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ABSTRACT 
 
After-Action Review (AAR) is an effective tool to evaluate and improve the performance of trainees in tactical 
training exercises. However, when the exercises grow in size, and might reside in several locations, providing 
feedback to the majority of the participants can be complicated. It requires extensive time and resources, and the 
review might be limited to the few most important tactical decisions made. This paper presents a model of how to 
automate the After-Action Review and make it easily accessible to all the participants to increase the efficiency and 
improve the performance of After-Action Reviews. A system built on expert models where the action of the trainees 
could be compared with these models can provide additional support for the trainees. However, such a system needs 
to automatically detect and classify discrepancies. Discrepancies between a trainee and an expert modeled agent can 
emerge in many situations. By minimizing the discrepancies shown in the AAR to only include the ones believed to 
be significant enough to decrease the performance of the trainee, the AAR will become more effective by reaching 
out to the majority of the participants of the exercise giving them individual performance feedback. Preliminary 
results of our experiments are promising and indicate that the model presented in this paper can be used to address 
the issues discussed above. 
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INTRODUCTION 

 
In military training, it is important that the trainee be 
provided with timely and individual-specific feedback 
in order to improve his performance in future missions. 
After-Action Review (AAR) is the process through 
which this feedback is traditionally provided. AAR is 
an important tool to evaluate the individual as well as 
collective task performances for trainees after the 
training session is completed. The instructor/observer 
(I/O) who normally provides the feedback must be 
aware of the actions executed by the trainee, and be 
able to determine their correctness. It is unrealistic to 
expect the I/O to continuously monitor every single 
individual participant in the exercise. This is especially 
true for large training exercises with many participants. 
There is an increasing interest in virtual simulations 
where the participants can be either real or virtual and 
in different training locations. Conducting constructive 
AAR in these exercises becomes even more difficult. 
 
To get the most out of AAR, it should be 
complemented with automated systems that help the 
I/O generate the appropriate feedback for each 
individual trainee. To improve the ability of the I/O to 
provide this feedback, this research seeks to develop 
intelligent tools to compose a Smart After-Action 
Review (SmartAAR) technology suite. This approach is 
based upon the concept of AAR-by-comparison. That 
is, we seek to build agents that represent appropriate 
human performance and then use them as benchmarks 
during execution of the tactical exercise. The trainee’s 
performance is compared continuously and possibly in 
real time to this benchmark. By pairing each trainee 
with his own 'personal' expert agent counterpart, 
individual feedback can be managed to the benefit of 
the trainee. 
 
Today, there are many support systems for AAR in 
military exercises. Some of them record the actions and 
reactions of all actors during an exercise that could be 
re-played and viewed by the instructors and actors in an 

AAR session. Extending such a support system for 
AAR with expert agents can then serve as the basis for 
AAR by comparison. If the expert agent receives the 
same inputs as a trainee, the action taken by the agent 
could be played in the simulated environment of the 
AAR support system and the discrepancies between the 
trainee and the expert agent could be identified, marked 
and logged. 
 
In this paper we present the concept of AAR by 
comparison, including techniques on how to detect 
discrepancies, synchronize the agent with the trainee 
and logging important deviations. The AAR by 
comparison is designed on a contextual approach, 
supporting human behavior modeling and situational 
awareness. 
 
 

AAR BY COMPARISON 
 
Teaching guidelines and doctrines to military trainees 
has its drawback in that it is unrealistic to expose all 
possible scenarios or actions to the trainee. There is 
often no specific correct action to take for a given 
situation. More realistic would be to have models of the 
expertise at hand against which to compare the trainee’s 
action. 
 
The objective of this research is to establish a method 
whereby simulated expert agents experience the same 
situations in a simulated environment as the human 
trainee does in the real world exercise. A comparison 
between them could then serve as a basis for an 
individual AAR system. Such a system could be 
regarded as an evaluation support system. It is not 
necessary that the system is to be fully automated or 
provide feedback directly to the trainee. If the system 
juxtaposes the performance of the expert agent with the 
environmental data apparent to the agent, it will give 
the trainee an excellent platform for self-evaluation and 
learning. 
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In training exercises, whether live or virtual, there are 
different types of deviations between the trainee and the 
expert agent, and with different severity. If the trainee 
and the agent for some reason chose different paths at a 
decision point, the deviation might become large. If 
neither encounters problems on the way, the deviation 
may be unimportant. Conversely, very small deviations 
in performance might have severe implications. The 
two could behave almost the same but one of them 
might expose itself to the opponents (e.g., be in line-of-
sight of an enemy combatant within firing range). Such 
a small deviation can be the result of two completely 
different tactics applied to the current situation. It could 
be the difference between seek cover and attack. This 
constant comparison between human and agent will 
permit the continuous evaluation of the trainee’s 
performance in the exercise. 
 
We envision each trainee’s performance being 
continuously compared to the expert agent. As long as 
the actions of the trainee agree with those of the agent, 
the trainee is considered to be performing correctly; 
however, upon observation of a discrepancy from the 
benchmark expert agent, the discrepancy is noted and 
logged for evaluation later. 
 
 

CONTEXTUAL DISCREPANCIES 
 
It is our opinion that people in tactical situations also 
behave in a context-based fashion. Several researchers 
in cognitive psychology promote models that are based 
on context-like structures, most notably Endsley (1995) 
in her study of situational awareness and Klein (1989) 
in his recognition-primed decision making approach. 
 
It is our assertion that the most important discrepancies 
between the expert agent and the trainee occur when 
they are in different contexts. While discrepancies in 

time and location may be common throughout an 
exercise, they may not represent serious problems. A 
discrepancy in the contexts of the expert agent and a 
trainee will nearly always be the result of inappropriate 
actions by the trainee. Hence, in order to facilitate this 
comparison, the modeling paradigm for the expert agent 
is context based. 
 
When comparing the agent and the trainee, the expert 
agent executes in a simulated environment and acts 
upon the situation that the trainee encounters in the real 
world. The context model structure needs to be tailored 
for human behavior representation in simulated agents. 
For this we employ Context-Based Reasoning (CxBR).  
 
Context-Based Reasoning (CxBR) 
 
Gonzalez and Ahlers (1998) presented CxBR as a 
modeling paradigm that can efficiently represent the 
tactical behavior of humans in intelligent simulated 
agents. Results have shown that it is especially well-
suited to modeling such behavior. CxBR is based on the 
idea that: 
 
• A situation calls for a set of actions and procedures 

that properly address the current situation. 
• As an exercise plays out, a transition to another set 

of actions and procedures may be periodically 
required to address a new situation. 

• Things likely to happen under the current situation 
are limited by the current situation itself. 

 
CxBR encapsulates knowledge about appropriate 
actions and/or procedures for specific situations, as well 
as compatible new situations, into hierarchically-
organized contexts. All the behavioral knowledge is 
stored in the Context Base (i.e. the collection of all 
contexts). The top layer of contexts in the hierarchy 
contains the Mission Context. At the next layer are 

AAR by Comparison 
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Figure 1: AAR by Comparison 
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Major Contexts and below them, a number of Sub-
Contexts layers can exist. Figure 2 shows an example of 
a context structure from a simple context base that 
models contextual components of tank platoon 
behavior. Mission Contexts define the mission to be 
undertaken by the agent. While it does not control the 
agent per se, the Mission Context defines the scope of 
the mission, its goals, the plan, and the constraints 
imposed (time constraints, weather, etc.). 
 
The Major Context is the primary control element for 
the agent. It contains functions, rules and a list of 
compatible Major Contexts that can follow the current 
one. Identification of a new situation can now be 
simplified because only a limited number of all 
situations are possible under the currently active 
context. Sub-Contexts are abstractions of functions 
performed by Major Contexts which may be too 
complex for one function, or that may be employed by 
other Major Contexts. This encourages re-usability. 
Sub-Contexts will de-activate themselves upon 
completion of their actions. 
 

 
 

Figure 2: Context-base organization 
 
One and only one Major Context is always active for 
each agent, making it the sole controller of the agent. 
When the situation changes, a transition to another 
Major Context may be required to properly address the 
emerging situation. For example, a tank platoon may 
make contact with an inferior force that requires a 
transition from a Road March to an Assault Major 
Context. Transitions between contexts are typically 
triggered by events in the environment – some planned, 
others unplanned. Events internal to the agent (i.e., 
mechanical breakdown) can also trigger transitions. 
Expert performers are able to recognize and identify the 
transition points quickly and effectively. 
 
CxBR is a very intuitive, efficient and effective 
representation technique for human behavior. A full 
description of CxBR can be found in Gonzalez and 
Ahlers (1998). 

DEVIATIONS AND SYNCHRONIZATION 
 
A discrepancy can be of two types (not mutually 
exclusive): 1) The position, movement, or firing action 
of the trainee is significantly different from the agent’s. 
2) The context of the human trainee is different from 
that of the agent. The first is rather easy to determine by 
merely overlaying the locations and actions of the 
trainee onto that of the agent. Given the many possible 
moves and micro decisions, this type of discrepancy is 
likely to be a very coarse filter that will result in many 
logged discrepancies.  Many of these discrepancies will 
turn out to be of little tactical consequence (i.e. 
unimportant). 
 
The second type of discrepancy is the more significant 
but more complicated to discover. To make a useful 
comparison to a context-based model, the AAR system 
must infer the context in which the trainee is currently 
operating. Inferring a trainee’s intentions and the set of 
skills being used at the time of the comparison can 
provide a very useful means of reviewing his 
performance. The problem, of course, is how to infer 
the context in which the human is operating. One 
approach is to use a pattern matching technique that 
compares the trainee’s action with that of the expert 
agent under various contexts simultaneously. The 
comparison that results in the closest match will 
indicate the context in which the trainee is most likely 
to be operating.  This matching of patterns can be said 
to infer the context and/or sub-context in which the 
trainee is operating. 
 
After a discrepancy has been detected and logged, the 
expert agent needs to be synchronized with the trainee. 
If they are not synchronized, the agent and the trainee 
might continue their missions on completely divergent 
paths and further comparison will not be possible. The 
agent therefore, needs to be forced to regain the same 
state as the trainee, both when it comes to location, time 
and status, but also forced to operate in the same 
context as the trainee. During synchronization, the 
agent also needs to update its temporal memory. Now 
all the pieces for the AAR by comparison can be 
completed, as shown in Figure 1. The recorded data 
from the trainees (i.e. players) are played in the 
simulated environment together with the expert agent. 
The deviation detection unit detects and records (with 
help of the logger) discrepancies between the agent and 
the trainee under evaluation. After the discrepancy has 
been logged, the agent is synchronized with the player 
again. 
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DETECTING PHYSICAL DISCREPANCIES 
 
A physical discrepancy (d) stems from the assertion that 
a non-trivial difference in position, heading or velocity 
between the agent and the trainee that has been 
measured and observed. The trainee in the exercise is 
coupled with an agent in the SmartAAR simulation. 
The discrepancies between the trainee’s and the agent’s 
position, heading, and velocity are retrieved at every 
simulation cycle. Realistically, there will always be a 
small deviation in the agent’s position, heading and 
velocity compared to the trainee. Such discrepancies 
can be discarded as irrelevant and not logged. In our 
presented model we use a threshold in order to filter 
this kind of discrepancies.  
 
Agent Synchronization 
 
The basic concept in synchronizing the expert agent 
with the trainee is to put the expert agent into the same 
situation as the trainee in order to determine whether 
the trainee is responding to the situation being currently 
exposed to in an acceptable manner.  
 
During a mission, there are typically several ways to 
properly execute it. On the other hand, there are also 
several incorrect ways to do it. In order for the agent to 
determine if the trainee is conducting the mission in an 
acceptable manner, the agent needs to frequently be 
superimposed on the trainee for a short period of time 
in order to compare itself with the action of the trainee. 
If the discrepancies are minor, the performance of the 
trainee is determined to be acceptable and the agent is 
again synchronized with the trainee to be able to detect 
if the trainee’s next behavioral pattern is acceptable. If 
we allow the agent to be totally autonomous and freely 
act in the environment, the accumulated deviations will, 
after a period of time, be large enough to trigger a 
discrepancy of the trainee. This discrepancy, by 
definition reflects a potentially serious mistake by the 
trainee; therefore, we believe that the agent must 
continuously be synchronized with the trainee in a pre-
determined time interval. This type of synchronization 
is referred to as pulse synchronization.  
 
Notably, other trainees in the exercise will not react to 
any of the expert agent’s actions. Nor will the agent’s 
actions change the environment in any way. 
 
Physical Discrepancy Detection Model 
 
The following model is used in the SmartAAR 
simulation software to detect, classify and report 
physical discrepancies. The first step in our model is to 
determine whether a discrepancy truly exists. The 

discrepancies (di) of a time period of length lD are kept 
in vector D.  
 
The sum of vector D (Dt) is basically an accumulated 
value over a time period. A possible discrepancy is 
detected if Dt is larger than the accumulated threshold τ 
for the same time period. To determine and classify the 
level of the discrepancy, a trend at a specific point in 
time (kt) is calculated (Eq. 1).  
 
The value of kt reveals whether the discrepancy is 
increasing (kt > 0), decreasing (kt < 0) or simply flat 
lining (kt = 0). 
 

l
ldd

tk
−

= 0  
 

(1) 

 
The variable kt is then compared to the asymptotic 
function shown in equation 2. The asymptotic function 
is designed to emphasize large and probably more 
meaningful discrepancies rather than smaller ones that 
are believed to be of lesser importance. 
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By using a variable k-value (φ) and by comparing it 
with kt (Eq. 3) it is possible to classify the trend tt for 
the time period. The trend classification tt for the 
discrepancy is either decreasing (tt = -1), increasing (tt = 
1) or not significantly changing (tt = 0). 
 

 
The asymptotic function in (2) and its implication on 
the trend classification is presented as a graph in Figure 
3. The darker areas in Figure 3 depict that the trend tt 
will be classified as an increase (tt = 1), while the 
brighter areas will be classified as not significantly 
changing (tt = 0). Noticeably, the lower discrepancies 
return very high k-values, but as the discrepancies 
increase, the function will return lower k-values. 
 
To get a longer perspective of the observed discrepancy 
its trend classification tt is added to a vector T 
containing the trends over a time period of length lT. 
The sum of the vector T (Tt) is used to classify the 
discrepancies. 
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Figure 3.  The asymptotic function (3). 

 
 
Whenever a physical discrepancy is detected by 
observing Dt being greater than τ, it can be classified. 
We believe that a discrepancy can be classified into 
three different levels. These three levels represent the 
significance of the discrepancy. A second threshold (δ) 
is introduced to separate less significant from more 
important discrepancies. This threshold is needed to be 
able to control the levels depending on the context. 
 
The discrepancy is classified as a first level discrepancy 
when 0 < Tt ≤ δ. This means that the discrepancy is of 
such size that it should be taken into account in the 
analysis. However, it is still of such small magnitude 
that it is not displayed to the trainee at this point. The 
discrepancies at this level are classified as being 
insignificant, but still have potential to grow larger and 
eventually become significant. Because of the 
discrepancies are believed to be insignificant at the 
time, the pulse synchronization remains enabled. 
 
Second level discrepancies are such that δ < Tt < lT 
since the discrepancy is above the threshold level but is 
not constantly increasing over the time period. Typical 
for this type of discrepancy are those that are above the 
first threshold, but also above the second threshold 
which separates it from the first level.  The magnitude 
of the discrepancy is believed to provide useful 
information to the trainee. We believe that these 
discrepancies are such that the trainee can learn from. 
Therefore, whenever a discrepancy has been classified 
as second level, the pulse synchronization is turned off 
in order to further analyze the detected discrepancy. 
 
When Tt = lT is observed, the discrepancy is constantly 
increasing and having such a magnitude so that it is 

classified as a third level discrepancy. We believe that 
whenever a discrepancy belongs to this level, the 
discrepancy is significant. Therefore, it is logged and 
reported by the SmartAAR application and the pulse 
synchronization is again enabled. 
 
Displaying a Physical Discrepancy 
 
To provide only significant feedback, the agent will 
only be displayed to the trainee whenever a significant 
physical discrepancy is observed. Whenever a second 
level discrepancy is detected, the agent will become 
visible to the trainee. If the discrepancy is believed to 
not be severe and goes back to be a first level 
discrepancy, or if it is below the determined threshold 
(τ) the agent will become invisible.  
 
Note that at this time we only use the magnitude of the 
discrepancy to suggest severity. Of course, “important” 
discrepancies will turn out to be the result of doing 
something in a different but equally acceptable way. 
This can be likened to syntactical vs. semantic 
differences in text. We have not yet addressed the latter 
type of discrepancy characterization and will look to 
contextual discrepancies to assist in this task. 
 
 

BUILDING THE EXPERT AGENTS 
 
Unfortunately, expert agents are not trivial to build. 
Such agents are complex because expert behavior 
emerges from years of experience and the knowledge 
can be intuitive. Experts are often unaware of exactly 
why they act as they do. It is widely accepted that 
battle-tested soldiers perform better than highly skilled 
ones without live experience. The rate of success 
increases as more experience is gained. This infers that 
the best doctrines cannot cover all possible situations 
and their correlated actions. The best performance 
refinement method is live action. In creating the expert 
agents, the advantage would be to use the knowledge 
from highly skilled and experienced experts; however, 
there is evidence in the literature suggesting that agents 
developed through an interaction between the model 
engineer and the subject matter expert tend to represent 
generic, doctrine-like behavior (Calder et al., 1993; 
Guha, 1991; Ourston et al., 1995; Smith and Petty, 
1992). Furthermore, it has been shown that what the 
experts teach is not necessarily what the experts 
themselves practice (Deutsch, 1993). Hence, the 
preferred learning method used is to model the experts 
by observing their behavior rather than through 
interviewing them. The method adapted here uses a 
machine learning algorithm to build the knowledge 
within the contexts, by observing the experts in action 
(Fernlund, 2004). An empty context frame was initially 
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developed from expert knowledge and doctrines. This is 
the very basic structure (i.e. hierarchy) of human 
behavior in the battlefield. Experts can easy identify the 
different contexts (e.g. hasty attack, road march, 
defense, bounding overwatch, etc.) in which a soldier or 
a group of soldiers can find themselves during different 
missions. When this empty context structure is defined, 
the machine learning algorithm is engaged to model the 
behavioral knowledge within each context and the 
knowledge to activate correct context (i.e. situational 
awareness) by observing experts in action. 
 
In order to investigate the feasibility of the SmartAAR 
by comparison, a test bed of data from live exercises 
has been established. The data was collected from 
exercises where two opponent tank platoons made an 
unanticipated contact. The data collection was made 
available because the exercise was equipped with an 
AAR support system that recorded all the soldiers and 
vehicles movements and actions during the exercise. 
Data collected from the tanks, and used by the learning 
algorithm include position, speed, heading, turret- 
heading, player status, use of Laser Range Finder, Fire 
and Hit results from fire simulation. Further data used 
comes from a terrain classification (e.g. forest, open 
field, water, etc.) of the environment. 
 
As both tank platoons are trainees, there is 
unfortunately no expert data at hand. The theories of 
AAR, by comparison, can still be evaluated by using 
data from one of the platoon to develop the agents and 
then evaluate the agents by doing AAR by comparison 
with the other platoon. Earlier research with this 
machine learning strategy has showed that it is able to 
create high fidelity individual behavior for the agents 
created (Fernlund, 2004). In other words, if the 

behavior of the two platoons differs, it will also be 
recognized by the comparison of the agent and the 
opponent platoon. 
 
It is not our intent to further present the machine 
learning strategy to build context in this paper. Details 
regarding the machine learning algorithm can be found 
in Fernlund (2004). Rather, the attention is to present 
the concepts behind an automatic AAR by comparison. 
 
 

PHYSICAL DISCREPANCY DETECTION 
EXPERIMENT 

 
The experiment presented here is based on recorded 
observations from a real exercise. The simulation that is 
run on the recorded data is 11 minutes long. An expert 
agent has been added on top of the recorded data and 
coupled to one of the trainees to determine the 
performance of the trainee. The idea of this experiment 
is to show that the earlier proposed model of detecting 
physical discrepancies is operational as far as 
presenting only relevant discrepancies to the trainee. 
The following control parameters were used for the 
model. Length of vector D, lD = 8; Length of vector T, 
lT = 16; Threshold, τ = 20; Threshold, δ = 3. In this 
experiment, the focus has been placed on detecting a 
discrepancy in position. Nevertheless, the same model 
can be used to detect discrepancies in heading or 
velocity.  
 
A graph of the discrepancies and their classification for 
the experiment is presented in Figure 4 while Table 1 
presents statistics for the experiment. Measuring the 
number of discrepancies (significant or insignificant) 
detected in the experiment is done by looking at the 

 
Figure 4. Graph of the discrepancies detected in the experiment. 
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number of first level discrepancies detected. The graph 
in Figure 4 shows that a total of 12 discrepancies of 
Discrepancy Level 1 were found. Furthermore, by 
looking at the same graph, it shows that further analysis 
has been carried out 8 times (Discrepancy Level 2) out 
of the total of 12 discrepancies detected. The number of 
significant discrepancies is measured by counting the 
number of third level discrepancies (Discrepancy Level 
3), that in our experiment came to a total of 6. The 
number of detected discrepancies is shown as Classified 
in Table 1 below.   
 
In the graph in Figure 4 some interesting observations 
can be made. After about 70 seconds in the simulation, 
the first discrepancy is detected. It is classified as a first 
level discrepancy but turned out to not become a higher 
level discrepancy but merely dropped below the 
threshold level. The second discrepancy (85 seconds) 
detected is also a first level discrepancy. In this case, a 
pulse synchronization event took place, replacing the 
agent back at the exact same situation as the trainee. It 
might seem awkward to synchronize the agent with the 
trainee at this point, but our theory is that the trend of 
the discrepancy is not increasing to the point where any 
greater and significant discrepancy will occur.  
 
The third discrepancy in the graph of Figure 4 (140 
seconds), is first classified as a first level discrepancy. 
When looking at the trend and the size of the 
discrepancy after a period of time it is classified as a 
second level discrepancy. At this point, the 
synchronization event is turned off and the agent can be 
observed by the trainee. For this particular discrepancy, 
one can see that it turned out to decrease after awhile 
and is yet again classified as a first level discrepancy, 
thus turning on the pulse synchronization again. We 
believe that a discrepancy pattern like this provides 
very little and insignificant information to the trainee. 
 
At about 370 seconds into the simulation, the first 
significant (third level) discrepancy is detected. It 
grows fast early and is thus classified as a first level 
discrepancy for just a short period of time before being 
classified as a second level and having the simulation 
turn off the pulse synchronization. In this case the 
growth rate of the discrepancy tends to slow down for 
about 30 seconds. As the synchronization is turned off, 
we observe it to see whether it will continue to grow 
into a significant discrepancy or if the discrepancy is 
temporary and thereby decrease. In this case, it starts 
growing rapidly again, becoming classified as third 
level. This is communicated to the trainee running the 
SmartAAR application and the pulse synchronization 
triggered at about 430 seconds into the simulation. 
 

Table 1 presents some statistics derived from the 
experiment. It shows the size of the average 
discrepancies along with the standard deviation for each 
of the discrepancy levels. The table also presents a time 
measurement in percent per discrepancy level that the 
trainee did deviate from the agent.  It is quite interesting 
that the trainee is not believed to deviate at all from the 
agent for 50% of the time. After analyzing the 
discrepancies, it can be said that he didn’t deviate from 
the agent for 87% of the time.  
 
Also, Table 1 shows how many times a discrepancy has 
been classified as a certain level (Classified). A total of 
12 classified discrepancies of various levels were 
detected in the experiment. Whenever a discrepancy is 
detected, it always starts as being classified as a first 
level discrepancy, if it grows larger and is classified as 
a second level discrepancy it would still at some point 
have been classified as a first level discrepancy. 
Nevertheless, six of the detected discrepancies were 
classified as being significant and reported back to the 
trainee. Out of the 12 discrepancies detected, eight of 
them turned out to be interesting enough to be further 
analyzed. This means that our method is forgiving to a 
reasonable number of discrepancies that are not 
believed to be interesting to the trainee. Once these 
discrepancies were analyzed, the majority of them 
turned out to be of such degree that they could be 
classified as significant.  
 

Table 1. Statistics from the experiment 
 

 Dt < τ Lvl 1 Lvl 2 Lvl 3 
Average Disc. 9.3 36.6 67.1 118.1 
Std. Dev. 8.0 22.5 22.6 39.3 
Classified - 12 8 6 
Time spent in 
level (%) 

50.3 15.7 20.9 13.1 

 
 

CURRENT RESEARCH – CONTEXTUAL 
DISCREPANCIES 

 
The SmartAAR application utilizes the novel modeling 
paradigm Context-based Reasoning to simulate the 
human tactical behavior of the agent. We believe that 
the trainee also operates by using a contextual behavior, 
making it possible to detect contextual discrepancies 
between the agent and the trainee. Given that the trainee 
is operating in our simulation as recorded data, the first 
step in this process is to evolve a model whose purpose 
is to determine the trainee’s context. Our current model 
for this is to use an agent for each possible context the 
trainee can take on and expose it to the same situation 
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as the trainee. Each of these agents generates a 
behavior. In order to detect the similarity of two 
behaviors, the position, heading and velocity of the 
agent and the trainee is compared to each other 
individually for each context. By doing this comparison 
we can determine the trainee’s current context. Once 
the trainee’s context has been determined it can be 
easily compared to the agent’s context and a 
discrepancy can eventually be detected. This work is 
currently on-going and it promises to add an important 
dimension to AAR by comparison. 
 
 

CONCLUSIONS 
 
In this paper we proposed an automatic AAR approach 
that could be applicable, not only in military training, 
but in wide range of applications. Applying automatic 
AAR by comparison would enhance the evaluation and 
possibly be advantageous to more of the participants 
during an exercise. By giving each participant 
individualized feedback that focuses on their behavior 
by comparing it with an expert, it would be the basis for 
an automatic and self-instructing AAR. For training 
evaluation, the process of creating take-home packages, 
or web portals, can now be automated. This would also 
ease conducting AAR in exercises with actors in 
different locations (live, virtual or mixed). 
 
We also presented a model that which can detect 
significant physical discrepancies to be reported to the 
trainee when conducting AAR. The experiment showed 
that the model is capable of filtering out a reasonable 
amount of discrepancies that we believe are 
insignificant to the trainee. Contextual comparison will 
serve to filter out additional discrepancies. 
 
The method of SmartAAR by comparison could be 
further developed to conduct evaluation and feedback 
in near real time. As the trainees are out in the field 
performing an exercise, they could be equipped with 
instrumentation that gives them feedback while they are 
still in the exercise. This would be possible if the expert 
agent is executed in the same environment as the 
trainee (i.e. the agent resides in a simulated 
environment of the real world) and experiences the 
same events at the same time as the trainee. 
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