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ABSTRACT

After-Action Review (AAR) is an effective tool to evaluate and improve the performance of trainees in tactical
training exercises. However, when the exercises grow in size, and might reside in several locations, providing
feedback to the majority of the participants can be complicated. It requires extensive time and resources, and the
review might be limited to the few most important tactical decisions made. This paper presents a model of how to
automate the After-Action Review and make it easily accessible to all the participants to increase the efficiency and
improve the performance of After-Action Reviews. A system built on expert models where the action of the trainees
could be compared with these models can provide additional support for the trainees. However, such a system needs
to automatically detect and classify discrepancies. Discrepancies between a trainee and an expert modeled agent can
emerge in many situations. By minimizing the discrepancies shown in the AAR to only include the ones believed to
be significant enough to decrease the performance of the trainee, the AAR will become more effective by reaching
out to the majority of the participants of the exercise giving them individual performance feedback. Preliminary
results of our experiments are promising and indicate that the model presented in this paper can be used to address
the issues discussed above.
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INTRODUCTION

In military training, it is important that the trainee be
provided with timely and individual-specific feedback
in order to improve his performance in future missions.
After-Action Review (AAR) is the process through
which this feedback is traditionally provided. AAR is
an important tool to evaluate the individual as well as
collective task performances for trainees after the
training session is completed. The instructor/observer
(I’/0) who normally provides the feedback must be
aware of the actions executed by the trainee, and be
able to determine their correctness. It is unrealistic to
expect the I/O to continuously monitor every single
individual participant in the exercise. This is especially
true for large training exercises with many participants.
There is an increasing interest in virtual simulations
where the participants can be either real or virtual and
in different training locations. Conducting constructive
AAR in these exercises becomes even more difficult.

To get the most out of AAR, it should be
complemented with automated systems that help the
I/O generate the appropriate feedback for each
individual trainee. To improve the ability of the I/O to
provide this feedback, this research seeks to develop
intelligent tools to compose a Smart After-Action
Review (SmartAAR) technology suite. This approach is
based upon the concept of AAR-by-comparison. That
is, we seek to build agents that represent appropriate
human performance and then use them as benchmarks
during execution of the tactical exercise. The trainee’s
performance is compared continuously and possibly in
real time to this benchmark. By pairing each trainee
with his own 'personal' expert agent counterpart,
individual feedback can be managed to the benefit of
the trainee.

Today, there are many support systems for AAR in
military exercises. Some of them record the actions and
reactions of all actors during an exercise that could be
re-played and viewed by the instructors and actors in an
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AAR session. Extending such a support system for
AAR with expert agents can then serve as the basis for
AAR by comparison. If the expert agent receives the
same inputs as a trainee, the action taken by the agent
could be played in the simulated environment of the
AAR support system and the discrepancies between the
trainee and the expert agent could be identified, marked
and logged.

In this paper we present the concept of AAR by
comparison, including techniques on how to detect
discrepancies, synchronize the agent with the trainee
and logging important deviations. The AAR by
comparison is designed on a contextual approach,
supporting human behavior modeling and situational
awareness.

AAR BY COMPARISON

Teaching guidelines and doctrines to military trainees
has its drawback in that it is unrealistic to expose all
possible scenarios or actions to the trainee. There is
often no specific correct action to take for a given
situation. More realistic would be to have models of the
expertise at hand against which to compare the trainee’s
action.

The objective of this research is to establish a method
whereby simulated expert agents experience the same
situations in a simulated environment as the human
trainee does in the real world exercise. A comparison
between them could then serve as a basis for an
individual AAR system. Such a system could be
regarded as an evaluation support system. It is not
necessary that the system is to be fully automated or
provide feedback directly to the trainee. If the system
juxtaposes the performance of the expert agent with the
environmental data apparent to the agent, it will give
the trainee an excellent platform for self-evaluation and
learning.
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Figure 1: AAR by Comparison

In training exercises, whether live or virtual, there are
different types of deviations between the trainee and the
expert agent, and with different severity. If the trainee
and the agent for some reason chose different paths at a
decision point, the deviation might become large. If
neither encounters problems on the way, the deviation
may be unimportant. Conversely, very small deviations
in performance might have severe implications. The
two could behave almost the same but one of them
might expose itself to the opponents (e.g., be in line-of-
sight of an enemy combatant within firing range). Such
a small deviation can be the result of two completely
different tactics applied to the current situation. It could
be the difference between seek cover and attack. This
constant comparison between human and agent will
permit the continuous evaluation of the trainee’s
performance in the exercise.

We envision each trainee’s performance being
continuously compared to the expert agent. As long as
the actions of the trainee agree with those of the agent,
the trainee is considered to be performing correctly;
however, upon observation of a discrepancy from the
benchmark expert agent, the discrepancy is noted and
logged for evaluation later.

CONTEXTUAL DISCREPANCIES

It is our opinion that people in tactical situations also
behave in a context-based fashion. Several researchers
in cognitive psychology promote models that are based
on context-like structures, most notably Endsley (1995)
in her study of situational awareness and Klein (1989)
in his recognition-primed decision making approach.

It is our assertion that the most important discrepancies

between the expert agent and the trainee occur when
they are in different contexts. While discrepancies in
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time and location may be common throughout an
exercise, they may not represent serious problems. A
discrepancy in the contexts of the expert agent and a
trainee will nearly always be the result of inappropriate
actions by the trainee. Hence, in order to facilitate this
comparison, the modeling paradigm for the expert agent
is context based.

When comparing the agent and the trainee, the expert
agent executes in a simulated environment and acts
upon the situation that the trainee encounters in the real
world. The context model structure needs to be tailored
for human behavior representation in simulated agents.
For this we employ Context-Based Reasoning (CxBR).

Context-Based Reasoning (CxBR)

Gonzalez and Ahlers (1998) presented CxBR as a
modeling paradigm that can efficiently represent the
tactical behavior of humans in intelligent simulated
agents. Results have shown that it is especially well-
suited to modeling such behavior. CxBR is based on the
idea that:

e A situation calls for a set of actions and procedures
that properly address the current situation.

e As an exercise plays out, a transition to another set
of actions and procedures may be periodically
required to address a new situation.

e Things likely to happen under the current situation
are limited by the current situation itself.

CxBR encapsulates knowledge about appropriate
actions and/or procedures for specific situations, as well
as compatible new situations, into hierarchically-
organized contexts. All the behavioral knowledge is
stored in the Context Base (i.e. the collection of all
contexts). The top layer of contexts in the hierarchy
contains the Mission Context. At the next layer are
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Major Contexts and below them, a number of Sub-
Contexts layers can exist. Figure 2 shows an example of
a context structure from a simple context base that
models contextual components of tank platoon
behavior. Mission Contexts define the mission to be
undertaken by the agent. While it does not control the
agent per se, the Mission Context defines the scope of
the mission, its goals, the plan, and the constraints
imposed (time constraints, weather, etc.).

The Major Context is the primary control element for
the agent. It contains functions, rules and a list of
compatible Major Contexts that can follow the current
one. Identification of a new situation can now be
simplified because only a limited number of all
situations are possible under the currently active
context. Sub-Contexts are abstractions of functions
performed by Major Contexts which may be too
complex for one function, or that may be employed by
other Major Contexts. This encourages re-usability.
Sub-Contexts will de-activate themselves upon
completion of their actions.

Assault and Mission Context

Destroy
Road March Assault Major Contexts
Bounding Flank Attack Sub-Contexts
Overwatch

Figure 2: Context-base organization

One and only one Major Context is always active for
each agent, making it the sole controller of the agent.
When the situation changes, a transition to another
Major Context may be required to properly address the
emerging situation. For example, a tank platoon may
make contact with an inferior force that requires a
transition from a Road March to an Assault Major
Context. Transitions between contexts are typically
triggered by events in the environment — some planned,
others unplanned. Events internal to the agent (i.e.,
mechanical breakdown) can also trigger transitions.
Expert performers are able to recognize and identify the
transition points quickly and effectively.

CxBR is a very intuitive, efficient and -effective
representation technique for human behavior. A full
description of CxBR can be found in Gonzalez and
Abhlers (1998).
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DEVIATIONS AND SYNCHRONIZATION

A discrepancy can be of two types (not mutually
exclusive): 1) The position, movement, or firing action
of the trainee is significantly different from the agent’s.
2) The context of the human trainee is different from
that of the agent. The first is rather easy to determine by
merely overlaying the locations and actions of the
trainee onto that of the agent. Given the many possible
moves and micro decisions, this type of discrepancy is
likely to be a very coarse filter that will result in many
logged discrepancies. Many of these discrepancies will
turn out to be of little tactical consequence (i.e.
unimportant).

The second type of discrepancy is the more significant
but more complicated to discover. To make a useful
comparison to a context-based model, the AAR system
must infer the context in which the trainee is currently
operating. Inferring a trainee’s intentions and the set of
skills being used at the time of the comparison can
provide a very useful means of reviewing his
performance. The problem, of course, is how to infer
the context in which the human is operating. One
approach is to use a pattern matching technique that
compares the trainee’s action with that of the expert
agent under various contexts simultaneously. The
comparison that results in the closest match will
indicate the context in which the trainee is most likely
to be operating. This matching of patterns can be said
to infer the context and/or sub-context in which the
trainee is operating.

After a discrepancy has been detected and logged, the
expert agent needs to be synchronized with the trainee.
If they are not synchronized, the agent and the trainee
might continue their missions on completely divergent
paths and further comparison will not be possible. The
agent therefore, needs to be forced to regain the same
state as the trainee, both when it comes to location, time
and status, but also forced to operate in the same
context as the trainee. During synchronization, the
agent also needs to update its temporal memory. Now
all the pieces for the AAR by comparison can be
completed, as shown in Figure 1. The recorded data
from the trainees (i.e. players) are played in the
simulated environment together with the expert agent.
The deviation detection unit detects and records (with
help of the logger) discrepancies between the agent and
the trainee under evaluation. After the discrepancy has
been logged, the agent is synchronized with the player
again.
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DETECTING PHYSICAL DISCREPANCIES

A physical discrepancy (d) stems from the assertion that
a non-trivial difference in position, heading or velocity
between the agent and the trainee that has been
measured and observed. The trainee in the exercise is
coupled with an agent in the SmartAAR simulation.
The discrepancies between the trainee’s and the agent’s
position, heading, and velocity are retrieved at every
simulation cycle. Realistically, there will always be a
small deviation in the agent’s position, heading and
velocity compared to the trainee. Such discrepancies
can be discarded as irrelevant and not logged. In our
presented model we use a threshold in order to filter
this kind of discrepancies.

Agent Synchronization

The basic concept in synchronizing the expert agent
with the trainee is to put the expert agent into the same
situation as the trainee in order to determine whether
the trainee is responding to the situation being currently
exposed to in an acceptable manner.

During a mission, there are typically several ways to
properly execute it. On the other hand, there are also
several incorrect ways to do it. In order for the agent to
determine if the trainee is conducting the mission in an
acceptable manner, the agent needs to frequently be
superimposed on the trainee for a short period of time
in order to compare itself with the action of the trainee.
If the discrepancies are minor, the performance of the
trainee is determined to be acceptable and the agent is
again synchronized with the trainee to be able to detect
if the trainee’s next behavioral pattern is acceptable. If
we allow the agent to be totally autonomous and freely
act in the environment, the accumulated deviations will,
after a period of time, be large enough to trigger a
discrepancy of the trainee. This discrepancy, by
definition reflects a potentially serious mistake by the
trainee; therefore, we believe that the agent must
continuously be synchronized with the trainee in a pre-
determined time interval. This type of synchronization
is referred to as pulse synchronization.

Notably, other trainees in the exercise will not react to
any of the expert agent’s actions. Nor will the agent’s
actions change the environment in any way.

Physical Discrepancy Detection Model
The following model is used in the SmartAAR
simulation software to detect, classify and report

physical discrepancies. The first step in our model is to
determine whether a discrepancy truly exists. The
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discrepancies (d;) of a time period of length I, are kept
in vector D.

The sum of vector D (D,) is basically an accumulated
value over a time period. A possible discrepancy is
detected if D, is larger than the accumulated threshold z
for the same time period. To determine and classify the
level of the discrepancy, a trend at a specific point in
time (k;) is calculated (Eq. 1).

The value of k, reveals whether the discrepancy is
increasing (k, > 0), decreasing (k, < 0) or simply flat
lining (k,= 0).

_do—d;

k
! /

(M

The variable &, is then compared to the asymptotic
function shown in equation 2. The asymptotic function
is designed to emphasize large and probably more
meaningful discrepancies rather than smaller ones that
are believed to be of lesser importance.

5
? = 0.05Davg @
e

Where D avg is the average of vector D

By using a variable k-value (¢) and by comparing it
with k, (Eq. 3) it is possible to classify the trend ¢, for
the time period. The trend classification #, for the
discrepancy is either decreasing (# = -1), increasing (¢, =
1) or not significantly changing (z, = 0).

Ifky <0—1,=-1
3)

The asymptotic function in (2) and its implication on
the trend classification is presented as a graph in Figure
3. The darker areas in Figure 3 depict that the trend t,
will be classified as an increase (f, = 1), while the
brighter areas will be classified as not significantly
changing (#, = 0). Noticeably, the lower discrepancies
return very high k-values, but as the discrepancies
increase, the function will return lower k-values.

To get a longer perspective of the observed discrepancy
its trend classification ¢ is added to a vector T
containing the trends over a time period of length /7.
The sum of the vector T (T}) is used to classify the
discrepancies.
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Figure 3. The asymptotic function (3).

Whenever a physical discrepancy is detected by
observing D, being greater than 7, it can be classified.
We believe that a discrepancy can be classified into
three different levels. These three levels represent the
significance of the discrepancy. A second threshold (6)
is introduced to separate less significant from more
important discrepancies. This threshold is needed to be
able to control the levels depending on the context.

The discrepancy is classified as a first level discrepancy
when 0 < T, <. This means that the discrepancy is of
such size that it should be taken into account in the
analysis. However, it is still of such small magnitude
that it is not displayed to the trainee at this point. The
discrepancies at this level are classified as being
insignificant, but still have potential to grow larger and
eventually become significant. Because of the
discrepancies are believed to be insignificant at the
time, the pulse synchronization remains enabled.

Second level discrepancies are such that 6 < T, < Iy
since the discrepancy is above the threshold level but is
not constantly increasing over the time period. Typical
for this type of discrepancy are those that are above the
first threshold, but also above the second threshold
which separates it from the first level. The magnitude
of the discrepancy is believed to provide useful
information to the trainee. We believe that these
discrepancies are such that the trainee can learn from.
Therefore, whenever a discrepancy has been classified
as second level, the pulse synchronization is turned off
in order to further analyze the detected discrepancy.

When T, = I is observed, the discrepancy is constantly
increasing and having such a magnitude so that it is
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classified as a third level discrepancy. We believe that
whenever a discrepancy belongs to this level, the
discrepancy is significant. Therefore, it is logged and
reported by the SmartAAR application and the pulse
synchronization is again enabled.

Displaying a Physical Discrepancy

To provide only significant feedback, the agent will
only be displayed to the trainee whenever a significant
physical discrepancy is observed. Whenever a second
level discrepancy is detected, the agent will become
visible to the trainee. If the discrepancy is believed to
not be severe and goes back to be a first level
discrepancy, or if it is below the determined threshold
(1) the agent will become invisible.

Note that at this time we only use the magnitude of the
discrepancy to suggest severity. Of course, “important”
discrepancies will turn out to be the result of doing
something in a different but equally acceptable way.
This can be likened to syntactical vs. semantic
differences in text. We have not yet addressed the latter
type of discrepancy characterization and will look to
contextual discrepancies to assist in this task.

BUILDING THE EXPERT AGENTS

Unfortunately, expert agents are not trivial to build.
Such agents are complex because expert behavior
emerges from years of experience and the knowledge
can be intuitive. Experts are often unaware of exactly
why they act as they do. It is widely accepted that
battle-tested soldiers perform better than highly skilled
ones without live experience. The rate of success
increases as more experience is gained. This infers that
the best doctrines cannot cover all possible situations
and their correlated actions. The best performance
refinement method is live action. In creating the expert
agents, the advantage would be to use the knowledge
from highly skilled and experienced experts; however,
there is evidence in the literature suggesting that agents
developed through an interaction between the model
engineer and the subject matter expert tend to represent
generic, doctrine-like behavior (Calder et al., 1993;
Guha, 1991; Ourston et al., 1995; Smith and Petty,
1992). Furthermore, it has been shown that what the
experts teach is not necessarily what the experts
themselves practice (Deutsch, 1993). Hence, the
preferred learning method used is to model the experts
by observing their behavior rather than through
interviewing them. The method adapted here uses a
machine learning algorithm to build the knowledge
within the contexts, by observing the experts in action
(Fernlund, 2004). An empty context frame was initially
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developed from expert knowledge and doctrines. This is
the very basic structure (i.e. hierarchy) of human
behavior in the battlefield. Experts can easy identify the
different contexts (e.g. hasty attack, road march,
defense, bounding overwatch, etc.) in which a soldier or
a group of soldiers can find themselves during different
missions. When this empty context structure is defined,
the machine learning algorithm is engaged to model the
behavioral knowledge within each context and the
knowledge to activate correct context (i.e. situational
awareness) by observing experts in action.

In order to investigate the feasibility of the SmartAAR
by comparison, a test bed of data from live exercises
has been established. The data was collected from
exercises where two opponent tank platoons made an
unanticipated contact. The data collection was made
available because the exercise was equipped with an
AAR support system that recorded all the soldiers and
vehicles movements and actions during the exercise.
Data collected from the tanks, and used by the learning
algorithm include position, speed, heading, turret-
heading, player status, use of Laser Range Finder, Fire
and Hit results from fire simulation. Further data used
comes from a terrain classification (e.g. forest, open
field, water, etc.) of the environment.

As both tank platoons are trainees, there is
unfortunately no expert data at hand. The theories of
AAR, by comparison, can still be evaluated by using
data from one of the platoon to develop the agents and
then evaluate the agents by doing AAR by comparison
with the other platoon. Earlier research with this
machine learning strategy has showed that it is able to
create high fidelity individual behavior for the agents
created (Fernlund, 2004). In other words, if the

behavior of the two platoons differs, it will also be
recognized by the comparison of the agent and the
opponent platoon.

It is not our intent to further present the machine
learning strategy to build context in this paper. Details
regarding the machine learning algorithm can be found
in Fernlund (2004). Rather, the attention is to present
the concepts behind an automatic AAR by comparison.

PHYSICAL DISCREPANCY DETECTION
EXPERIMENT

The experiment presented here is based on recorded
observations from a real exercise. The simulation that is
run on the recorded data is 11 minutes long. An expert
agent has been added on top of the recorded data and
coupled to one of the trainees to determine the
performance of the trainee. The idea of this experiment
is to show that the earlier proposed model of detecting
physical discrepancies is operational as far as
presenting only relevant discrepancies to the trainee.
The following control parameters were used for the
model. Length of vector D, Ip = 8; Length of vector T,
It = 16; Threshold, T = 20; Threshold, 6 = 3. In this
experiment, the focus has been placed on detecting a
discrepancy in position. Nevertheless, the same model
can be used to detect discrepancies in heading or
velocity.

A graph of the discrepancies and their classification for
the experiment is presented in Figure 4 while Table 1
presents statistics for the experiment. Measuring the
number of discrepancies (significant or insignificant)
detected in the experiment is done by looking at the
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Figure 4. Graph of the discrepancies detected in the experiment.
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number of first level discrepancies detected. The graph
in Figure 4 shows that a total of 12 discrepancies of
Discrepancy Level 1 were found. Furthermore, by
looking at the same graph, it shows that further analysis
has been carried out 8 times (Discrepancy Level 2) out
of the total of 12 discrepancies detected. The number of
significant discrepancies is measured by counting the
number of third level discrepancies (Discrepancy Level
3), that in our experiment came to a total of 6. The
number of detected discrepancies is shown as Classified
in Table 1 below.

In the graph in Figure 4 some interesting observations
can be made. After about 70 seconds in the simulation,
the first discrepancy is detected. It is classified as a first
level discrepancy but turned out to not become a higher
level discrepancy but merely dropped below the
threshold level. The second discrepancy (85 seconds)
detected is also a first level discrepancy. In this case, a
pulse synchronization event took place, replacing the
agent back at the exact same situation as the trainee. It
might seem awkward to synchronize the agent with the
trainee at this point, but our theory is that the trend of
the discrepancy is not increasing to the point where any
greater and significant discrepancy will occur.

The third discrepancy in the graph of Figure 4 (140
seconds), is first classified as a first level discrepancy.
When looking at the trend and the size of the
discrepancy after a period of time it is classified as a
second level discrepancy. At this point, the
synchronization event is turned off and the agent can be
observed by the trainee. For this particular discrepancy,
one can see that it turned out to decrease after awhile
and is yet again classified as a first level discrepancy,
thus turning on the pulse synchronization again. We
believe that a discrepancy pattern like this provides
very little and insignificant information to the trainee.

At about 370 seconds into the simulation, the first
significant (third level) discrepancy is detected. It
grows fast early and is thus classified as a first level
discrepancy for just a short period of time before being
classified as a second level and having the simulation
turn off the pulse synchronization. In this case the
growth rate of the discrepancy tends to slow down for
about 30 seconds. As the synchronization is turned off,
we observe it to see whether it will continue to grow
into a significant discrepancy or if the discrepancy is
temporary and thereby decrease. In this case, it starts
growing rapidly again, becoming classified as third
level. This is communicated to the trainee running the
SmartAAR application and the pulse synchronization
triggered at about 430 seconds into the simulation.
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Table 1 presents some statistics derived from the
experiment. It shows the size of the average
discrepancies along with the standard deviation for each
of the discrepancy levels. The table also presents a time
measurement in percent per discrepancy level that the
trainee did deviate from the agent. It is quite interesting
that the trainee is not believed to deviate at all from the
agent for 50% of the time. After analyzing the
discrepancies, it can be said that he didn’t deviate from
the agent for 87% of the time.

Also, Table 1 shows how many times a discrepancy has
been classified as a certain level (Classified). A total of
12 classified discrepancies of various levels were
detected in the experiment. Whenever a discrepancy is
detected, it always starts as being classified as a first
level discrepancy, if it grows larger and is classified as
a second level discrepancy it would still at some point
have been classified as a first level discrepancy.
Nevertheless, six of the detected discrepancies were
classified as being significant and reported back to the
trainee. Out of the 12 discrepancies detected, eight of
them turned out to be interesting enough to be further
analyzed. This means that our method is forgiving to a
reasonable number of discrepancies that are not
believed to be interesting to the trainee. Once these
discrepancies were analyzed, the majority of them
turned out to be of such degree that they could be
classified as significant.

Table 1. Statistics from the experiment

Di<t | Lvll | Lvl2 | Lvl3
Average Disc. 9.3 36.6 67.1 | 118.1
Std. Dev. 80| 225 226 | 393
Classified - 12 8 6
Time spent in 50.3 15.7 20.9 13.1
level (%)

CURRENT RESEARCH - CONTEXTUAL
DISCREPANCIES

The SmartAAR application utilizes the novel modeling
paradigm Context-based Reasoning to simulate the
human tactical behavior of the agent. We believe that
the trainee also operates by using a contextual behavior,
making it possible to detect contextual discrepancies
between the agent and the trainee. Given that the trainee
is operating in our simulation as recorded data, the first
step in this process is to evolve a model whose purpose
is to determine the trainee’s context. Our current model
for this is to use an agent for each possible context the
trainee can take on and expose it to the same situation
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as the trainee. Each of these agents generates a
behavior. In order to detect the similarity of two
behaviors, the position, heading and velocity of the
agent and the trainee is compared to each other
individually for each context. By doing this comparison
we can determine the trainee’s current context. Once
the trainee’s context has been determined it can be
easily compared to the agent’s context and a
discrepancy can eventually be detected. This work is
currently on-going and it promises to add an important
dimension to AAR by comparison.

CONCLUSIONS

In this paper we proposed an automatic AAR approach
that could be applicable, not only in military training,
but in wide range of applications. Applying automatic
AAR by comparison would enhance the evaluation and
possibly be advantageous to more of the participants
during an exercise. By giving each participant
individualized feedback that focuses on their behavior
by comparing it with an expert, it would be the basis for
an automatic and self-instructing AAR. For training
evaluation, the process of creating take-home packages,
or web portals, can now be automated. This would also
ease conducting AAR in exercises with actors in
different locations (live, virtual or mixed).

We also presented a model that which can detect
significant physical discrepancies to be reported to the
trainee when conducting AAR. The experiment showed
that the model is capable of filtering out a reasonable
amount of discrepancies that we believe are
insignificant to the trainee. Contextual comparison will
serve to filter out additional discrepancies.

The method of SmartAAR by comparison could be
further developed to conduct evaluation and feedback
in near real time. As the trainees are out in the field
performing an exercise, they could be equipped with
instrumentation that gives them feedback while they are
still in the exercise. This would be possible if the expert
agent is executed in the same environment as the
trainee (i.e. the agent resides in a simulated
environment of the real world) and experiences the
same events at the same time as the trainee.
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