, monitor network usage, and 
monitor CPU usage. 

Archive data sources. Copy/move data sources into one 
centralized location. This is useful for archiving data into a 
centralized SAN or a tape archival system. 

Merge/split data sources. Combine multiple data sources 
into one source. Partition one data source into multiple data 
sources. These operations are useful to take advantage of 
parallelism when extra compute resources are available. 

Here we again plan to leverage MDS. MDS is able to 
interface with cluster monitoring tools, such as Ganglia 
(Ganglia, 2005), to produce up-to-date system load/usage 
information. In addition, GridFTP, Reliable File Transfer 

service and Replica Location Service also play important 
roles. 

Data Analysts 

Select Queries. User sends a select Structured Query 
Language (SQL) query to a top-level manager. The top-
level manager returns the query result in a result set table. 
The underlying data is stored in multiple locations, but to 
the user it appears to be one big centralized database. 

We further classify select queries into aggregation queries, 
union queries and simple queries. Aggregation queries 
involve operators like sum, min, max, and average. Union 
queries access data from more than one table and/or results 
from sub-queries. Simple queries do not involve 
aggregation operators or unions. 

Sample simple queries include: return all entity weapon 
damage reports within the last 30 minutes; and return red 
tank movements within the last 10 minutes. 

Sample union queries include: return all entities that were 
painted by a sensor; and return marking information of the 
entity that fired a weapon within the last 10 minutes 

Sample aggregate queries include: count the sensor tracks 
grouped by sensor type, or group by degree of assuredness; 
return killer/victim scoreboards; and return sensor/target 
scoreboards 

For simple select queries SDG managers only need to 
concatenate results returned by sub-tasks without further 
processing. The previous implementation supports simple 
queries. The next section describes our current effort to 
extend to aggregation queries and multidimensional 
analysis. 

Resource Usage Explanation Queries. This is similar to 
MySQL's EXPLAIN command. Given a select query, SDG 
traces through the execution of the query, and explains 
which resources and how much were used to answer the 
query. 

Canned Queries. User defines periodic/trigger select 
queries. Based on the defined period, or the trigger, SDG 
executes the query and asynchronously returns the result to 
the user. 

Sample uses include: receive alerts when a missile is 
launched; and automatically update killer-victim scoreboard 
when a weapon is fired. 
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The Globus' Data Access and Integration (DAI) service 
provides a common web services interface for accessing 
heterogeneous data sources (files, relational, XML). The 
relational part of the interface allows clients to submit SQL 
queries to Data services and to receive query result sets 
from the Data services. Also, DAI supports asynchronous 
delivery, which may be useful for periodic canned queries. 
In addition, Distributed Query Processing (DQP) service 
layers distributed join capabilities on top of DAI. 

However, one key reservation we have about using 
DAI/DQP is the overhead of using SOAP/XML based 
communication for query result processing. Using standards 
based communication make sense if the data sources are 
heterogeneous. But, in our case we are focused just on 
relational data. Furthermore, scalability to handle very large 
simulation data sets is one of our overriding concerns. 

DISTRIBUTED MULTIDIMENSIONAL ANALYSES 

In this section we focus on the implementation of select 
aggregate queries, such as the Sensor/Target Scoreboards. 

Background: Sensor/Target Scoreboards 

One of the key focus areas of Urban Resolve Phase I is to 
study the effectiveness of future Intelligence, Surveillance 
and Reconnaissance (ISR) sensors in helping soldiers 
operate in complex urban environments. The Sensor/Target 
(S/T) Scoreboard provides a visual way of quickly 
comparing the relative effectiveness of individual sensor 
platforms and sensor modes against different types of 
targets. S/T Scoreboard is a specific instance of the more 
general multidimensional analysis. 

In the Urban Resolve federation, a simulated sensor entity 
lays down sensor footprints to delimit sensor coverage 
sweep. For each target entity within the footprint, a contact 
report is generated to hold the result of the sensor detection. 
The contact report includes information about the sensor 
entity, the platform the sensor entity is mounted on, the 
sensor mode, the target entity, the detection status, the 
perceived target type, the perceived target location, the 
perceived target velocity and so on. 

Sensor/Target scoreboards have the capability of providing 
summary views by aggregating individual sensor platforms 
into sensor platform types, such as high altitude, medium 
altitude, and low altitude. And, it aggregates individual 
target entity objects into target classes, which can range 
from the generic (like Civilian Large Trucks) to the specific 
(like Russian MAZ-543 MEL). As described by Graebener 

(Graebener, 2003), the current implementation of the 
scoreboard provides four levels of details. The information 
provided are: 

1. Table of contact report counts broken down by 
sensor platform types and by target classes. 

2. Given a sensor platform type and a target class, table 
of number of contact report counts broken down by 
sensor platforms and by sensor mode. 

3. Given a sensor platform and a sensor mode, list of 
target objects. 

4. Given a target object, list detailed target object 
attributes. 

Initially, the S/T Scoreboard displays the level one 
aggregate table of sensor platform types and target classes. 
By clicking on a table cell (i.e., specifying a particular 
platform type and target class), the S/T scoreboard brings 
up the level two display of sensor platforms and sensor 
modes. Sensor modes are methods detection, such as 
Moving Target Indicator (MTI) and Synthetic Aperture 
radar (SAR) Spot and SAR strip.  

Analysis of S/T Scoreboard from Multidimensional 
Perspective 

The current implementation of S/T Scoreboards projects the 
contact reports along three dimensions for analysis. The 
three dimensions are sensor platform, target object and 
sensor mode. In addition, sensor platforms are aggregated 
into sensor platform types, and target objects are aggregated 
into target classes. Figure 3 depicts these three dimensions 
as linear partial orderings. These dimensions can be crossed 
to create lattices, as shown in Figure 2. 

With respect to the right lattice in Figure 2, the information 
contained in level one S/T scoreboard correspond to the 
node tc, sensor platform type by target class. The level two 
information corresponds to slices of node pcm, where p is 
restricted to a particular sensor type, t, and entity class, c. 
Levels three and four correspond to target objects specified 
by cells in node pom. 

The four levels of the S/T scoreboard present information 
useful to the analysts. But, other nodes within the lattices 
may be of potential interests. For example, node cm 
summarizes the effectiveness of sensor modes with respect 
to target class. Or, node pc summarizes the effectiveness of 
sensor platforms with respect to target class. In addition, 
other dimensions not used in S/T Scoreboards may be of 
potential interest, for example detection status, time, 
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location, terrain classification (high-rises, low-rises, flat), 
weather conditions, and so on. 

* : any

t : sensor platform type

p : sensor platform

* : any

c : target class

o : target object

* : any

m : sensor mode

 
Figure 2 Three possible dimensions to partition the data 

for analysis.  
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Figure 3 Lattices are generated by crossing the 

dimensions. Crossing the sensor dimension with the 
target dimension generates the lattice on the left. 

Crossing the left lattice with the sensor mode dimension 
generates the lattice on the right. 

Multidimensional Analysis 

S/T Scoreboard falls into a analysis class called 
multidimensional analysis, or sometimes called On-Line 
Analytical Processing (OLAP) or data warehousing 
(Kimbal et. al., 1998). Other types of scoreboards, like 
Killer/Victim and Truth/Perception, are also 
multidimensional in nature. Conceptually, the data structure 
used to store multidimensional analysis data is the cube. 
The two-dimensional array data structure used to store a 
two-dimensional scoreboard is extended to higher 
dimensions. 

Users could query the OLAP system for the entire cube, but 
typically the users are more interested in projections and 
partial views of the cube. Operations on the cube include 
roll-up, drill-down and slice & dice. Roll-up aggregates 
data along a dimension to hide details. This corresponds to 
walking up the dimension lattice. Drill-down partitions data 
along a dimension to reveal more details. This corresponds 
to walking down the dimension lattice. Slice & dice selects 
subsets of the cube elements. 

Query and Data Characteristics 

Query and data characteristics within the simulation differ 
from traditional OLAP assumptions in two significant 
ways: 1) a query is concurrent with insertions, and 2) the 
data is distributed. 

Typically, OLAP is performed on historical data. For 
example, retail chains may keep sales transaction records to 
determine their best performing stores, or emerging 
consumer trends. This analysis is usually performed off-
line. The analysis need not be updated as individual sales 
transactions occur. 

In addition, data is typically sent to a centralized facility to 
be analyzed. In our case, it is not feasible to centralize the 
data because of the amount of data and near-realtime nature 
of the query. Our data is logged locally at the point of 
generation. If there are 100 simulation nodes, then we have 
100 local logs. 

Previous works have studied distributed OLAP 
implementations (Goil and Choudhary, 2001; Beynon et. 
al., 2002). Typically, they employ some type of data 
partitioning scheme to perform load balancing and/or to 
reduce input/output (I/O) overhead. For example, in the 
chunking data partitioning scheme the data cube is 
partitioned into smaller sub-cubes. The number of 
dimensions of the sub-cubes remains the same, but now 
each dimension holds just a subset of the possible 
dimension values. 

In our case these data partitioning schemes are not 
applicable. The simulation setup and placement dictate our 
data partitioning scheme. Moving these messages creates 
network traffic that may disrupt the actual simulation. Since 
we are not able to preposition data, we are investigating 
cube compression techniques to minimize storage and the 
I/O needed to aggregate the local cubes. These techniques 
include partial cube materialization (Harinarayan, 1996) 
that selectively pre-computes a subset of lattice nodes, 
coalesced cubes (Sismanis and Roussopoulos, 2004; 
Sismanis et al., 2002), and shell fragments (Li et al., 2004) 
that offer compact ways of storing the cube. 

IMPLEMENTATION STATUS AND 
EXPERIMENTAL RESULTS 

Implementation of a Simple Distributed Sensor Target 
Scoreboard 
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OLAP systems on single processors are widely used and 
described in the literature. Two implementations are 
frequently used. Multidimensional On-Line Analytical 
Processing (MOLAP) stores multidimensional data in an 
explicit multidimensional structure. Relational On-Line 
Analytical Processing (ROLAP) stores multidimensional 
data in a relational database. MOLAP provides faster access 
to data. ROLAP stores sparse data more efficiently. We 
chose ROLAP for the implementation of SDG for two 
reasons. First, we want the ability to scale to very large data 
sets with potentially high number of dimensions. ROLAP 
implementations tend to provide better scaling with respect 
to storage. Second, the current logger is implemented on 
top of relational databases. We want to maintain backward 
compatibility to allow the analysts to use SQL to directly 
query underlying logged data. 

We develop the system and implement features in an 
incremental fashion in order to deliver capabilities to J9 in a 
reasonable fashion. This has the added benefit of providing 
feedback, which can be applied to future development. We 
identified the sensor target scoreboard, discussed earlier, as 
a critical feature representative of many key features that 
would ultimately be required, and that could be 
implemented quickly and efficiently.  

We chose one week of archived data from one Urban 
Resolve event as test data. The sensor target scoreboard is 
prepared from a table in the database named 
I_ContactReport. We are interested in deriving a unique 
value for the type of sensor, the type of target and the 
detection status for each row of the table. This information 
is used to create a three-dimensional table of counts for 
each unique combination. Other information is discarded at 
this time. Future enhancements will incorporate information 
such as time and location to create a five-dimensional table 
(or larger). 

The I_ContactReport table from our test case has 
approximately 18 million records. One column, node, 
identifies the machine on which the row was generated. To 
simulate the distributed generation of the data we created 
four new databases based on applying a regular expression 
to the value in the node column. Only 16 columns were 
copied to the four new databases. Two additional columns 
were added to identify unique combinations of the target 
and of the sensor. 

Next, a procedure was applied to each of the four new 
databases. In a real exercise, this procedure would be 
applied independently and concurrently on each computer 
maintaining a database.  

The procedure consists of the following steps using MySQL 
commands: 

1. Create a table of unique combinations of sensor 
values and unique combinations of target values. 
Assign an enumerated type to each. 

2. Create a row in the table for each combination of 
sensor type, target type and detection status that 
occurs in the I_ContactReport table. Compute a 
column count giving the number of times the 
combination occurs. With appropriate indexing this 
takes six minutes for six million records in one of the 
four sub-databases. 

3. Add rows to the table for “wildcards” as appropriate 
for a data cube. A row is created for any sensor, any 
target, any detection status, three wildcards. This 
should equal the number of rows in the contact table 
for a three-dimensional table. Do the same for all 
permissible use of two wildcards and one wildcard. 

This procedure is applied when a new dataset is introduced 
to the system. It is then applied to any new data that is 
added to the system. The data cube is always up to date. 

There are now four relatively small databases containing 
complete and nearly instantaneously accessible information 
on the count of any combination of sensor types, target 
types and detection types. A user query to a top-level data 
manager is relayed to low level data managers connected to 
each of the four subdatabases. The responses are merged by 
combining responses with the same dimension value and 
summing the count field. The result is returned to the user. 

CONCLUSION 

The use of large clusters (hundreds of nodes or more) of 
processors to meet the demand for high performance 
computing is becoming a mature technology. The extension 
to use multiple clusters is likewise common, but less 
mature. The use of OLAP technology to analyze large data 
sets also is becoming a mature technology. To support 
USJFCOM and JAWP we have combined distributed 
clusters and OLAP. Using this approach, and innovation in 
key areas, we are able to support our customer's current and 
expanding needs. A key principle is to store data close to its 
source to minimize network traffic. A second principle is to 
utilize the computational and storage resources of 
distributed clusters for database functions. These two 
principles reinforce, rather than interfere with, each other in 
the design and implementation of the data grid. A key area 
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of innovation is the intelligent manager. The intelligent 
manager categorizes a query, creates an execution plan, 
distributes the work for the query, aggregates the results, 
and delivers the results. The queries required and 
commonly used by JSAF analysts are efficiently executed 
by this system. Fault tolerance and realistic data archiving 
are additional benefits of our implementation. We will 
maintain and extend the system to include more processors, 
more clusters, larger datasets and more robust queries as 
required by our customer. 
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