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ABSTRACT

With the advent of Field Programmable Gate Arrays (FPGA) and System-On-a-Programmable-Chip (SOPC)
technology, system designers and software developers can custom design underlying hardware platforms sim-
ulation application requirements. Specifically, this technology allows a developer to use custom hardware
to perform efficiently what might otherwise be time-consuming software computations. This approach to
real-time simulations has heretofore not been a viable alternative.

This paper introduces FPGAs, SOPC technologies and supporting vendor tools. It also discusses the use of
these tools in defining custom hardware to execute specific time-constrained tasks to support robust real-time
simulations.
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INTRODUCTION

With the advent of Field Programmable Gate Ar-
rays (FPGA) and System-On-a-Programmable-Chip
(SOPC) technology, system designers and software
developers can custom design underlying hardware
platforms to meet application requirements.

Specifically, this technology allows a developer to use
custom hardware to perform efficiently what might
otherwise be time-consuming software computations.
This approach to real-time simulations has heretofore
not been a viable alternative.

Traditional methods to decrease software execution
time include:

• Increasing CPU clock speed

• Replacing a processor with a higher perfor-
mance processor

• Coding appropriate sections of software in as-
sembly language

FPGA-based processors provide additional optimiza-
tion opportunities capable of achieving much higher
performance gains (Altera-C2H, 2006). Some tech-
niques include:

• The ability to rapidly alter the FPGA design,
allowing the designer to prototype a variety of
architectures

• The ability to divide processing tasks by instan-
tiating multiple processor cores

• The ability to augment a processor with custom
hardware that off-loads the static processor-
intensive operations into the FPGA fabric

• The ability to modify memory architectures
for memory-intensive operations, such as using
high-speed, point-to-point connections to fast
memory buffers

FPGA Technology

A Field Programmable Gate Array (FPGA) is a con-
figurable electronic component used to build digital

hardware. The FPGA is a semiconductor device con-
taining configurable logic components and intercon-
nects, which may be used to duplicate the functional-
ity of basic logic gates such as AND, OR, XOR, NOT
or more complex memory elements such as flip-flops
or latches. Current FPGAs may incorporate com-
plex digital logic blocks such as memories, hardware
multipliers, digital signal processing blocks, and even
complete digital processors.

The designer may use the configurable logic to inter-
face these more complex blocks together to create an
entire system on a chip.

Configuring the FPGA is accomplished by describing
the hardware functions to be realized using a Hard-
ware Description Language (HDL). Two of the most
popular languages are Verilog and VHDL. Either of
these languages supports the description of the hard-
ware in a variety of modes. The most basic mode is
the structural mode. In this mode, the designer lists
all of the devices (gates, flip-flops, etc) and their input
and output connections. While this is useful in some
applications, the power of the HDL isn’t realized un-
less the behavioral mode is used. In this mode, the
designer describes the behavior of the hardware us-
ing constructs borrowed from software programming
languages (e.g. IF–THEN–ELSE, CASE, etc.)

A software tool (called a compiler) then translates
the hardware description and synthesizes the required
logic to fit on the selected device. The output of
the compiler is a binary file which configures each of
the devices on the FPGA and makes the required in-
terconnections. The FPGA is then programmed via
a serial interface which allows the binary file to be
loaded into the on-board configuration RAM.

The FPGA is a completely reprogrammable device
and instantiated hardware logic has access to all the
pins on the chip to perform I/O operations.

A typical development board includes an FPGA chip
connected to a variety of specialized discrete compo-
nents that support in some type of I/O operation like
LEDs, switches, buttons, USB interfaces, or ethernet
controllers.
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SOPC Primer

FPGAs have been historically used as “glue” logic
to connect existing discrete digital components (e.g.,
CPU, memory). Since custom Very Large-Scale Inte-
gration (VLSI) chips are expensive to manufacture,
FPGAs have also served as a convenient tool to proto-
type and test Application-Specific Integrated Circuits
(ASIC) designs before production.

In the past few years, the capabilities of FPGAs have
increased enabling complex hardware designs to be
implemented on a single chip. The cost of FPGAs
has dropped to a point where hardware manufactures
now must consider the benefit of producing a custom
VLSI chip compared to the inherent advantages of a
field programmable chip. Custom VLSI chips in high
volume are still more cost effective and faster, but the
gap is closing.

These trends have led to a market demand for embed-
ded computer hardware designs based exclusively on
FPGAs. SOPC is the terminology used to describe
the domain of implementing computer systems en-
tirely on a single Programmable Logic Device (PLD),
or typically an FPGA.

Altera and Xilinx are two prominent suppliers of
FPGAs and their associated development tools. Each
vendor offers a range of chips that include a set of
resources (configurable logic units, registers, RAM
memories) to satisfy different application markets.
Some FPGAs include complete CPUs as one of the
resources that can be interfaced to custom logic.

Altera offers the Quartus II system and design suite
which synthesizes Verilog and VHDL code. The
Quartus software also includes an integrated “SOPC
Builder” tool to define hardware for a complete
system-on-a-chip design.

Altera offers the Nios II processor as a “soft” logic
core which may be instantiated on the FPGA config-
urable logic. SOPC Builder can generate a system li-
brary for the software development process. The Nios
II Integrated Development Environment (IDE) which
is based upon the Eclipse (a popular open source
vendor-neutral development platform and application
framework) development platform, can then be used
to compile, link and download the final configuration
file to the FPGA chip for debugging and execution.

A typical design flow follows these steps:

• Create a project in Quartus that includes in-
formation about how each pin on the FPGA is
wired to the external discrete chips.

• Design a “system” using the SOPC Builder
tool. After the system has been designed, the
tool generates all the HDL files (VHDL or Ver-
ilog) needed for Quartus to compile.

• Compile the design with Quartus. This pro-
duces a small configuration file that is loaded
into the FPGA to instantiate the hardware
logic.

• Download this configuration file to the FPGA.

• Create a project with Nios. One of the project
settings specifies the intended target hardware.

• Nios automatically creates a “system library”
that provides an underlying framework for ap-
plication development. For example, part of the
framework can include the C run-time libraries.
Optionally, a real-time operating system kernel
can be compiled into the system library which
supports executing multiple tasks.

• Write the software code to execute on the
FPGA. Nios supports C and C++ code. (Note:
Nios is using a version of GCC that has a Nios
CPU as a target.)

• Compile the software.

• Download the software to the FPGA and exe-
cute. It should be noted that standard input
(stdin) and standard output (stdout) are pro-
vided as interfaces using the download cable as
a transmission medium.

Xilinx also offers similar capabilities through its ISE
Foundation synthesis tool and the Platform Studio
Integrated Development Environment. Both compa-
nies offer development boards with a wide range of
capabilities based on a particular FPGA chip.

A market to develop and encapsulate hardware logic
into reusable blocks, so called Intellectual Property
(IP) cores, has developed. Both Altera and Xilinx
offer a number of reusable cores with their design
environments and make it easy for a developer to de-
sign and build new ones. Example cores include con-
figurable CPUs (Nios from Altera, MicroBlase from
Xilinx), timers, and memory interfaces.

One of the trade-offs in SOPC systems is while much
of the hardware logic can reside on the FPGA itself,
usually all of it does not. FPGAs typically provide
memory in the form of on-chip block RAMs, but are
much smaller than the high density memories that
can be connected externally. Arrays of registers can
be configured as memory, but is an inefficient use of
those resources.

2006 Paper No. 2624 Page 3 of 8



Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2006

Figure 1: Altera’s SOPC Builder Interface

A TRADITIONAL DESIGN

A traditional CPU-based design was constructed as
an illustrative example of how to leverage these tools
for real-time system development and the creation of
new simulation applications. The example is followed
by a discussion of ways to improve the design by ex-
ploiting the underlying hardware.

This example was constructed with the following de-
velopment tools:

• An Altera DE2 development board with a Cy-
clone II FPGA. This board includes a wide
range of I/O devices that can be accessed by
the FPGA including ethernet, RS232, video in
(NTSC/PAL) and out (VGA 10-bit DAC), USB
2.0, PS/2 and audio capabilities. The board
features 8-MB SDRAM, 512K SRAM, 4-MB
Flash and an assortment of switches, buttons
and LEDs.

• Quartus II v6.0 and Nios II v6.0 software.

This design uses the Micrium’s uC-OS real-time ker-
nel which is part of the Nios development package.
uC-OS is a priority-based operating system with 64
priority levels. Each level can be assigned to one task
for a total of 64 possible tasks. Micrium reserves a
few levels so the total number of user tasks is less.

The hardware design for this system is defined us-
ing Altera’s SOPC Builder tool (see Figure 1). The
design consists of a single Nios microprocessor con-
nected to four interval timers that reside on the
FPGA. The design also specifies external connections
to SRAM, buttons, and switches. That is, the com-
ponents that do not reside on the FPGA itself; they
are physically connected via pins on the chip.

As the figure shows, the left window pane lists all the
available components that can be used to assemble an
SOPC design. This includes vendor supplied IP cores
and custom user defined cores. The main window
shows the components in the design and how they
are connected. It is also used to specify hardware in-
terrupt numbers and a system memory address map.
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Figure 2: CPU Loading Across Tasks/Applications

Once the design is completed the tool will generate all
the HDL files needed by Quartus so that the design
can be compiled. The configuration file produced can
then be loaded into the FPGA.

Nios was used to create a system library that contains
interfaces to Altera’s Hardware Abstraction Layer
(HAL) API, libc (the C library) and Micrium’s uC-
OS real-time kernel. The HAL system library is a
lightweight run-time environment that provides a de-
vice driver interface for programs to communicate
with the underlying hardware (Altera-Nios, 2006).
After the system library is created, the next step is
to develop the applications.

An Example Application

As an example, an application was designed to ex-
ercise almost all of the 64 available task priorities
supported by the uC-OS real-time kernel. The appli-
cation consists of the following:

• 47 periodic tasks with frequencies that range
from 10-100 Hz, each with a different execution
time.

• 4 tasks associated with processing button inter-
rupts.

• 1 task for simulating and generating aperiodic
events. This simulates the behavior of random
events entering the system for processing. For
example, a pilot pressing buttons on a Multi-
Function Display (MFD).

• 1 task for processing aperiodic events.

• 1 “startup” task to create all of the above tasks.

Each task was defined by a function with a name
in the following form AppX, where X is a num-
ber that specifies the task/application. Using that
naming convention, the 47 periodic tasks are App1,
App2,...,App47. The task associated with simulating
and generating aperiodic events is App50. The task
associated with processing aperiodic events is App51.
Tasks for processing button interrupts include App52,
App53, App54 and App55. App0 is the startup task.

The application executed for 20 seconds and statistics
were collected on the time spent executing each task.
At the end of this time, the operating system printed
the collected data to a console window provided by
the Nios environment.

Given the above applications to be executed, an ex-
pected cpu loading of the 47 periodic tasks was com-
pared to what is measured from the 20 second run
(see Figure 2).

A high degree of correlation exists between the ex-
pected behavior of the 47 periodic tasks and what is
measured. The “background” aperiodic tasks execute
as well (not shown), but only after the higher priority
“foreground” tasks have finished. This example con-
firms that simulation applications can be developed
with existing FPGA development tools and run as
expected.
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EXPLOITING HARDWARE

The reconfigurability and programmability of FPGAs
allow for considerable flexibility in how hardware is
instantiated. Fundamental design choices are made
as to what should be executed in software verses what
can be implemented in hardware. These architectural
trade-offs are weighted with consideration of manu-
facturing costs, maintainability, and application re-
quirements.

Figure 3: Autonomous Multiprocessor System

Hardware architectures can also be modeled, proto-
typed and simulated with a variety of langauges other
than Verilog and VHDL as discussed later.

Altera offers several mechanisms to ensure the hard-
ware footprint of a system fits application require-
ments. All of these approaches can be viewed as al-
terations to the “traditional” single, fixed instruction
set CPU architecture. Approaches include instan-
tiating two or more CPUs, customizing the CPU’s
instruction set, and directly translating C code into
hardware.

Multi-CPUs

As shown in Figures 3 and 4, microprocessor systems
designed with the SOPC Builder can be classified into
two main categories: autonomous microprocessor and
multiprocessor systems that share resources (Altera-
Multi, 2005).

Autonomous systems look and operate just like two
separate systems. Resource sharing usually comes in
the form of sharing memory. Sharing data memory

between multiple CPUs is more difficult than shar-
ing instruction memory since data memory can be
written to as well as read (Altera-Multi, 2005).

Figure 4: Shared Multiprocessor System

A protection mechanism that is available is a hard-
ware mutex (mutual exclusion) core. This component
is a shared resource and provides an atomic “test and
set” operation. There are some cases when a mutex
core may not be necessary; for example, when only
one processor writes to a particular set of memory
locations (Altera-Multi, 2005).

In virtual distributed simulation, one application for
this type of hardware structure is to pipeline some
simulation activities. For example, one CPU could be
dedicated to processing DIS entity information from
the network. This completely relieves the “main”
CPU from any network activities.

Custom Instructions

System designer can accelerate time-critical software
algorithms by adding custom instructions to the Nios
instruction set as shown in Figure 5. System design-
ers can use this feature for a variety of applications,
e.g., to optimize software inner loops for digital sig-
nal processing (DSP), packet header processing, and
computation-intensive applications (Altera-Custom,
2005).

There are different custom instruction architectures
to suit various application requirements. The ar-
chitectures range from a simple, single-cycle combi-
natorial architecture to an extended variable-length,
multi-cycle custom instruction architecture (Altera-
Custom, 2005).
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Figure 5: Custom Instruction Logic

Numerous applications can exploit this feature to re-
duce computational bottlenecks.

C to Hardware

Altera has recently introduced a new technology that
allows a developer to create custom hardware acceler-
ators directly from ANSI C source code. A hardware
accelerator is a block of logic that implements a C
function in hardware, which often improves the exe-
cution performance by an order of magnitude (Altera-
C2H, 2006). Altera cautions and clearly emphasizes
that this new compiler is not designed to be a general
purpose tool for creating arbitrary hardware systems
using C as a design language.

Hardware accelerators generated by this compiler
have the following characteristics (Altera-C2H, 2006):

• Parallel scheduling - The compiler recognizes
events that occur in parallel. Independent
statements are performed simultaneously in
hardware.

• Direct memory access - Accelerators access
the same memories that the Nios II processor
acesses during execution.

• Loop pipelining - The compiler pipelines the
loop logic based on memory access latency and
the amount of code that operates in parallel.

• Memory access pipelining - The compiler
pipelines memory accesses to reduce the effects
of memory latency.

Altera is careful in its claims about this technology. It
is emphasized that the compiler is intended to aug-
ment the performance of programs that run on the
Nios II processor and that it does not replace the
processor.

Code to accelerate must be expressed as an individ-
ual C function. The C2H Compiler converts all code
within and below the chosen function to a hardware
accelerator block. If the function calls a subfunction,
the C2H Compiler will convert the subfunction to a
hardware accelerator. Therefore, subfunctions must
also be good candidates for C2H acceleration (Altera-
C2H, 2006).

PROTOTYPING ARCHITECTURES

While Verilog and VHDL remain the most popu-
lar languages for describing hardware for syntheses,
other languages are emerging to specify hardware
functionality at even higher behavioral or more ab-
stract levels. All of these languages support the pro-
totyping and simulation of system designs. Using
these languages to support the synthesis of real hard-
ware is limited to what language constructs a partic-
ular vendor supports.

Two important languages that deserve attention in-
clude SystemVerilog and SystemC. SystemVerilog
tends to be favored by computer engineers because it
builds upon an already familiar language while Sys-
temC tends to be be embraced by computer scien-
tists (Aldec, 2006).

SystemVerilog

SystemVerilog is a hardware description language
based on Verilog. It is an extension of Verilog-2001;
all features of that language are available in Sys-
temVerilog.

Although it has some features to assist with design,
the thrust of the language is in verification of elec-
tronic designs (Wikipedia, 2006).

SystemC

SystemC is a set of library routines and macros im-
plemented in C++, which makes it possible to simu-
late concurrent processes, each described by ordinary
C++ syntax. Instantiated in the SystemC frame-
work, the objects described in this manner may com-
municate in a simulated real-time environment, using
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signals of all the datatypes offered by C++, some ad-
ditional ones offered by the SystemC library, as well
as user defined.

The behaviours (processes) defined may be instanti-
ated any number of times, and provisions are made
for processes defined by hierarchies of other processes,
as one would expect (Wikipedia, 2006).

SystemC is an open standard and can be freely down-
loaded from the internet.

FINAL THOUGHTS

This paper introduces some of the state-of-the-art
tools currently available for FPGA system design.
The two dominant manufacturers, Altera and Xilinx,
both offer tools that enable a developer to customize
the hardware platform of an SOPC design to fit re-
quirements.

A simple SOPC design was constructed, and a soft-
ware application that executes 54 of the 64 available
tasks available utilizing a priority-based real-time op-
erating system was presented. Measured loading
across tasks matched well with what was expected,
which provides some confidence that the technology
is mature enough to build real systems.

Further optimizations in the form of multi-CPUs,
custom instructions and direct C to hardware trans-
lations need to be explored to fully determine their
potential.
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ACRONYM LIST

API - Application Programming Interface

ASIC - Application-Specific Integrated Circuit

DSP - Digital Signal Processing

FPGA - Field Programmable Gate Array

HAL - Hardware Abstraction Layer

HDL - Hardware Description Language

MFD - Multi-Function Display

PLD - Programmable Logic Device

RAM - Random-Access Memory

SDRAM - Synchronous Dynamic Random Access
Memory

SOPC - System-On-a-Programmable-Chip

SRAM - Static Random-Access Memory

VHDL - VHSIC Hardware Description Language

VHSIC - Very High Speed Integrated Circuit

VLSI - Very Large-Scale Integration
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