Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2006

CDMTS: A Common User Interface for Multiple Training
Environments

Bela Joshi, Richard King, and Brian Teer
Alion Science and Technology Corporation, BMH Operation
Norfolk, VA 23513

bjoshi@alionscience.com, rking@alionscience.com, bteer@alionscience.com

ABSTRACT

A recent Department of Defense goal is to achieve a seamlessly integrated distributed training environment.
Such an environment would integrate Live, Virtual and Constructive (LVC) simulation assets to provide
realistic training to the warfighter. However, building such a complex environment presents unique
challenges. Technical challenges arise from the disparate platforms, technologies, and protocols used by
the simulation assets. Training challenges arise from the increased cognitive demands of simultaneously
managing different Instructor Operator Stations (10S).

A common I0S (C-10S) theoretical framework for an integrated distributed training environment was
developed by NAVAIR TSD. The framework specifically addressed cognitive work load, 10S training,
distributed mission training, and acquisition issues. This C-10OS concept was implemented as the Common
Distributed Mission Training System (CDMTS). CDMTS has been deployed in various training
environments and has become a common tool for integrating and managing Modeling & Simulation (M&S)
training technologies.

In this paper, we describe the challenges associated with implementing training tools such as CDMTS,
which integrate diverse technologies and simulation environments. We include benefit and tradeoff
considerations for issues such as common data specifications, semantic and functional interoperability, and
distributed architectures. Further, we present lessons learned from work done to incorporate CDMTS into
multiple training environments.

ABOUT THE AUTHORS

Bela Joshi is a Senior Software Engineer in the Alion BMH Operation Applications Technology Division.
She is the Project Manager of the CDMTS development team. Bela received a PhD in Engineering
Management from Old Dominion University, Norfolk, VA.

Richard King is a Research Software Engineer in the Alion BMH Operation Applications Technology
Division. He served as the Technical Lead of the CDMTS development team. Richard received a BS
degree in Computer Science from Virginia Tech.

Brian Teer is the manager of the Alion BMH Operation Applications Technology Division. He is also the

Senior Project Manager of the CDMTS development team and has been involved in CDMTS since its
inception. Brian received a MS in Computer Science from North Carolina State University.

2006 Paper No. 2774 Page 1 of 9

mailto:bjoshi@alionscience.com
mailto:rking@alionscience.com

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2006

CDMTS: A Common User Interface for Multiple Training
Environments

Bela Joshi, Richard King, and Brian Teer
Alion Science and Technology Corporation, BMH Operation

Norfolk, VA

bjoshi@alionscience.com, rking@alionscience.com, bteer@alionscience.com

INTRODUCTION

The use of modeling and simulation in training today’s
warfighters is becoming increasingly common. A
survey of military training simulation environments
reveals the numerous technologies, architectures,
protocols, and platforms that are employed by such
simulations. ~ An overarching goal of the US
Department of Defense (DoD) is to develop a training
environment integrating various Live, Virtual and
Constructive (LVC) simulation assets (Thorp, 2003;
Bizub and Phillips, 2004). The demands of a
distributed training environment significantly increase
the cognitive workload of instructors. An instructor
has to simultaneously interact with multiple operator
stations based on different platforms, architectures, and
Graphical User Interfaces (GUIs). A common
Instructor Operator Station framework (C-10S) that
addresses the issues of cognitive work load based on
distributed mission training has been developed
(Walwanis Nelson et al., 2003). This framework is
based on principles of Human Factors Engineering and
specifically addresses all aspects of training, including
scenario development, exercise monitoring and control,
performance measurement, and brief/debrief (Owens
2003, Stiso et al, 2004).

The implementation of a common 10S for the
distributed simulation environment is not without its
share of technical challenges. These challenges can be
attributed to the need for achieving semantic and
functional interoperability among diverse applications,
architectures, protocols, and platforms. A survey of
I0S platforms reveals Boeing’s Common 10S, which
consists of an extensible software framework of
configurable components. Boeing’s Common I0S is a
user interface for several standalone simulators/trainers
(F-15C Commercial Training Simulator Services
Distributed Mission Operations trainer; the T-38
Operation Flight Trainer and Unit Training Device; the
AH-64D Longbow Crew Trainer, Full Mission
Simulator, and Field Deployable Simulator). Although
Boeing’s Common 10S is extensible and configurable,
it is proprietary.

2006 Paper No. 2774 Page 2 of 9

This paper presents the technical implications of
implementing the C-10S framework as the Common
Distributed Mission Training System (CDMTS).
CDMTS is government-owned open source software
that serves as a common 10S for multiple simulation
applications in a distributed network. Design
considerations and technical challenges that are
commonly associated with the implementation of such
integrated training tools are described. In addition,
lessons learned from deploying CDMTS in multiple
training platforms and user communities are discussed.

Sharing technical information about emerging tools
and technology such as CDMTS contributes to the
training community and the overall DoD goal of an
integrated simulation training environment.

CDMTS OVERVIEW

CDMTS is based on a theoretical framework for a C-
IOS based on Human Factor Engineering principles
(Walwanis-Nelson, 2003). The framework is
empirically tested by verifying capabilities and user
interfaces with military service users. The C-10S
specifically addresses cognitive workload, [0S
training, distributed mission training, and acquisition
costs.

The key capabilities of CDMTS are as follows:

1. Integrates virtual and constructive assets in a
distributed simulation network

2. Serves as a common user interface for multiple
constructive simulation applications

3. Capable of performing planning, monitoring,
control, and after action review of an exercise

4. Government-owned, open source, extensible
framework can be customized for specific
deployments

5. Learning science based user interface is proven
through empirical testing

Figure 1 contains a screen shot of CDMTS being used
to monitor an exercise.

mailto:bjoshi@alionscience.com
mailto:rking@alionscience.com

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2006

= tn | f [. . a |
-Jg/ ' |{Entity Info o =] 3|
e Entity Type I’ Entity Data rMissiun Data I’ History \
. [aaid_One [Mission Mame | Mission Type | ’___‘j\l_
el |alphatne |Fiva Fiy Route |
alphaTwo FifA Fly Route
32] sub pt
{ ' Beta | e ’ Inactive
[Pending
& Target| Paint Acdtive
Finished
D eted
L ‘ FWA Fly Route |~ || [ada »
0 o osfar
| o, speed: 1.02
\ -~ | ie
Scenario Tools [&1[X] hefadding: 000°
Scenario Generation Objects Jiavaid_One d r_ﬂage_Slau.Js MODAMAGE
arficulations: <nones
MSEL peed: 102,96
¥ Wavaid_Two fititude: 6452.0
armageStatus: NODAMACSE
Ieq Time Qhj Dane articulations: <none:
0630 [SUW/RM Wl |- [
00 0620 FOTC v = 2 g
01 0630 SUiARM.. v
02 0630 SLiir /PP v
03 0630 |SUWRM..| [L -2 F0 3 [
04 o630 [suw/RM..| L] [w I
05 0630 SL i JRMP L] -
06 0650 USMC P | &
o7 0650 i * I Entities rsimulaliun Machines rUser Logs I’Sear(h rEmily Summary |
08 0650 1 i Callsign Type Cateqo Force Dormain Count Speed Location Headin: Altitude | Simulator Histo o
09 0650 |
10 0650 LA RAP L] Eeta Oscar Class |Attack/Str.. |Opposing [Sub-3urfa...[Common... [1.03 Lat: 31.6... |360° 34.68 livoung.b... |Off =
11 0650 AW PPR [Gamma _ [55M774 ¥...|Bomber (3) [Friendly [Sub-Surfa...|United 5t... [1.03 |at 315, [360° [z6.2 [ivoung.b... |off
12 0ES 0 SLIWRMP [oscar |Dscar Class [Artack/Str [Opposing [Sub-Surfa._[Camman. . [1.02 |Lat: 32.2. [o00® [38.36 livoung .. [off]
1z QESD AW PPR | - =

‘ Logged in as: System ‘Cnnnened to Federation [ahbmjy] using FOM [/ home/young/projects;cd... ‘ Current Time: 17:09:01 GMT / 13:09:01 EDT 13 April 2006

Figure 1. CDMTS Showing an Exercise in Progress

DESIGN CONSIDERATIONS

Several technical challenges need to be addressed in
designing and implementing a training tool that
integrates diverse simulation technologies. The issues
of common data specifications and semantic as well as
functional interoperability are of particular concern.
This section describes these design considerations as
well tradeoff and benefit analyses.

Communication Protocol

Adopting an appropriate communication protocol is an
important design consideration for a common 10S tool
that integrates applications running under different
simulation architectures. Candidate communication
protocols that were considered for CDMTS include the
High Level Architecture (HLA) and Distributed
Interactive Simulation (DIS). In addition, commercial
industry standards such as Common Object Request

2006 Paper No. 2774 Page 3 of 9

Broker Architecture (CORBA) and Remote Method
Invocation (RMI) were also considered.

HLA and DIS are the two dominant distributed
simulation interoperability standards used in military
training. (To a lesser extent, the Test and Training
Enabling Architecture (TENA) architecture is also
used, primarily where live platforms and/or ranges are
involved.). Among these common DoD standards,
HLA is generally considered superior to DIS (Buss and
Jackson, 1998). In addition, HLA is able to support a
range of functional areas, including training, analysis,
and systems acquisition.

Distributed computing technologies in the commercial
sector are also able to achieve interoperability in a
distributed environment. Two of the commonly used
technologies are CORBA and RMI (Buss and Jackson,
1998). CORBA offers a fairly well established and
mature collection of specifications and protocols for
application interoperability, and ensures independence

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2006

of platforms, operating systems, and programming
language (Object Management Group, 1998; Orfali and
Harkey, 1998). RMI is part of the standard Java toolkit
and is platform independent (Javasoft, 1997). RMI
uses Java’s own interface syntax as its object interface
language, and consequently is simple to implement.
RMI is ideally suited for the implementation of new
Java based software systems that do not depend on
legacy code.

While CORBA and RMI are general purpose
distributed computing architectures, HLA is targeted
specifically towards distributed simulation applications
(US DoD 1996; US DoD 1998). For example, HLA
has the distinct advantage of possessing the Time
Management Service, which supports the notion of a
simulation clock. HLA also supports transfer of object
ownership, whereby an aircraft modeled in one
application can carry missiles that are simulated by
another application. In addition, HLA offers distinct
benefits when multiple legacy simulation models
written in different languages are involved (Buss and
Jackson, 1998).

Due to these reasons, HLA was adopted as the
communication protocol.

Functional Interoperability
Another design consideration that needs to be

addressed in implementing an integrated training tool
for distributed simulation technologies is the ability to

MNon-HLA

Kistoweiek Gateway

communicate with other simulation applications. In
CDMTS, this communication is facilitated by the use
of HLA and a CDMTS Base Object Model (BOM).
CDMTS uses HLA communication in two manners. It
joins an HLA federation and consumes data in order to
display federation data in its GUI. CDMTS also uses
HLA and the CDMTS BOM to convey data to other
simulation applications in the training exercise. The
key features of the communication model to achieve
functional interoperability are:

1. Each CDMTS-compliant application must
implement the CDMTS Simulation
Communications Interface (SIMCI) to enable
CDMTS communication.

2. Non-HLA protocols used in the training
environment must be converted to HLA via
appropriate gateways in order for CDMTS to
receive and use the data.

3. Native simulation application communications
must be unaffected by CDMTS. For example,
CDMTS-compliant DIS-based applications
continue to send DIS Protocol Data Units
(PDUs), and HLA-based applications continue to
send HLA objects/interactions using their native
interfaces. All communication with CDMTS
occurs through the application’s SIMCI interface.

Figure 2 shows a conceptual view of the CDMTS
communication model architecture (Alion Science and
Technology, Technical Report, 2006).

CDMTS
Communication

HLA
MNetwork

MNaftive CDMTS

Communication

-

entral Data
Stora

OREoUNUWOD
g1Nao

SIMCI

Mative Non-HLA
Application

SIMCI

Native HLA
Application

Figure 2. CDMTS Communication Model

As mentioned above, HLA based communication is
used for exchanging data with other simulation

2006 Paper No.2774 Page 4 of 9

applications. Data exchange is facilitated through a
BOM that defines objects and interactions to be

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2006

exchanged. These objects and interactions are
described in the BOM in terms of attributes. Attributes
are generally of simple or complex data type; i.e. a data
type comprised of other simple or complex data types.

To facilitate the communication of CDMTS specific
data to other applications, a suitable BOM was defined.
In keeping with the goal of achieving flexibility and
extensibility, the CDMTS BOM was designed to
simplify attribute specification. The BOM avoids
defining specific and detailed attributes for each object
and interaction. Instead, attributes are described very
simply as data strings containing all relevant details in
an Extensible Markup Language (XML) formatted

CDMTS
Proxy SimProxy Entity
PhysicalEntity Mission

string. Figure 3 shows a graphical view of an excerpt
of the CDMTS BOM. Figure 4 depicts a tabular
representation of an excerpt of the BOM.

A direct benefit of this approach is that the BOM
remains stable as the data passed inside its objects and
interactions evolves with the evolving capabilities of
CDMTS. In addition, native HLA interfaces ignore
CDMTS specific BOM traffic. A tradeoff is that each
receiver is responsible for validating and parsing the
attribute XML data. It was decided that this was an
acceptable tradeoff, as only the CDMTS SIMCI
components would be affected.

OverfayEntity

AN

| Polygon |

Line Point | | Circle [~ Ellipse

Figure 3. A Graphical Depiction of an Excerpt from the CDMTS BOM

2006 Paper No. 2774 Page 5 of 9

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2006

Entity
Definition The base class for entity classes published by CDMTS
Attributes Objectld Unique RTI object identifier
ProxyName Identifies the CDMTS instance that created this object

SimProxyName

Identifies the simulation application that is or will be responsible for

simulating or using this object

PhysicalEntity

An XML formatted string that describes the entity data (e.g., location, fire

An XML formatted string that describes the data (e.g., task type, target,

etc.) specified for each task assigned to the mission. A mission can have

Definition Represents an entity simulated by a simulation application
Attributes Data
permission, orientation, speed, etc.)

Mission
Definition One or more tasks that were created and assigned to an entity in COMTS
Attributes Entityld The identifier of the associated entity

NumberOfTasks The number of tasks assigned to the mission

Tasks

one or more tasks

OverlayEntity
Definition The base class for overlay entity classes published by CDMTS
Attributes Name The overlay entity name

Data Contains an XML data string

Figure 4. A Tabular Representation of an Excerpt from the CDMTS BOM

Common Data Specification

In building an integrating tool it is important to
standardize data specifications that are applicable
across various simulations and applications. In recent
years, XML has become the standard for exchanging
data across multiple platforms, languages, and
applications, and it enjoys strong industry support
(W3C Consortium Recommendation, 2000). In
addition, adoption of XML has the potential to facilitate
future integration with emerging data standards
technologies, such as Extensible Battle Management
Language (XBML) (Hieb, 2003).

For all of these reasons, XML was adopted as the data
specification standard. HLA object and interaction

2006 Paper No. 2774 Page 6 of 9

attribute data, scenario and mission planning data, as
well as CDMTS configuration files use XML
technology.

Programming Language

Simulation applications and environments typically
span the Windows and Linux platforms. In addition,
standalone simulators or trainers may have custom
hardware and proprietary operating systems. The Java
programming language offers the unique advantage of
being platform independent and is hence ideally suited
for an integrated simulation environment framework.
Advantages of Java include the following:

1. Platform independent programming language

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2006

Built in support for GUIs

Object oriented programming language
Automatic garbage collector to manage memory
Native support for security

Strong open source support

oakwm

Java has been likened to a “platform,” due to its
impressive library containing reusable code and an
execution environment that provides services such as
security, portability across operating systems, and
automatic garbage collection (Hortsmann and Cornell,
2004). For the above reasons, the Java programming
language was selected.

Semantic Interoperability

Generic mission planning in an environment-
independent manner is a key interoperability area for an
integrated training tool. The challenge is to generate a
single mission plan that can be understood by multiple
simulation applications. Different simulation
applications require inputs in different formats for
creating and tasking the same entity. In some cases,
they may require different data altogether.

One approach to generic mission planning is to build
awareness of the capabilities of each simulation
application in CDMTS. The advantage of this approach
is that communication data is always passed in the
correct content and format to the simulation application.
However, a drawback is that scenarios and mission
plans are specific to the platform used in a particular
deployment; and re-use is limited. Thus a new scenario
or mission plan will have to be generated for a new
environment.

An alternate approach is to generate a “one format fits
all” type of scenario or mission plan. This ignores the
specific capabilities of each simulation application.
The main advantage of this approach is that the
scenarios can be reused across multiple environments.
The main drawback is that the CDMTS
communications component that resides in a simulation
application has to perform rigorous data validation for
data content and format.

In the case of CDMTS, the “one format fits all”

approach with its significant advantage of applicability
across multiple training environments was adopted.

LESSONS LEARNED FROM MULTIPLE
DEPLOYMENTS

A C-10S tool such as CDMTS provides the majority of
IOS functionality, i.e., scenario or exercise planning,

2006 Paper No. 2774 Page 7 of 9

monitoring, control, and after action review. In
addition to these common features, each deployment
may require additional features based on the specific
nature and role of the deployment. Examples of these
CDMTS deployments are listed below.

1. Navy Aviation Simulation Master Plan
(NASMP) F-18 test bed — CDMTS is the
instructor operator station and is integrated with
Joint Semi Automated Forces (JSAF), Next
Generation Threat System (NGTS), and F-18
simulator via the Federation Object Model (FOM)
bridge.

2. Anti Submarine Warfare (ASW) Virtual At
Sea Training (VAST) Mission Rehearsal
Tactical Team Training (MRT3) — CDMTS is
the 10S and is integrated with JSAF. CDMTS is
also used to launch the various applications such
as Pilot Station (Microsoft Flight Simulation), Air
Tactical Officer (ATO), and Sensor Operator
(SENSO).

3. Virtual Fire Support Trainer (VFST)
Deployable Virtual Training Environment
(DVTE) — CDMTS s used to configure various
applications (for example, Caber, Marine Digital
Voice (MDV), and JSAF) to machines on the

network. It is also used to launch and control
these applications.
4. Virtual Technologies and Environments

(VIRTE) — CDMTS is used configure and launch
applications, such as Forward Observer Personal
Computer Simulator (FOPCSim), Forward Air
Controller Personal Computer Simulator
(FACPCSim), Dismounted Infantry Virtual After
Action Review System (DIVAARS), and MDV.

5. Multi-purpose Supporting Arms Trainer
(MSAT) — CDMTS back end component SIMCI
is used to task JSAF.

6. MH-60R Tactical Operational Flight Trainer
(TOFT) — CDMTS is planned to be an element of
the MH-60 R 10S and will integrate with JSAF
and the MH-60 R trainer.

7. U.S. Joint Forces Command’s Joint Advance
Training Technology Laboratory (JATTL) -
CDMTS has been used as a viewer station in large
scale exercises involving various virtual and
constructive simulations.

It is clear from these examples that CDMTS can
potentially perform different roles in different training
environments. These deployments offer several
opportunities for lessons learned; and some of these are
presented below.

Extensible and Customizable Architecture

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2006

A desirable feature of an integrated training tool such as
CDMTS is the ease with which custom functionality
can be added for each specific deployment. In order to
support this requirement, the CDMTS architecture is
evolving towards a plug-in architecture. A plug-in
architecture lets developers build a master application
from constituent components.

Under this scheme, major functionality that is required
across deployments will be supplied by the CDMTS
core engine. Examples of such core functionality
include planning, execution, control, after action
review, and performance measurement. Auxiliary
functionality (specific to a particular deployment) can
be provided by a specially built plug-in component.
Examples of auxiliary functionality would be
displaying range rings and splash points that are
required in an ASW training environment.

Currently, work is in progress to re-architect CDMTS
for the plug-in architecture. This includes publishing a
well defined Application Program Interface (API) or a
contract for CDMTS plug-ins.. Future plug-in
components can then be built in compliance with the
specified contract, and can be simply configured and
loaded at run-time.

Configuration

Deploying for multiple environments requires the
ability to configure CDMTS appropriately for each
specific platform. For example, the entities, tasks, and
GUI components required for an ASW VAST MRT3
deployment may be quite different than for a VFST
DVTE deployment. To aid in the ease of deployment,
the CDMTS architecture specifies configuration
information in external XML data files as opposed to
hard-wiring in code. This approach ensures that code is
relatively stable and does not have to be changed to
accommodate configuration for each new deployment
environment. Thus the code base is generic and
reusable. In addition, deployments become more
manageable, as making changes to an XML data file
during integration is easier than changing code.

Usability Analysis and Feedback

Since CDMTS is deployed in multiple environments
and platforms, one of the on-going challenges is to
ensure that the GUI continues to satisfy the unique
training needs of numerous user communities. To
ensure that CDMTS continues to be an intuitive and
effective tool, usability studies are conducted on a
regular basis. These studies are aimed at specific user
communities and gather feedback data from subject
matter experts in various training environments.

2006 Paper No. 2774 Page 8 of 9

Results of the usability studies are analyzed and
incorporated when implementing new features as well
as enhancing existing features. As its user base grows,
this approach has proven invaluable in ensuring the
effectiveness of CDMTS.

Rapid Development Environment

In order to build new features for multiple deployments
as well as to solicit early usability feedback, it is
imperative to produce well tested code in short iteration
cycles. The use of Java programming language has
proven to be of great benefit in this area. Compared to
other programming languages, Java arguably has the
best tool support that includes open source libraries,
Integrated Development Environments (IDE), as well
as unit and functional testing. All of these features
have a significant impact on enabling CDMTS
developers to produce new features in relatively short
amounts of time.

CONCLUSIONS

CDMTS has been successfully implemented and
deployed as a common 10S in multiple distributed
simulation environments. Its theoretical framework is
based on principles of learning science and has been
empirically tested for training station design. Due to its
adaptable and extensible nature, CDMTS has become a
common tool for integrating and managing diverse
training environments. The design considerations,
technical challenges, and lessons learned that are
presented here are equally applicable to other tools for
integrating diverse distributed training systems and
simulation applications. The authors believe that this
paper contributes to the training community as well as
literature devoted to the ongoing DoD quest for a
seamless distributed simulation training environment.

ACKNOWLEDGEMENTS

The views expressed herein are those of the authors and
do not necessarily reflect the official position of the
organizations with which they are affiliated. The
authors would like to thank the program managers who
have supported this work.

REFERENCES

Alion Science and Technology Corporation, BMH
Operation. (2006). Technical Report: Architecture
Description Document for the Common Distributed
Mission Training System. Version 0.2.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2006

Bizub, W. and Phillips, M. (2004). Correcting the
vision — Introducing the Joint National Training
Capability (JNTC) Advanced Training Technology
Laboratory (JATTL) [CD-ROM]. Proceedings of the
2004 Interservice/Industry Training, Simulation, and
Education Conference, Orlando, FL, 137-147.

Buss, A. and Jackson, L. (1998). Distributed
Simulation Modeling: A comparison of HLA,
CORBA, and RMI. Proceedings of the 1998 Winter
Simulation Conference, 819-825.

Farley, J. (1997). Java Distributed Computing,
O’Reilly, Cambridge, MA.

Hieb, M. (2003). Extensible Battle Management
Language: XBML Presentation to DMSO C4l-
SIMTEM.
http://netlab.gmu.edu/XMSF/pdfs/XBML30ct03.pdf

Hortsmann, C. and Cornell, G. (2004). Core Java.
Volume 1-Fundamentals, Sun Microsystems Press.

Javasoft, Inc. Invocation

Specification.

(1997) Remote Method

Object Management Group (1998). The Common
Object Request Broker: Architecture and
Specification.

Orfali, R and Harkey, D. (1998). Client/Server
Programming with Java and CORBA, John Wiley
and Sons, Inc, New York, NY.

Owens, J.M. (2003). Design issues and considerations
for a Common Instructor Operator Stations (IOS) in
support of the Naval Aviation Simulation Master
Plan (NASMP) (CHI Systems Technical Report
030225.0001-0028). Lower Gwynedd, PA: CHI
Systems, Inc.

Stiso, M., Owens, J., Fowlkes, J., Eitelman, S., and
Hafich, A. (2004). Common Instructor Operating
Station (C-10S) requirements analysis: Scenario
development and computer-generated forces integration
(CHI Systems Technical Report 031107.0001-0034).
Lower Gwynedd, PA: CHI Systems, Inc.

Thorp, H, (2003). Training Transformation and the
Joint National Training Capability. Brief by the
Director of the INTC Joint Management Office.

US Department of Defense (1996). High Level
Architecture Object Model Template, IEEE P1516.2

2006 Paper No. 2774 Page 9 of 9

US Department of Defense (1998). High Level
Architecture Interface Specification, Version 1.3 of
IEEE P1516.1, M&S HLA - Federate I/F Spec,
DRAFT 1 of 20 April 1998.

W3C Consortium Recommendation, (2000). Extensible
Markup Language (XML) 1.0. Second Edition.
http://www.w3.0rg/TR/2000/REC-xmI-20001006

Walwanis Nelson, M. M., Lackey, S., & Bryan, D.
(2005). Developing a common mission training
station for distributed simulation: The performance
measurement challenge. Proceedings of the 1st
annual Training, Education, & Simulation
International (TESI) Conference, Maastricht, The
Netherlands.

Walwanis-Nelson, M., Owens, J., Smith D., and
Bergondy-Wilhelm, M. (2003). A Common
Instructor Operator Station Framework: Enhanced
Usability and Instructional Capabilities. Proceedings
of the 2003 Interservice/Industry Training,
Simulation and Education Conference.

http://www.w3.org/TR/2000/REC-xml-20001006

	ABSTRACT
	ABOUT THE AUTHORS
	INTRODUCTION
	CDMTS OVERVIEW
	DESIGN CONSIDERATIONS
	Communication Protocol
	Functional Interoperability
	Common Data Specification
	Programming Language
	Semantic Interoperability

	LESSONS LEARNED FROM MULTIPLE DEPLOYMENTS
	Extensible and Customizable Architecture
	Configuration
	Usability Analysis and Feedback
	Rapid Development Environment

	CONCLUSIONS
	ACKNOWLEDGEMENTS
	The views expressed herein are those of the authors and do not necessarily reflect the official position of the organizations with which they are affiliated. The authors would like to thank the program managers who have supported this work.
	REFERENCES

