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ABSTRACT

Intelligent tutoring systems seek to optimize instruction and training by adapting and individualizing the learning
experience on the basis of a student model (Shute, 1995). This model represents the system’s estimate of the
student’s current knowledge or skill level, established from a performance history. Knowledge tracing (Aleven &
Koedinger, 2002; Anderson, Conrad, & Corbett, 1989) is a dynamic, Bayesian approach to updating the estimates of
probability of skill mastery in the student model. A fundamental shortcoming of this approach is that it does not
include a representation of memory decay during periods of non-practice. As a result, traditional student modeling
approaches are unable to make predictions regarding knowledge and skill changes under various future training
schedules or to prescribe how much training will be required to achieve specific levels of readiness at a specific
future time. In this paper, we propose a new knowledge tracing equation, computationally inspired by the learning
and forgetting equations in the ACT-R cognitive architecture (Anderson et al., 2004), which uses performance
history to baseline student model parameters and then extrapolates knowledge state transformation to predict future
performance. We explore practical issues concerning predictive models of future trainee performance and the
prescription of frequency and timing of optimal learning with training systems. For instance, we investigate how
much data from the training history are necessary to achieve reasonable predictive validity, and we describe the
impact of data granularity through a quantitative assessment of how adequately the model can fit and predict human
performance curves across aggregate-level, team-level, and individual-level resolutions. The paper ends with a
discussion of the implications of this research for the future of training and education.
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INTRODUCTION

Intelligent tutoring systems are intended to optimize
learning by adapting training experiences on the basis
of proficiency. These systems continuously estimate
trainees’ current knowledge and skill levels based on
performance history and build what has been termed a
representation of the student (Hartley & Sleeman,
1973) or student model (Greer & McCalla, 1993; Shute
& Psotka, 1996; VanLehn, 1988). They dynamically
update estimates of the knowledge state in the student
model as the learner accumulates more experience and
expertise, and then adapt training to improve the
efficiency and effectiveness of learning opportunities.

Among the most demonstrably successful intelligent
tutoring systems ever created are the Cognitive
Tutors® that originated at Carnegie Mellon as testbeds
for the ACT* theory of skill acquisition (Anderson,
1983). Their implementation was inspired by ACT-
style cognitive models of algebra and geometry
problem solving, with skills decomposed into
production rules. The tutors proved so effective that a
successful spinoff company, Carnegie Learning,
eventually formed to mature and distribute the
technology to school districts around the country. The
tutors are now being used by more than 800 schools.

The student modeling capability in the Cognitive
Tutors® is a Bayesian estimate of the probability of
having mastered each of the knowledge units
(production rules) that are targets of current instruction.
Their Bayesian equation is used in a process called
knowledge tracing (Corbett & Anderson, 1995) to keep
this mastery estimate current and provide a basis on
which to determine the course of instruction. This
approach has been quite successful in classroom
applications. (Aleven & Koedinger, 2002; Anderson,
Conrad, & Corbett, 1989).

Notwithstanding the documented utility of the
knowledge tracing approach, it does have a critical
limitation, as does every other known student modeling
approach. The limitation is that intelligent tutors have
no underlying mechanism for memory decay

2006 Paper No. 2992 Page 2 of 11

Kevin A. Gluck, Glenn Gunzelmann
Air Force Research Laboratory
Mesa, AZ
kevin.gluck@mesa.afmc.af.mil,
glenn.gunzelmann@mesa.afmc.af.mil

represented in the model. Thus, even over significant
periods of non-practice, when some forgetting would
inevitably occur, the student model assumes that the
learner’s knowledge state remains stable across periods
of non-use, leaving all prior learning completely intact.
This limits the utility of traditional student modeling
approaches entirely to estimates of current
readiness/proficiency/mastery. They have no capacity
to predict what future readiness will be at specific
points in time.

Furthermore, traditional student modeling approaches
are unable to make predictions regarding knowledge
and skill changes under various future training
schedules or to prescribe how much training will be
required to achieve specific levels of readiness at a
specific future time. They function only on the learner’s
last computed knowledge state, and provide training for
only the current benchmark task needed to be learned.

The goal of the current work is to further translate basic
cognitive science research into an effective “cognitive
tool” (Koedinger & Anderson, 1993) for future
warfighter training applications. We will do this
through the creation of a mathematical model that
integrates mechanisms that handle the spacing effect
(distributed learning) into a computational cognitive
process model of memory. Benefits associated with
computationally representing the spacing effect include
validating existing or proposed theoretical assumptions
of learning and decay of memory traces over time,
providing warfighters and instructors with a tool to
predict performance given a known regimen of training,
and helping warfighters and instructors prescribe
practice schedules to optimize performance based upon
mathematical regularities in training histories.

We propose a new knowledge tracing equation,
inspired largely by the learning and forgetting
equations in the ACT-R cognitive architecture
(Anderson et al., 2004). This equation allows us to
calibrate student model parameters from performance
history and extrapolate knowledge state transformation
to predict future performance. We first begin with an
explanation of the spacing effect dilemma, then turn to
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the evolution of computational models to formally trace
the intricacies of knowledge and skill acquisition in
human memory. Finally, we address the potential
contributions of a predictive and prescriptive cognitive
model for improving military readiness.

SPACING EFFECT

One of the most consistent findings from past research
in human memory is that performance is generally
enhanced when learning repetitions are spaced farther
apart temporally. This phenomenon, often termed the
spacing effect, is extremely robust and has been
observed not only in artificial laboratory settings, but in
real-life training situations as well (e.g. Bahrick &
Phelps, 1987). Due to its ubiquity, it may be inferred
that basic principles of learning and retrieval are
involved.

On the learning side of the coin, practice that occurs
more slowly becomes more durable (e.g. Pavlik &
Anderson, 2005); and on the forgetting side of the coin,
the rate of forgetting of an item decreases as time
passes according to Jost’s Law. This Law states that “if
two associations are now of equal strengths but of
different ages, the older one will lose strength more
slowly with the further passage of time” (Woodworth,
1938).

This phenomenon is not captured by most existing
models of human memory, which generally assume that
memory traces additively strengthen with each learning
opportunity and continually decay with the passage of
time. Thus, computational models fall apart under
distributed training conditions and it becomes evident
that modifications to current implementations of
computational models of memory need to be made to
account for differences in learning and decay as a
function of repetition timing.

COGNITIVE MODELS

Computational cognitive process models have been in
existence a mere fraction of the hundred and twenty
years of accrued research in human learning and
forgetting of knowledge and skill (Ebbinghaus, 1885).
Despite their infancy, such models have capitalized on
theoretical and empirical understandings to inform the
mathematical implementation of cognitive mechanisms
and processes responsible for performance. Significant
strides have been made in accounting for increasingly
complex memory phenomena through the years (e.g.
Anderson, 1992; Anderson & Lebiere, 1998; Anderson,
Fincham, & Douglass, 1999; Pavlik & Anderson,
2005). However, much work remains to be done to
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completely capture the nuances of the dynamic human
memory system. As it currently stands, even the best
models in existence capture learning and forgetting
curves only in a post-hoc manner, adequately simulate
curves only when the grain of resolution is large
enough to diminish inherent noise and variation and
typically account for performance curves averaged over
many participants rather than tracing the knowledge
state of an individual learner.

ACT-R General Performance Equation

Anderson and Schunn (2000) proposed the General
Performance Equation, which provides the basis for our
predictive and prescriptive mathematical model. It is
derived from ACT-R equations and comprises the
power law of practice, the power law of forgetting, and
the multiplicative effect of practice and retention (the
relation between the amount of practice and the
duration of time for which knowledge must be
maintained). A form of neural adaptation called long-
term potentiation also shows the power laws of
learning and forgetting (Barnes, 1979), which nicely
aligns the cognitive mechanisms of the model with
neurophysiological research.

The General Performance Equation is
expressed as (see Equation 1):

A-N°-T? o

where 4 is a free parameter scalar, N is the amount of
practice, ¢ is the rate of learning, 7 is the time since
learning, and d represents memory decay. The
collective effect of this algorithm is that performance
continues to improve with increased learning
opportunities, and continues to degrade as time
between learning and retention increases. Preservation
of knowledge then depends upon leveraging the amount
of practice against the retention time.

formally

To emphasize the reasons for utilizing these core
components in our proposed modified equation, we
first demonstrate the model’s strengths. This ACT-R-
based General Performance Equation can replicate the
findings from a variety of learning and forgetting
studies in the published literature. These include studies
concerning knowledge retention, knowledge
acquisition, skill retention, and skill acquisition. We
provide a sample of these model fits in Figure 1 for
knowledge acquisition, and Figure 2 for skill retention.

Anderson and Fincham (1994) required participants to
first memorize a number of logic-based facts. These
facts related time between series of events, and
participants were asked to predict when one event
would occur, given the knowledge of when a second
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event occurred.
course of four days.

Participants were tested over the
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Figure 1: Model fit to knowledge acquisition
(Anderson & Fincham, 1994)

Bean (1912) taught novice participants typewriting
skills and was interested in examining how well those
new skills were retained as a function of time.
Participants were initially tested on days one, four, and
seven and were then tested weekly for four additional
weeks, and tested a final time 35 days after initial
learning.
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Figure 2: Model fit to skill retention (Bean, 1912)

These figures demonstrate the usefulness of the General
Performance Equation for many types of data sets and
provide correlation coefficients of 0.89 to 0.97 for fits
to empirical human performance. We now turn to a
dimension of learning and forgetting that this equation
does not handle well, namely, distributed learning or
spaced practice.

Mathematical Weaknesses of the General
Performance Equation for Handling the Spacing
Effect Human performance studies have revealed that
learning and forgetting do not linearly improve or
degrade over extended periods of time, but rather they
approach asymptote. For example, an item presented at
longer intervals of time will be retained better than an
item crammed more tightly together in temporal space.
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The practice function in its current form would assume
a discrete increment in learning or activation to be
added at each presentation time of the item and would
necessitate a greater decay rate to be incorporated for
an item presented across greater intervals of time. Thus,
the General Performance Equation would model
superior performance for massed study compared to
distributed study, resulting in a converse effect to that
of actual human performance. As demonstrated in
Figure 3, the model clearly loses its ability to fit human
performance data when distributed training regimens
are a part of the procedure, and correlations plummet to
0.49. Further, these estimations of fit can only be made
in a post-hoc manner.
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Figure 3: General Performance Equation Model

fits to data spaced at practice intervals of every 2
and every 8 trials (Glenberg, 1976)

PROPOSED PREDICTIVE AND PRESCRIPTIVE
MODEL

Algorithm Parameters

Building upon the strengths of the previous equations,
we sought to formalize an algorithm to capture recency,
frequency, and spacing effects, while also providing
flexibility and capability for predicting performance at
later points in time. This equation is formalized by the
following, and incorporates the same definitions for
parameters N and c¢ as originally defined by Equation 1
(see Equation 2):

S-N-T™ ¢

where S equals the original scalar (4) in the General
Performance Equation) multiplied by training history
(known improvement rate between initial time of
learning and last known retention session), and a equals
an activation-based decay parameter that enfolds an
exponential function into the decay rate (see Equation
3), such that:
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a=d-e" ™" +d(intercept) 0

To further elaborate the activation-based decay
parameter a, m equals the activation level at the latest
known data point, defined by In(T), so that this
parameter is calculated from the known training history
and is based upon the original decay rate and activation
level at the last known point.

Ability to Account for Spacing Effect

In order to demonstrate the efficacy of our Predictive
and Prescriptive Model in comparison to the General
Performance Equation, we plotted our model fit to the
same data set. Figure 4 reveals correlations of 0.96
between our model and the data, showing a marked
improvement over the General Performance Equation (r
=0.49).

—&—— Humans 2
—M— Humans 8
- - A= - Model 2
— @— - Model 8

Percent Correct

R=.96
RMSD = 1.47%

Trials

Figure 4: Predictive Performance Equation Model
fits to data spaced at practice intervals of every 2
and every 8 trials (Glenberg, 1976)

As we have demonstrated the model’s ability to capture
recency, frequency, and spacing effects of human
memory, we next turn to address its predictive
capability utilizing data collected by the Cognitive
Engineering Research Institute (CERI) investigating
team training and performance.

PREDICTIVE MODEL FITS TO TESTBED
DATA

CERI studied human performance in an Uninhabited
Air Vehicle (UAV) synthetic reconnaissance task
environment, and the data proved to be ideal for
examining the accuracy of our model’s predictions. In
addition, the study design allowed us to investigate
model fits at various levels of data resolution, meaning
we were able to examine model predictions at the
aggregate, team level, and individual team member
level of performance.
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To provide some background regarding CERI’s study
design, individual teams were composed of three
members randomly assigned to positions (a mission
coordinator/route planner, an air vehicle operator
(AVO) responsible for piloting the aircraft, and a
payload operator (PLO) to operate the camera and take
pictures of required targets), and each team member
was assigned certain unique duties that provided access
to different pieces of information (e.g. the mission
coordinator knew the location of targets and airfield
restrictions, the altitude/speed technician knew the
optimal parameters for reconnaissance photos, and the
photographer knew when target reconnaissance was
complete so that the aircraft could move onto its next
target). Teams were required to work cooperatively so
that mission-critical information could be passed along
to the appropriate team member to ensure success.

Participants completed five, 40-minute missions on the
first day of training and returned 10-14 weeks later to
complete three final missions. Outcome measures were
based upon weighted penalty scores across team
members, amassed across all occurrences of team
members acting outside duty restrictions or failing to
relay mission-critical information to the appropriate
team member. This training scenario will be utilized as
the model’s baseline of training history for both
predictive and prescriptive scenarios described below.

Predictive Restrictions of Computational Models

As predictive capability of any model is affected by the
level of noise in the data set, performance trends, and
ultimately mathematical regularities, may be difficult to
extract if the amount of noise is too high. The model
may therefore function according to an inadequate,
baseline training history, and may make increasingly
poor predictions for future performance as the level of
noise rises.

This issue was important to understand as we sought to
investigate model fits across finer and finer grains of
data analysis. Decomposing the data from the aggregate
level downward inherently confounds the identification
of true, stable memory gains and losses in performance
history (Estes, 2002), since outlier trials, participants,
or extraneous error are less likely to be reduced through
averaging into the overall trends.

Nonetheless, these examinations will help serve some
very practical purposes. They will reveal how much
data, at a minimum, is necessary to make valid
predictions for individuals or teams performing a given
task. These analyses may provide specific
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recommendations concerning the minimal amount of
training history (e.g. training logs) required to make
probabilistically ~ valid  predictions for future
performance. This is particularly critical in a military
domain, where warfighter knowledge and skills must be
stable and sufficient to succeed in any future maneuver
or mission. First, we lay out basic tenets pertaining to
this potential obstacle.

Resolution of Data  Aggregate level data, by
definition, reduces noise through averaging procedures
that smooth out the shape of human performance
curves. This process can be thought of as a double-
edged sword. As a benefit, averaging helps reduce the
contribution of noise to true human learning patterns.
However, as a drawback, it is entirely possible that true
human learning trends become masked or distorted as a
result of the process (Estes, 2002). The magnitude of
distortion could be caused by the amount of noise in the
data, variability of parameter fits to individual trials or
participants, and the range of variables of interest.

It may also be the case that producing an average group
curve does not adequately represent the individuals it
comprises, and further, the average group curve may
not adequately predict individual performance. Chong
and Wray (2005) provide evidence that the appearance
of data at the aggregate level can be vastly different and
even entirely distinct from curves using finer grains of
analysis, so it is clear that these issues are not at all
trivial at a practical level of utility.

An extensive literature review by Newell and
Rosenbloom (1981) revealed that mathematically,
learning trajectories of practice and retention at the
aggregate level are generally best fit to power
functions. Of interest is that learning trajectories at the
individual level of performance are generally best fit to
exponential functions (Heathcote, Brown, & Mewhort,
2000). This of course poses serious concerns for
modeling purposes, as computational algorithms will
always be best suited for data sets that have eliminated
sources of spurious noise.

In order to make valid predictions or prescriptions of
training regimen for individual warfighters, these tenets
imply that it would behoove instructors to collect an
adequate supply of data pertaining to training history,
as data become more predictable when greater amounts
of training history are initially utilized to baseline
performance trajectories. This recommendation will
become evident in the following sections.

Model Fits to Aggregate Level Data Using the CERI
laboratory data, we initially tested model predictions at
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the aggregate level of performance, collapsing data
across all individual team members and across all
teams. In this evaluation scenario, we first optimized
model parameters using performance history from the
first day of testing. This required determining the
values of learning and forgetting rates that best fit the
performance function up to the end of day one training.
As described above, the first day of testing required the
completion of five, 40-minute reconnaissance missions,
and is represented in Figure 5 as missions one through
five.

After a 10-14 week delay, participants returned for a
second session and engaged in missions six through
eight. It is for these missions that we extrapolated
mathematical regularities from known performance
history to make our model predictions and compare
against actual human performance. A correlation
coefficient of 0.95 between the model and the humans
was revealed, and is shown in Figure 5.
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Figure S: Predictive Performance Equation Model
fit to aggregate level data after a 10-14 week delay

Model Fit to Individual Team Level Data Using the
same procedure of optimization and extrapolation
described above, we tested the efficacy of our model to
make predictions at a finer grain of analysis, that being
an individual team selected randomly from the sample.
A correlation coefficient of 0.91 was revealed,
producing the hypothesized reduction in predictive
validity compared to the aggregate level, as shown in
Figure 6.
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Figure 6: Predictive Performance Equation Model
fit to team level data after a 10-14 week delay

Model Fit to Individual Operator Level Data
Decomposing data down to the lowest grain of analysis
in this data set, that of a randomly selected individual
operator, further reduces the ability of the model to
make accurate predictions. Increased noise in the data
drops the correlation coefficient between the model and
the human to 0.68, as shown in Figure 7.
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Figure 7: Predictive Performance Equation Model
fit to individual operator level data after a 10-14
week delay

It is evident that performance curves at the individual
team member, individual team, and overall aggregate
levels can be very different and distinct from one
another. Figure 8 illustrates this difference by
presenting the randomly selected team and individual
team member used in the model predictions, and
compares them to the aggregate level performance
curve.
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Figure 8: Comparison of true human performance
curves at different levels of data resolution

This exercise also reveals how much poorer the
prediction becomes when finer grains of analysis are
used. More and more noise and error are introduced
into the data when averaging procedures are removed,
therefore, model predictions lose their mathematical
base and fail in predictions of future performance. One
useful way to combat this problem with finer grains of
analysis would be to gather more information in
training history, so that missions may be averaged
across blocks for example, and noise and error would
be systematically smoothed out.

Amount of Training History Another factor that
affects model fits and future predictions is the amount
of training history from which mathematical regularities
are initially extracted. As such, we again used the CERI
laboratory testbed data to examine model predictions
dependent upon the amount of training history
provided. For the previous predictions displayed at the
aggregate, team level, and individual team member
level performance, we optimized model parameters
based on training from the first five missions (or
session one of testing) to make predictions for the last
three missions (or session two of testing, 10-14 weeks
later). For this exercise, we compared model
predictions as a function of the amount of training
history at the aggregate level. We optimized model
parameters from performance gleaned from one to
seven known data points, and made predictions for the
remainder of training. Not surprisingly, greater amounts
of training history led to greater predictability in the
data, and model efficacy rapidly increased with just
four known points in training history. The correlation
coefficients are displayed in Figure 9.
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Figure 9: Predictive Model correlations to human
performance data as a function of known training
history

Clearly, this exercise of model predictability across
varying amounts of performance history reveals the
importance of collecting adequate amounts of
performance data from the start. Stable learning
trajectories allow the extraction of mathematical
regularities to be implemented in a computational
model, so that even at finer grains of analysis, the
model may be useful in a predictive capacity.

Potential Predictive Utility in the Warfighter
Domain

Of critical importance to the military and to individual
warfighters themselves, is knowing when they have
received enough training to be able to perform with
consistency and to achieve success in specific missions
or maneuvers at future points in time. Our predictive
model has the potential to predict when a warfighter
will achieve mission-readiness under very specific
regimens of practice, with very specific distributions of
practice. Take for example the following scenario: How
long will it take an individual warfighter, using known
performance training history, to achieve 95%
proficiency under the current regimen of practice?

We constructed a hypothetical training scenario, based
upon the design of the CERI laboratory study described
above, to help illustrate the potential utility of our
model. In this scenario, five 40-minute missions were
completed in session one of training, an additional
three 40-minute missions were completed in a second
session between weeks 10 and 14 later, and our
predictions for 95% proficiency at a later date were
then extrapolated from the performance history of the
first eight missions in total. Timetables for predictions
were based on learners engaging in five missions per
day at a rate of five days of training per week. Model
results are presented in Figure 10, where performance
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history baseline is shown in blue, and model

predictions are shown in red.
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Figure 10: Notional prediction scenario

In this hypothetical example, the learner would require
practice of an additional 1,120 40-minute training
missions to achieve the desired level of proficiency.
This translates to an additional 28 weeks of training
above and beyond the baseline training period
presented in blue, at a rate of five missions a day, five
times a week.

This model is also equipped with the ability to make
predictions for future performance using different
specified regimens of practice, spaced apart at any
length of time. Thus, if a learner takes two months
away from training for instance, the model would be
able to estimate how much knowledge had decayed
over that period of time and make predictions for how
much additional training would be required to achieve
proficiency. This model therefore, has the potential to
be a valuable predictive tool, even when training
regimen is inconsistently spaced temporally or when
extended breaks are taken.

Potential Prescriptive Utility in the Warfighter
Domain

Also of great interest to the military, educators, and
learners alike, is the development of a tool with the
ability to prescribe optimal training regimens and
maximize learning and retention gains. Our modeling
tool has a potential prescriptive ability to assess and
compare training schedules so that knowledge and skill
acquisition will be more effective, and memory traces
will be more durable over time.

Tapping into the history of empirical findings in the
domain of learning and memory, it is clear that
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practices spaced further apart result in better retention
than those spaced closer together, so this modeling tool
may be used to predict and assess how effective each
training repetition will be (as a function of memory
trace activation) and to help optimize the spacing of
training opportunities to result in larger learning gains.

Our predictive model carries the potential to function in
these kinds of prescriptive capacities by means of
hypothetical comparisons across learning opportunities
spaced at varying points in time. Logistically, it can
also help determine whether or not training
expectations for achieving proficiency are feasible to
accomplish within the specified boundaries of time; and
if they are not, it may help inform trainers and
educators as to what a more reasonable timetable would
be. Take for example the following situation: How
much training must an individual warfighter receive to
be mission-ready (95% proficiency) by a specified
deployment date four weeks away? Four months away?

We constructed a hypothetical training scenario, based
upon the training design of the CERI laboratory study
described in the preceding example, to help illustrate
the potential prescriptive utility of our model. Again,
we baselined the model parameters from the first eight
missions of training and made predictions for the
amount of training required to achieve 95% proficiency
by each deployment date.
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1000
______________________ —_.--_
900 | e
. L 4
o 800 ; T
St '
g 700 . !
2 600 | . Deployment
E 500 - 4
Bt e *
Eo
E 300 |-
D 4
& 200
100
0
1‘2‘3‘4‘5 6‘7‘8 150 [ 270|350 | 490
Day 1 Week 12 Wk | Wk | Wk | Wk
B4 |15]16
Number of Missions/Week of Training

Figure 11: Notional prescription scenario —
deployment date four weeks away

For the deployment scenario set four weeks away, this
hypothetical warfighter would require approximately
120 40-minute practice missions to be completed each
of the four weeks, to achieve mission-readiness (95%
proficient) by that deadline (see Figure 11). This is of
course an entirely unreasonable training expectation
since it would require 24 training missions to be
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completed each day, and would barely allow any time
at all for sleeping or eating. However, this is useful
information, since the model may help point out when
deployment dates are too early for warfighters to attain
high enough levels of proficiency or to achieve high
enough degrees of success. If there is no flexibility in
deployment dates, this model may provide a reality
check regarding expectations for readiness at the
beginning of the deployment.

For the deployment scenario set four months away, this
hypothetical warfighter would now require a more
reasonable (but still aggressive) training regimen. The
model calls for approximately 110 40-minute practice
missions to be completed each of the four months, to
achieve mission-readiness (95% proficient) by that
deadline (see Figure 12). That’s approximately five
training missions each day, five days each week - a far
more reasonable expectation than in the previous
scenario.
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Figure 12: Notional prescription scenario —
deployment date four months away

Also of interest with these deployment scenarios is the
fact that training spaced further apart requires less
overall training for the learner to actually achieve
proficiency. There is a forty mission difference between
the scenarios because learning gains are greater when
training is distributed rather than massed. This fits
nicely with well-established empirical data of human
performance and shows the utility of the model for
prescriptive and comparative purposes.

CONCLUSIONS AND FUTURE DIRECTIONS

We are enthusiastic regarding the potential uses for this
type of model, particularly in the military domain. Use
of this type of model can not only help determine when
a warfighter has become proficient in a skill, but can
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also help streamline training to optimize learning as a
whole. As these are initial tests of the model, additional
analyses must be completed to further refine and
validate the model. However, we are encouraged by
the preliminary results and are hopeful we will have the
opportunity to further investigate the model’s strengths,
limitations, and eventual uses.
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