
Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2005

2005 Paper No. 2302 Page 1 of 12

Building and Using Base Object Models (BOMs) for
Modeling and Simulation (M&S) focused Joint Training

Paul Gustavson

SimVentions, Incorporated
Fredericksburg, VA 22408

pgustavson@simventions.com

ABSTRACT

Modeling and Simulation (M&S) has proven to be an effective tool for training the warfighter and for planning and
preparing against emerging threats within the global community. Key enablers that have contributed to this
effectiveness have been the availability of models, tools, and other resources such as terrain databases, network
assets, and scenario missions. And, as long as you remain within the mission area (i.e., Army, Navy) and domain
(i.e., Surface, Air, Land) of your applied M&S framework (i.e., HLA, DIS, OOS), relative flexibility is achievable.
The difficulty is in being able to leverage models across the environments, domains, and M&S frameworks to define
and support scenarios and the executable environments representative of Joint training exercises. Models are almost
exclusively defined for a particular simulation application. Fortunately, a standards-based approach, termed Base
Object Models (BOMs), for describing and sharing models across environments, domains, and M&S frameworks
has emerged from a simulation-community-wide grass-roots effort.

Essentially, BOMs can be used to represent the approaches and scenario elements that are necessary to fulfill
specific military tasks, such as resupplying friendly forces or identifying and disarming combatants. Thus, they are
well suited for supporting Joint training efforts. Furthermore, they serve not as executable models, but common
descriptions of behavior, that can be implemented in multiple environments and frameworks.

This example-focused paper will largely center on building and using BOMs for composing Joint training
environments. It will walk through the BOM development effort based on the Federation Development and
Execution Process (FEDEP), and show how the Real-Time Platform Reference (RPR) BOMs and other supporting
BOMs can be integrated and used to fulfill a specific training exercise. Additionally, this paper examines the
language-neutral interface provided by the BOM and various implementation aspects that can be supported to enable
federates.

ABOUT THE AUTHOR

PAUL GUSTAVSON is Chief Scientist and co-founder of SimVentions, Inc. He has over 16 years experience
supporting a wide variety of modeling and simulation, system engineering, and web technology efforts within the
DoD and software development communities. Mr. Gustavson has been a long-time advocate and pioneer of the
Base Object Model (BOM) concept for enabling simulation composability, interoperability, and reuse. He has also
co-authored and edited several software development books and articles related to C++, UML, and mobile
computing.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2005

2005 Paper No. 2302 Page 2 of 12

Building and Using Base Object Models (BOMs) for
Modeling and Simulation (M&S) focused Joint Training

Paul Gustavson

SimVentions, Incorporated
Fredericksburg, VA 22408

pgustavson@simventions.com

INTRODUCTION

In the 21st century, the need for training among
warfighters, mission planners, intelligence officers, and
peacekeepers, has become paramount for the security
and well-being of not only military and security
personnel, but civilians here and abroad. We must plan
and prepare against emerging threats within the global
community. And to combat these threats, we must
learn to defend and fight effectively and cooperatively
in both Joint and combined environments. Lessons to
be learned, however, should occur before our forces are
deployed. An effective tool for preparing and training
our individual, Joint, and coalition forces is the use of
modeling and simulation (M&S). As explored in this
paper, composability standards such as Base Object
Models (BOMs) provide a viable mechanism to help
establish effective M&S-based training environments.

Background

M&S is effective because it can be used to familiarize
individuals in a safe environment for things that could
eventually be played out in a hostile environment.
Such training, through the use of simulation, can be
done in a distributed manner without the expense of
fuel, equipment, or need to move personnel.
Furthermore, a major benefit of M&S applied within a
distributed environment is that it allows for effective
training, testing, and analysis.

The specific need for Joint training has become a
principal focus within today’s military. According to
Navy Adm. Edmund P. Giambastiani Jr., who serves as
North Atlantic Treaty Organization’s (NATO's)
Supreme Allied Commander Transformation (SACT)
and the commander, U. S. Joint Forces Command
(CDRUSJFCOM), emphasizes that, “[our effort is to
try] to make our forces more integrated, more
coherently integrated, so they can operate across a
broad range of mission sets: peacekeeping,
peacemaking, contingency operations, peace support,
major combat operations, small-scale contingencies --
you name it (Sample, 2005).”

The use of M&S to support this Joint training need is
being widely recognized. For example, U.S. Marine
Capt. Erik Jilson, an M&S analyst at Quantico,
Virginia, shares that, “Marine units must train to
operate seamlessly in Joint and combined
environments, but live Joint or combined training
exercises are not always feasible.” He adds that, “the
[simulation] training that takes place before live
training has the goal of better preparing Marines
(Fisher, 2005).”

One application of distributed simulation used for
warfighter training is illustrated in Figure 1 using the
game Close Combat.

Figure 1 – Simulations Provide a Feel for Real
Combat

Supporting the Need

Using M&S to establish virtual environments for
training is proving to be very effective. Maj. John
Basso, 1st Squadron, 10th Calvary Regiment, praised
the advantages that working in virtual reality provided
his men, “We can train the crews together. The skills
we’re learning [within the virtual environment] directly
relate to Operation Iraqi Freedom (Churchill, 2005).”

Additionally, Tom Buscemi, director of IMEF’s Battle
Simulation Center Tactical Warfare Simulation
Evaluation and Analysis System at Las Flores, Camp
Pendleton, California, shares the following account, “A

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2005

2005 Paper No. 2302 Page 3 of 12

senior watch officer who was in Iraq told me that with
the exception of the causalities being real, what they
experienced in Iraq was very similar to what the
simulation produced (Fisher, 2005).” He added,
“[This] emphasizes the effectiveness of the computer-
driven combat simulations.”

So, while computer-driven virtual combat simulations
can be very effective for training the warfighter, the
reality is that such environments can be difficult and
arduous to build and establish. Yet, the increasing
need, as we move forward, is to be able to compose
and establish individual, Joint, and coalition focused
training environments more rapidly and efficiently. As
we will explore, the emergence of BOMs provides a
viable mechanism to support this composability need.

M&S ENABLERS AND INHIBITORS

Known enablers that contribute to the effectiveness of
M&S for training and other purposes such as testing
and prototyping centers upon the availability of
models, tools, and other resources such as terrain
databases, network assets, and scenario missions. The
availability of these resources, however, has evolved
slowly relative to the emergence of other technologies
such as computational devices, interfaces, displays, and
network hardware available to consumers. For
instance the availability of simulation software models
is limited, and typically confined to a specific
simulation and/or specific organization. Models
representing the behavior characteristics of tanks,
planes, and other platforms and subsystems are not
typically developed for wide-spread use. The
exception however is with 3D models, which provide
the visual information for representing these platforms
and entities. These visual models that have been
developed often adhere to a standard format, and are
often made available for purchase or download
thereby enabling visual systems to provide realistic
representation. In the same manner, simulation
software models could also be developed for reuse and
benefit the M&S community – in particular the Joint
training community.

Essentially M&S tools are often limited by either a lack
of availability to the community (i.e., limited
distribution) or a lack of compliance to a set of adopted
community standards (i.e., they are often limited to
custom and/or proprietary solutions). Thus, the cross-
use of M&S, despite the development of community
standards including distributed technology standards
such as Distributed Interactive Simulation (DIS) and
the High Level Architecture (HLA), is often restricted

to specific environments (i.e., Army, Navy, Air Force),
domains (i.e., Land, Surface, Air) of interest – and
sometimes specific programs within these
environments and domains. Certainly within these
environments, domains and programs, relative
flexibility regarding the use of an M&S framework is
achievable, but the difficulty, however, is in being able
to leverage models across Joint environments,
domains, and M&S frameworks. Such models (and
tools) must be cross-leveraged and integrated to
properly support the scenarios and the executable
environments required for Joint training.

What must be encouraged is not only the consensus
development of standards, but the consensus adoption
of these standards as technology enablers for models,
tools, and environments. And, if the integration of
these models, tools, and environments is to occur, then
these elements need to adhere to standard interfaces
allowing connection and communication in a loosely
coupled manner. Such capability complies with the
concepts of a Service-Oriented Architecture (SOA),
which should be a desired goal for any Joint training
environment (Gustavson, Chase, Root, & Crosson,
2005).

Therefore, what is needed is the development of
common models, services and databases that adhere to
commonly understood standards, which can then be
leveraged and used by complying tools and
environments. The result of this would support one of
the key capabilities required for the future of Joint
training, which is the capability to integrate various
models and simulations together quickly and easily,
resulting in an execution environment that can support
specific scenarios.

COMPOSABILITY DESIRE

Models, in general, are exclusively defined for a
particular simulation application, and yet the need
among all the stakeholders, which includes sponsors,
designers, developers, testers, and users, is to be able to
compose or put together exercisable environments, for
test and play. The biggest desire, independent of what
role we may support as stakeholders, is to compose
things rapidly and efficiently. This is especially true
when it comes to defining a Joint training environment.

Composability is defined as “The capability to select
and assemble components in various combinations into
complete, validated simulation environments to satisfy
specific user requirements (Petty & Weisel, 2003).”
This involves the selection of meaningful components,
and the ability to couple these components together to

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2005

2005 Paper No. 2302 Page 4 of 12

achieve the desired objectives for training (or perhaps
other purposes such as testing or prototyping).

Some of the common barriers to achieving
Composability are identified in Table 1.

Table 1 – Common Barriers of Composability

Barriers Attitude Indicators of these Barriers

Time Constraints
• I really don’t have much time.
• I need a way to rapidly create a federation

efficiently and effectively.
Ad-Hoc
Development
Temptation

• I’ve got the tools, I think I know what the
customer wants, let’s just jump in and start
coding and integrating.

Lack of Conceptual
Analysis

• What is conceptual analysis? I don’t see the
importance?

• Oh, that’s UML? We don’t do UML..
• Why should I spend precious time on the

conceptual analysis when I could be coding?
• If I am going to do conceptual analysis, how do I

integrate/use UML without buying expensive
tools?

Maintaining
Communication
among
Stakeholders

• The customer says he’ll know what he wants
when he sees it.

• Let’s get it done first then show the customer.
• Let’s not worry about the test guys.

Avoiding Not-
Invented-Here
(NIH) Syndrome

• If we didn’t think of it, it can’t possibly be right.
• How can I create a model that benefits others?
• Why should I create a model that others could

benefit from?
• I don’t have time to focus on building to a new or

different standard.
• The standard doesn’t meet our needs.

Discovering
Reusable
Components

• What exists out there already that I can leverage
and reuse?

• How do I discover / search for it?
• How do I use the metadata?
• What tools are out there to help in the discovery

process?

Overcoming
Proprietary
Lock-In

• I need solutions that are not proprietary where I
am not dependent upon a specific vendor’s tools
or component suite.

• We’ve already invested in this solution.
Dealing with
Complex
Integrations

• How can I easily plug my simulation into the
world of HLA?

Supporting Multiple
Federations • I can only support one Federation at a time.

Manageability
Issues

• Hmm, I’ve created / inherited this big, monolithic,
unmanageable Federation Object Model (FOM)
developed for my federation.

• How can all my people work on it
collaboratively?

• How can I add extensions without breaking it?
• How can I better configuration manage (CM) it?

Composability Process

The enablers to achieving composability and
overcoming these barriers center upon adherence to a
process, and that process must include the interest of
all the stakeholders. One process commonly described
and used within the M&S community is the Federation

Development and Execution Process (FEDEP). As
illustrated in Figure 2, there are two aspects of
composability that a process like FEDEP encourages:
Model Composability and System Composability.

FEDEP

65431

Perform
Conceptual

Analysis

2

Analyze
Data and
Evaluate
Results

7

Define
Federation
Objectives

Design
Federation

Develop
Federation

Plan,
Integrate,
and Test

Federation

Execute
Federation
& Prepare
Outputs

65431

Perform
Conceptual

Analysis

2

Analyze
Data and
Evaluate
Results

7

Define
Federation
Objectives

Design
Federation

Develop
Federation

Plan,
Integrate,
and Test

Federation

Execute
Federation
& Prepare
Outputs

Model Composability System Composability

Conceptual Models Plug & Play SystemsReusable Piece-PartsConceptual Models Plug & Play SystemsReusable Piece-Parts

Figure 2 – Composability Process as it Relates to the
FEDEP

Often the focus is on the right-hand side: System
Composability. Here, the desire is to achieve plug and
play systems. While System Composability is a
worthy goal, there is an increased chance of success if
time is spent on first achieving Model Composability,
which is often neglected.

Activities

The activities involved in achieving Model
Composability begin with the collection of
requirements and identifying what is needed for the
simulation environment as defined by FEDEP Step 1.
This is followed by performing a conceptual analysis
as defined by FEDEP Step 2. The effect of this
analysis will result in a collection of conceptual models
ordered hierarchically in terms of interest and detail.
From the FEDEP perspective, the conceptual model
identifies “what the [simulation or federation] will
represent, the assumptions limiting those
representations, and other capabilities needed to satisfy
the user’s requirements (IEEE 1516.3, 2003).”

The types of things to identify from these conceptual
models are patterns – or common sets of recurring
behavior that occur in accomplishing a common
objective, capability, or purpose. The recognition of
patterns is proving to be a key approach for supporting
system design and software development, yielding a
framework for components, which is identified as
reusable piece-parts in the FEDEP view. These
reusable piece-parts can be used to support model
composability.

Certainly the means for enabling composability,
including support for analysis, development of models,
and reuse of components (i.e., reusable piece-parts) are
accomplished through the use of tools. Tools are
paramount. However, even with tools in hand, it is
also important to have the availability of models via a
set of libraries that these tools can use. These libraries

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2005

2005 Paper No. 2302 Page 5 of 12

are ones that should be populated and updated by
community members who may also be developing and
composing simulations and simulation environments.

Common Standard for Simulation Components

However, the key to offering reusable piece-parts and
tools that help support the job of model composability
is that the models representing these reusable piece-
parts need to be based on a common format and
standard. Equally, the tools need to be able to leverage
that standard. One such approach that has been
developed for M&S to support composability is the
Base Object Model (BOM), which provides a
framework for component standards.

The BOM is defined as, “a piece part of a conceptual
model composed of a group of interrelated elements,
which can be used as a building block in the
development and extension of simulations and
simulation environments (SISO-STD-003.1-DRAFT-
V0.11, 2005).”

BOMs can serve the needs of the M&S community,
providing the framework from which to define
common interfaces for integrating models and the
framework from which to define meaningful content
that can be shared and used among Joint players.

However, the key for unlocking the BOM capability to
support Model Composability is to first understand
how the conceptual model can be defined, used, and
shared among all stakeholders.

FOCUSING ON THE CONCEPTUAL MODEL

The first step in carrying out any type of development
task is to understand what needs to be represented. For
successful model composability, understanding what
needs to be represented is paramount; especially in
regards to using BOMs to establish environments for
purposes such as Joint training. Without understanding
what needs to be represented, the effectiveness of the
environment in facilitating training at any level is
compromised. This is why the conceptual model is
important. Essentially, the conceptual model can be a
useful communication mechanism across each stage of
the development process, encouraging collaboration
among stakeholders and modularity of design.

Ideally there should be multiple conceptual models
identified for describing the environment to be
represented. This modularity provides the basis for
defining reusable models and components, and,
subsequently, permits better development among team

members, improving configuration management, and
simplifying the burden of unit testing. Modularity is
achieved by breaking the problem domain down into
parts that can be addressed separately. This results in a
manageable collection of conceptual models.
Furthermore, the information identified for a
conceptual model can be used to find reusable
components or as the basis for creating new ones.

Common Aspects of a Conceptual Model

It is important, however, to understand what these
conceptual models contain; that is what should be
captured and reflected within a conceptual model.
Some of the discernable attributes of a conceptual
model are defined as follows (Gustavson, Zimmerman,
& Turrell, 2003):

• Describes functional and behavioral capabilities
• Maps to objectives / stakeholder requirements
• Identifies conceptual entities to be represented
• Identifies logic and algorithms
• Identifies relationships
• Identifies assumptions and limitations

Based on these attributes, it is clear that the goal is to
identify “what” needs to be represented, and, at a high
level, the activities and relationships that take place.
This might include, for example, the common scenario
elements that are necessary to fulfill specific tasks such
as resupplying friendly forces or identifying and
disarming combatants.

This set of attributes correlates with the pattern concept
described earlier, which focuses on identifying
common sets of recurring behavior that occur in
accomplishing a common objective, capability, or
purpose. And the BOM provides a template for
capturing the end-state of such a conceptual model.

As described in the BOM Template Specification, the
aspects of a simulation conceptual model that are
contained in a BOM include static descriptions of items
resident in the real world, which are described in terms
of conceptual entities and conceptual events, and
contain information on how such items relate or
interact with each other in the real world in terms of
Patterns of Interplay and state machines. This
relationship among these conceptual model elements
supported by the BOM is depicted in Figure 3.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2005

2005 Paper No. 2302 Page 6 of 12

Pattern

Event Type

State Machine

Entity Type

Conceptual Model

*

1

*

*

*

Figure 3 – Conceptual Model Elements of a BOM

These elements of a conceptual model, which can be
described using a BOM, are useful when the simulation
software designers begin to consider what their
simulation will need to do.

Component Interfaces and the Support for SOA

The BOM also provides a mechanism to define the
required simulated capabilities reflected in the
conceptual model in the context of an interface
description. This interface is described in terms of
object-based classes defining not only the capabilities
of a component but the simulation application that uses
it. What is significant about this type of interface is
that it encourages a service-oriented architecture
(SOA) approach.

SOA is an architectural approach focused on the
interoperability and loose coupling of integrated
elements (Gustavson, Chase, Root, & Crosson, 2005).
This could include the mix of live, virtual, and
constructive simulations patched in together, and,
although each element is distinct and disparate, they
are capable of interoperating seamlessly. In fact, the
chief objective of SOA is to minimize unnecessary
dependencies among systems and software elements
(i.e., components) such that different implementations,
which could potentially be manufactured by different
vendors, can integrate together to provide some
repeatable and reliable service and capability. This
objective should be the same objective required for
creating Joint training environments. We need to be
able to patch-in models, from the model composability
standpoint, as well as live, virtual, and constructive
simulations, from the system composability standpoint,
to create effective environments for Joint training
across the various forces and organizations.

What BOMs provide is a mechanism for supporting the
creation of “common interfaces,” which is the

"key tenant for supporting a loose coupled simulation
environment (Gustavson, Chase, Root, & Crosson,
2005).” From an SOA perspective, this common
interface that BOMs provide allows federates to act as
software agents, playing either the role of producer or
consumer establishing a composable environment for
Joint training.

Figure 4 illustrates how BOMs can be coupled together
to formulate such a composable environment.

Fe
de

ra
te

BOM Coupling

BOM
Assembly

BOM 1
Pattern

of Interplay

BOM 2
Pattern

of Interplay

BOM n
Pattern

of Interplay

Composite
Interface

Composition

Sim /
System A

Representation Fe
de

ra
tio

nFederate B

Federate X

Federate A

A
gg

re
ga

tio
n

Model
#1

Model
#2

Model
#3

Model
#n

- or -

- or -

Fe
de

ra
te

BOM Coupling

BOM
Assembly

BOM 1
Pattern

of Interplay

BOM 2
Pattern

of Interplay

BOM n
Pattern

of Interplay

Composite
Interface

Composition

Sim /
System A

Representation Fe
de

ra
tio

nFederate B

Federate X

Federate A

A
gg

re
ga

tio
n

Model
#1

Model
#2

Model
#3

Model
#n

- or -

- or -Weapons

Effe
ct

Realtim
e Platfo

rm
 W

arfa
re

Representatio
n

Repair

Resupply

Detect /
Jam

Figure 4 – Composition of BOMs

In the next section we will explore how a BOM is built
and how a collection of these BOMs can be coupled
together for establishing a federate, federation, or an
aspect of a federation being represented as an
aggregate.

DEVELOPING BOMS AND BOM COMPONENT
IMPLEMENTATIONS

As we have already explored in the last section, the
BOM is made of several key elements. These elements
are illustrated in Figure 5.

Object Model DefinitionModel Identification (Metadata)

Conceptual Model

Notes

Lexicon (definitions)

HLA Object Classes

HLA Object Class Attributes

HLA Object Classes

HLA Interaction Classes

HLA Interaction Class Parameters

HLA Interaction Classes

HLA Data Types

Pattern Description

State Machine

Entity Type

Event Type

Model Mapping

Entity Type Mapping

Event Type Mapping

Model Mapping

Entity Type Mapping

Event Type Mapping

Figure 5 – BOM Elements

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2005

2005 Paper No. 2302 Page 7 of 12

In this section we will explore what information can be
captured within each of these BOM template elements.
The example we will look at is based on a common
pattern found within most military-centric simulation
exercises, and that is a weapons effect pattern. We will
then show how to take a collection of different models
supporting unique conceptual models and combine
them into a BOM Assembly, which can be used to
define a Joint training environment.

Core and Common Metadata

The one element that we haven’t talked about to any
extent is the Model Identification element, and yet this
may be the most important. The Model Identification
provides the means to identify and tag the critical
metadata for cataloging conceptual models and
components. Metadata can be simply described as data
about data. It is a way to label and describe
information and is used “to aid in the identification,
discovery, assessment, and management” of that
information (“Final Report on Metadata,” 2000).”

The Model Identification provides a structure to
document what a BOM (or even other models) is all
about – what it contains. One would not purchase a
bottle of medicine without first seeing and
understanding the label. An unlabeled medicine bottle,
soda can, or packaged food product, would go unused.
Its content never understood. Likewise, it is important
to label a conceptual model or component. The Model
Identification provides the labeling information as
illustrated in Figure 6.

Model Identification (metadata)

Type = BOM

Name

Version

Mod Date

Description

Use Limit

Use History

Keyword

Security Class

POC

Release Restriction

Reference

Purpose

Other

Application Domain

Glyph

*
*

*
*

*

Model Identification (metadata)

Type = BOM

Name

Version

Mod Date

Description

Use Limit

Use History

Keyword

Security Class

POC

Release Restriction

Reference

Purpose

Other

Application Domain

Glyph

*
*

*
*

*

Figure 6 – Model Identification Metadata Elements

This Model Identification structure is based on a
combination of other metadata efforts and products
such as Dublin Core, the Department of Defense (DoD)
Discovery Metadata Specification (DDMS), VV&A
Recommended Practice Guide (RPG), and the HLA
Object Model Template (OMT), IEEE 1516.2.

The following suggestions are recommended as
pointers to filling out the Model Identification for a
conceptual model or component which is captured
within a BOM, (Gustavson, Scrudder, Lutz, &
Bachman, 2005).

• First, document a model in such a way that its

Purpose is clear, Use Limitations are identified,
the Application Domain is understood, and
multiple POCs, such as sponsor representative,
and developers are known.

• Encourage integration experience of models to be
fed back into the Use History. This is vital for
increasing use of the model to support various
efforts such as creating a Joint training exercise
environment.

• Use the mechanisms provided to help manage and
control the model through the Version, Security
Class, and Release Restriction.

• Take advantage of the ability to Reference other
information such as supporting documents,
databases, scenarios, and 3D models.

• In general, keep things descriptive yet concise.
This allows candidate models to be more readily
found and reused. And, just because a field may
be optional doesn’t mean necessarily that it should
be ignored.

Table 2 provides an example of a completed Model
Identification for labeling a weapons effect model,
which is a BOM that could be used in a Joint training
environment.

Table 2 – Model Identification Example

Category Information
Name WeaponsEffect
Type BOM
Version 1.0
Modification Date 2004-11-19
Security Classification Unclassified
Release Restriction Not for release outside the I/ITSEC community
Purpose RPR FOM decomposition
Application Domain Realtime Platform Simulation
Description This is an example BOM
Use Limitations None
Use History Initial release
Keyword

Taxonomy Military Warfare
Keyword Value Engagement

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2005

2005 Paper No. 2302 Page 8 of 12

POC
POC Type Primary author
POC Name P. Gustavson
POC Organization SimVentions
POC Telephone 540 372-7727

Reference
Ref Type Glossary
Identification ISBN 12345678901
Reference
Ref Type Conceptual Model
Identification http://boms.info/

Other na
Glyph

Type jpg
Alt WeaponEffectPicture1
Height 32
Width 32

Filling in the Conceptual Model

Now that we know how to label a BOM, which we
might want to use for supporting the composition of a
Joint training environment, it’s important to fill the
BOM with content so that it can be effective. We start
with filling in the conceptual model so that we can
fully understand its application.

Earlier we talked about the aspects of a conceptual
model and that the BOM includes elements for
capturing static descriptions in terms of conceptual
entities and events, and the relationship of those
elements in terms of Patterns of Interplay and state
machines. The essence of the conceptual model for our
example is depicted in the Figure 7.

State MachinesState MachinesState Machines
Pattern of InterplayPattern of Interplay

Events

Figure 7 – Weapons Effect Conceptual Model View

This sequence diagram defined using the Unified
Modeling Language (UML) illustrates the Pattern of
Interplay for our Weapons Effect example model. A
Pattern of Interplay refers to the sequence of activities
related to one or more conceptual entities. Our

conceptual entities include a Firing Entity and a Target
Entity. Identified in this view, are the states associated
with each conceptual entity. The Events that must
support the interplay are also represented.

This provides a simple view of our model, but it still
must be captured in a convention that allows it to be
integrated and reused. The guidance for filling the
Patterns of Interplay, State Machines, Entity Types,
and Event Types is provided in the “Guide for BOM
Use and Development,” which has been developed as a
support document for the “BOM Template
Specification.” However, examples for each of these
tables are provided below.

Table 3–Pattern of Interplay for Weapons Effect

Action
Sequence 1
Name WeaponFireAction
Event WeaponFire
Sender FiringEntity
Receiver TargetEntity
BOM NA

Action
Sequence 2
Name MunitionDetonationAction
Event MunitionDetonation
Sender FiringEntity
Receiver TargetEntity
BOM NA

Action
Sequence 3
Name DamageStateUpdateAction
Event NA
Sender TargetEntity
Receiver FiringEntity
BOM DamageStateUpdateBOM

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2005

2005 Paper No. 2302 Page 9 of 12

Table 4 – State Machine Example

State

ImpactDenotationName

DamageStateUpdateActionExitAction

ReadyNextState

Notes

Notes

MunitionFlightNextState

MunitionDetonationActionExitAction

UnderFireName

State

Notes

UnderFireNextState

WeaponFireActionExitAction

ReadyName

State

Platform

Lifeform
ObjectEntityClass

TargetEntityName

State

ImpactDenotationName

DamageStateUpdateActionExitAction

ReadyNextState

Notes

Notes

MunitionFlightNextState

MunitionDetonationActionExitAction

UnderFireName

State

Notes

UnderFireNextState

WeaponFireActionExitAction

ReadyName

State

Platform

Lifeform
ObjectEntityClass

TargetEntityName

State

MunitionFlightName

MunitionDetonationActionExitAction

ReadyNextState

Notes

Notes

MunitionFlightNextState

WeaponFireActionExitAction

FireName

State

Notes

FireNextState

CommandToFireExitAction

ReadyName

State

Platform

Lifeform
Conceptual Entities

FiringEntityName

State

MunitionFlightName

MunitionDetonationActionExitAction

ReadyNextState

Notes

Notes

MunitionFlightNextState

WeaponFireActionExitAction

FireName

State

Notes

FireNextState

CommandToFireExitAction

ReadyName

State

Platform

Lifeform
Conceptual Entities

FiringEntityName

Table 5 – Entity Types Example

Unique id for entityID

Unique id for entityID

Velocity for the entityVelocity

Physical position of the entityLocation
Thing that is the intended target of a
weapon fireTargetEntity

Physical position of the entityLocation
Thing that fires a weapon at a targetFiringEntity

DescriptionCharacteristicsDescriptionName

Entity Type

Unique id for entityID

Unique id for entityID

Velocity for the entityVelocity

Physical position of the entityLocation
Thing that is the intended target of a
weapon fireTargetEntity

Physical position of the entityLocation
Thing that fires a weapon at a targetFiringEntity

DescriptionCharacteristicsDescriptionName

Entity Type

It should be noted that the FiringEntity and
TargetEntity could be supported by the same
EntityType. However, we have separated it out for our
example.

Table 6 – Event Type Table Example

TargetTargetEntity_identifer

Message for
representing weapon fire
interaction among
conceptual entities

WeaponFire

ContentMunition_identifer

SourceFiringEntity_identifer

TargetTargetEntity_identifer

SourceFiringEntity_identiferMessage for
representing weapon
detonation interaction
among conceptual
entities

MunitionDetonat
ion

RoleCharacteristicsDescriptionName

Event Type

TargetTargetEntity_identifer

Message for
representing weapon fire
interaction among
conceptual entities

WeaponFire

ContentMunition_identifer

SourceFiringEntity_identifer

TargetTargetEntity_identifer

SourceFiringEntity_identiferMessage for
representing weapon
detonation interaction
among conceptual
entities

MunitionDetonat
ion

RoleCharacteristicsDescriptionName

Event Type

The question that is often wondered, but perhaps
seldom asked, is how all four of these conceptual
model elements tie together. The best way to
understand the relation of these four elements is to
study the illustration in Figure 8.

Pattern

ActionEvent

n
1

BOM
1

Sender Receiver

n n

An action can be
associated to an
event

State Machine

States
n

Exit
Condition

Pattern
Action

n

Next
State

State MachinePattern Description
An action can be
potentially supported
completely by another
pattern of interplay

Entity

Characteristics

Entity Type Description

n

Event Type Description

Event

Source

Target

Trigger

Message
Content

Entityn

Characteristics

n

Role

Figure 8 –BOM Conceptual Model Relationship

Defining the Interface Element (aka Object Model)

Another aspect of BOM content that is useful is the
interface description. For a BOM, this interface
description, which is identified as the Object Model
Definition, is described using HLA Object Model
Template (OMT) constructs. The specific HLA OMT
constructs used include: HLA object classes, HLA
interaction classes, and their attributes and parameters.
The use of HLA OMT provides a familiar construct for
the simulation software designer, however it is not
intended to restrict the use of a BOM to HLA specific
implementations.

The guidance for filling in the HLA object classes,
HLA interaction classes, attributes and parameters for
use within a BOM is discussed in the “Guide for BOM
Use and Development,” which also refers to the HLA
OMT Specification for understanding these tables
(SISO-STD-003.0-DRAFT-V0.11, 2005). Examples
for each of these OMT-based tables used to represent a
BOM are provided below.

Table 7 – HLA Object Class Table Example

Platform
PhysicalEntityBaseEntityHLAobjec

tRoot HumanLifeform

HLA Object Classes
Platform

PhysicalEntityBaseEntityHLAobjec
tRoot HumanLifeform

HLA Object Classes

Table 8 – HLA Interaction Class Table Example

MunitionDetonation

WeaponFire
HLAinteractionRoot

HLA Interaction Classes

MunitionDetonation

WeaponFire
HLAinteractionRoot

HLA Interaction Classes

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2005

2005 Paper No. 2302 Page 10 of 12

Table 9 – HLA Attributes Table Example

:

OnChange

OnChange

OnChange

NA

NA

UpdateCon
dition

Conditional

Conditional

Conditional

Conditional

NA

UpdateType

StanceCode
Enum32

HatchStateE
num32

ForceIdentifi
erEnum8

SpatialStruct

NA

Datatype

StanceCode

HatchState

ForceIdentifier

Spatial

HLApriviledgeTo
Delete

Attribute

Lifeform

Platform

PhysicalEntity

BaseEntity

HLAobjectRoot

Object

Receive
HLAreliableNAPSNo Transfer

ReceiveHLAreliableNAPSNo Transfer

ReceiveHLAreliableNANANA

OrderTransportationAvailableDimensionsP/SOwnership

Receive
HLAreliableNAPSNo Transfer

Receive
HLAreliableNAPSNo Transfer

HLA Attributes

:

OnChange

OnChange

OnChange

NA

NA

UpdateCon
dition

Conditional

Conditional

Conditional

Conditional

NA

UpdateType

StanceCode
Enum32

HatchStateE
num32

ForceIdentifi
erEnum8

SpatialStruct

NA

Datatype

StanceCode

HatchState

ForceIdentifier

Spatial

HLApriviledgeTo
Delete

Attribute

Lifeform

Platform

PhysicalEntity

BaseEntity

HLAobjectRoot

Object

Receive
HLAreliableNAPSNo Transfer

ReceiveHLAreliableNAPSNo Transfer

ReceiveHLAreliableNANANA

OrderTransportationAvailableDimensionsP/SOwnership

Receive
HLAreliableNAPSNo Transfer

Receive
HLAreliableNAPSNo Transfer

HLA Attributes

Table 10 – HLA Parameters Table Example

HLA Parameters

StanceCodeEnum32

HatchStateEnum32

ForceIdentifierEnum8

SpatialStruct

NA

Datatype

WarheadType

TargetObjectIdentifier

MunitionType

RateOfFire

MunitionObjectIdentifier

Parameter

WeaponFire

WeaponFire

MuntionDetonation

MunitionDetonation

MunitionDetonation

Interaction

HLA Parameters

StanceCodeEnum32

HatchStateEnum32

ForceIdentifierEnum8

SpatialStruct

NA

Datatype

WarheadType

TargetObjectIdentifier

MunitionType

RateOfFire

MunitionObjectIdentifier

Parameter

WeaponFire

WeaponFire

MuntionDetonation

MunitionDetonation

MunitionDetonation

Interaction

Defining a common interface using HLA OMT
constructs, which provides a familiar syntax to
simulation engineers, allows it to be implemented in
multiple environments and frameworks.

Conceptual Model and Object Model Mapping

Now that we have filled our BOM with both
Conceptual Model content and Object Model content,
we should also provide a mapping between the
Conceptual Model view and the interface elements of
the Object Model view, otherwise it is difficult to
understand how the conceptual model can be fulfilled
and what the intended capabilities of the object model
are. This provides the basis for simulation software
design and for the interchange among other
simulations, which is particularly important for
defining a Joint environment for training.

BOMs provide a mechanism for mapping this
relationship through an Entity Type Mapping and an
Event Type Mapping and are illustrated in the next two
tables.

Table 11 – Entity Type Mapping Example

naPlatform.Spatial.SpatialFP.
VelocityVector

Velocity

naPlatform.Spatial.SpatialFP.
WorldLocation

Location

naPlatform.EntityIdentifierID

HLAobjectClassRoot.BaseEntity.Physic
alEntity.PlatformTargetEntity

naHuman.Spatial.SpatialFP.W
orldLocation

Location

na

Condition

Human.EntityIdentifierID
HLAobjectClassRoot.BaseEntity.Physic
alEntity.Lifeform.HumanFiringEntity

HLA Attributes/ParametersCharacteristicsHLA Object/Interaction ClassEntity Type

Entity Type Mapping Table

naPlatform.Spatial.SpatialFP.
VelocityVector

Velocity

naPlatform.Spatial.SpatialFP.
WorldLocation

Location

naPlatform.EntityIdentifierID

HLAobjectClassRoot.BaseEntity.Physic
alEntity.PlatformTargetEntity

naHuman.Spatial.SpatialFP.W
orldLocation

Location

na

Condition

Human.EntityIdentifierID
HLAobjectClassRoot.BaseEntity.Physic
alEntity.Lifeform.HumanFiringEntity

HLA Attributes/ParametersCharacteristicsHLA Object/Interaction ClassEntity Type

Entity Type Mapping Table

Table 12 – Event Type Mapping

naHLAinteractionRoot.WeaponF
ire.TargetObjectIdentifier

TargetEntity_Identifier

na

na

na

na

Condition

HLAinteractionRoot.WeaponF
ire.MunitionObjectIdentifier

MunitionEntity_Identifier

HLAinteractionRoot.Munition
Detonation.TargetObjectIdenti
fier

HLAinteractionRoot.Munition
Detonation.FiringObjectIdenti
fier

HLAinteractionRoot.WeaponF
ire.FiringObjectIdentifier

HLA Attributes/Parameters

TargetEntity_Identifier

FiringEntity_Identifier

HLAinteractionRoot.MunitionDetonationMunitionDetonation

FiringEntity_Identifier

HLAinteractionRoot.WeaponFireWeaponFire

CharacteristicsHLA Object/Interaction ClassesEvent Type

Event Type Mapping Table

naHLAinteractionRoot.WeaponF
ire.TargetObjectIdentifier

TargetEntity_Identifier

na

na

na

na

Condition

HLAinteractionRoot.WeaponF
ire.MunitionObjectIdentifier

MunitionEntity_Identifier

HLAinteractionRoot.Munition
Detonation.TargetObjectIdenti
fier

HLAinteractionRoot.Munition
Detonation.FiringObjectIdenti
fier

HLAinteractionRoot.WeaponF
ire.FiringObjectIdentifier

HLA Attributes/Parameters

TargetEntity_Identifier

FiringEntity_Identifier

HLAinteractionRoot.MunitionDetonationMunitionDetonation

FiringEntity_Identifier

HLAinteractionRoot.WeaponFireWeaponFire

CharacteristicsHLA Object/Interaction ClassesEvent Type

Event Type Mapping Table

SUMMARY

We have now completed filling in the content that can
be contained in a BOM. This type of fully loaded
BOM spanning both conceptual model and the
interface elements offered by object model, and those
BOMs that may be heavy on either the interface side or
conceptual side can be selected, connected, and
coupled together to formulate a BOM Assembly. The
process for this is illustrated in Figure 9.

Develop Federation
4.1 – Develop FOM (Mega-BOM)
4.2 – Establish Federation

Agreements
4.3 – Implement Federate Designs
4.4 – Implement Federation

Infrastructure

Design
Federation

3.1 – Select Federates
3.2 – Prepare Federation Design
3.3 – Prepare Plan

ConceptualConceptual
ModelModel

Develop Federation
4.1 – Develop FOM
4.2 – Establish Federation

Agreements
4.3 – Implement Federate Designs
4.4 – Implement Federation

Infrastructure

Design
Federation

3.1 – Select Federates
3.2 – Prepare Federation Design
3.3 – Prepare Plan

ConceptualConceptual
ModelModel

BOM Assembly

Develop Federation
4.1 – Develop FOM (Mega-BOM)
4.2 – Establish Federation

Agreements
4.3 – Implement Federate Designs
4.4 – Implement Federation

Infrastructure

Design
Federation

3.1 – Select Federates
3.2 – Prepare Federation Design
3.3 – Prepare Plan

ConceptualConceptual
ModelModel

Develop Federation
4.1 – Develop FOM
4.2 – Establish Federation

Agreements
4.3 – Implement Federate Designs
4.4 – Implement Federation

Infrastructure

Design
Federation

3.1 – Select Federates
3.2 – Prepare Federation Design
3.3 – Prepare Plan

ConceptualConceptual
ModelModel

BOM Assembly

Figure 9 – BOM Integration Activities

From our example, what we might be able to compose
is illustrated in Figure 10.

BOMs
(Coupling)

BOM
Assembly

Pattern 1

Pattern 3

Pattern n

Composite
Interface

Composition Representation

Federation
for Joint Training

Federate B

Federate X

Federate A

Weapons

Effe
ct

Radio

Comms

Theater W
arfa

re

Representatio
nPattern 2

Repair

Resupply

Detect /
Jam

Figure 10 – BOM Composition

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2005

2005 Paper No. 2302 Page 11 of 12

BOMs and BOM Assemblies represent the capabilities
and interface required for defining exchange in a
loosely coupled Joint training environment thereby
supporting both Model Composability and System
Composability as illustrated in Figure 11.

BOMsBOMs
Base Object ModelsBase Object Models

Locate ComposeCreate

FederationFederationImplementations

Interfaces

Activity Relationship
Conceptual Entities

Behavioral States
Events BOMsBOMs

Base Object ModelsBase Object Models

Locate ComposeCreate

FederationFederationFederationFederationImplementations

Interfaces

Activity Relationship
Conceptual Entities

Behavioral States
Events

Activity Relationship
Conceptual Entities

Behavioral States
Events

System Composability

Plug & Play Systems

System ComposabilitySystem Composability

Plug & Play Systems

Model ComposabilityModel Composability

Reusable “Piece Parts”

65431

Perform
Conceptual

Analysis

2

Analyze
Data and
Evaluate
Results

7

Define
Federation
Objectives

Design
Federation

Develop
Federation

Plan,
Integrate,
and Test

Federation

Execute
Federation
& Prepare
Outputs

FEDEP

65431

Perform
Conceptual

Analysis

2

Analyze
Data and
Evaluate
Results

7

Define
Federation
Objectives

Design
Federation

Develop
Federation

Plan,
Integrate,
and Test

Federation

Execute
Federation
& Prepare
Outputs

65431

Perform
Conceptual

Analysis

2

Analyze
Data and
Evaluate
Results

7

Define
Federation
Objectives

Design
Federation

Develop
Federation

Plan,
Integrate,
and Test

Federation

Execute
Federation
& Prepare
Outputs

FEDEP

Conceptual Model

Figure 11 – Application of BOMs in the
Composability Process

Individually, BOMs also allow us to define separate
BOM component implementations (BCIs) that can
cater to a specific computational platform, operating
system, or language. So that while the implementation
is unique, the interface is common, and therefore
different BCIs could be produced, even for different
resolution needs and yet still support the same BOM
interface and capabilities described by its conceptual
model.

Ultimately, BOMs provide utility in not only being
able to capture training module elements in the context
of simulation, but also in combining those module
elements so that they can provide an effective
environment for training and testing.

Truman C. Preston, Assistant Chief of Staff, G7, II
Marine Expeditionary Force, Marine Corps Base Camp
Lejeune, N.C. sums it up in saying that “Simulations
are more cost effective ways to build in the repetitions
needed to gain experience (Fisher, 2005).” The key is
offering the right simulation to those that need it, and
in this era that need spans the Joint community.
Therefore, BOMs are intended to provide a mechanism
for identifying capability via the metadata, to describe
that capability via the conceptual model, and finally to
define the content for modeling that capability via the
object model definition. Additionally, BOMs provide a
mechanism for mapping between the conceptual and
the interface elements of an object model.

Consider that one of the principal difficulties in
establishing environments for training can be in
locating and leveraging models across environments,
domains, and M&S frameworks. However, we have
explored how BOMs provide a viable standards-based
mechanism useful in supporting the composability of
simulation and simulation environments, and conclude

that BOMs are well suited for supporting the needs of
the Joint training community.

ACKNOWLEDGMENTS

Each of the following individuals has provided
significant help in the development of the BOM
concept that has been described. The author wishes to
thank them for their countless contributions and
steadfast support.

• Björn Löfstrand (Pitch)
• Bob Lutz (JHU APL)
• Chris Rouget (Preforce)
• Chris Turrell (Alion/DMSO)
• Jake Borah (Aegis Research)
• Jane Bachman (NSWCDD - TEAMS)
• Larry Root (SimVentions)
• Mark Biwer (Northrop Grumman)
• Reed Little (CMU SEI)
• Roy Scrudder (ARL/UT)
• Steve Goss (SimVentions)
• Steve Reichenthal (Boeing)
• Tram Chase (SimVentions)

In addition, the author would like to thank the Defense
Modeling and Simulation Office (DMSO) for
sponsoring the BOM development effort intended to
bring forth an increase in composability within the
distributed simulation communities, and also the U.S.
Army, specifically RDECOM, and PEOSTRI, which
have sponsored a Small Business Innovative Research
project associated with the application of BOMs for
supporting aggregation and load balancing of
distributed simulation environments.

REFERENCES

Task Force on Metadata, “The Final Report of the
Association for Library Collections and Technical
Services,” (2000)

C. Fisher, “Simulations Add ‘Playtime’ To Training
Cycle,” Headquarters Marine Corps, Story Id#:
2005412101145,
http://www.marines.mil/marinelink/mcn2000.nsf/loo
kupstoryref/2005412101145

Gustavson, Chase, Root, Crosson, “Moving Towards a
Service-Oriented Architecture (SOA) for Distributed
Component Simulation Environments,” 05S-SIW-
091

Gustavson, Scrudder, Lutz, Bachman, “Understanding
the BOM Metadata and Making It Work For You,”
05S-SIW-084

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2005

2005 Paper No. 2302 Page 12 of 12

Gustavson, Zimmerman, Turrell, "Capturing Intent-of-
Use for the Conceptual Model - A Key to
Component Reuse," 03F-SIW-080

IEEE 1516.3, IEEE Recommended Practice for High
Level Architecture (HLA) Federation Development
and Execution Process (FEDEP), March 2003

M. D. Petty and E. W. Weisel, “A Composability
Lexicon,” Proceedings of the Spring 2003
Simulation Interoperability Workshop, Orlando FL,
March 30-April 4 2003, 03S-SIW-023

Sgt. 1st Class Doug Sample, USA, “Facing the Future:
Transforming DoD Is 'Constant Process',” American
Forces Press Service,
http://www.defenselink.mil/news/Mar2005/2005032
8_331.html

SISO, “Base Object Model (BOM) Template
Specification,” SISO-STD-003.1-DRAFT-V0.11

SISO, “Guide for Base Object Model (BOM) Use and
Implementation,” SISO-STD-003.0-DRAFT-V0.11

Spc. Allison Churchill, USA, “Soldiers Simulate
Battlefield Conditions,” 4th Infantry Division Public
Affairs,
http://www.defenselink.mil/transformation/articles/2
005-03/ta030405d.html

