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ABSTRACT 

 

Intelligent tutoring systems seek to optimize instruction and training by adapting and individualizing the learning 

experience on the basis of a student model (Shute, 1995). This model represents the system’s estimate of the 

student’s current knowledge or skill level, established from a performance history. Knowledge tracing (Aleven & 

Koedinger, 2002; Anderson, Conrad, & Corbett, 1989) is a dynamic, Bayesian approach to updating the estimates of 

probability of skill mastery in the student model. A fundamental shortcoming of this approach is that it does not 

include a representation of memory decay during periods of non-practice. As a result, traditional student modeling 

approaches are unable to make predictions regarding knowledge and skill changes under various future training 

schedules or to prescribe how much training will be required to achieve specific levels of readiness at a specific 

future time. In this paper, we propose a new knowledge tracing equation, computationally inspired by the learning 

and forgetting equations in the ACT-R cognitive architecture (Anderson et al., 2004), which uses performance 

history to baseline student model parameters and then extrapolates knowledge state transformation to predict future 

performance. We explore practical issues concerning predictive models of future trainee performance and the 

prescription of frequency and timing of optimal learning with training systems. For instance, we investigate how 

much data from the training history are necessary to achieve reasonable predictive validity, and we describe the 

impact of data granularity through a quantitative assessment of how adequately the model can fit and predict human 

performance curves across aggregate-level, team-level, and individual-level resolutions. The paper ends with a 

discussion of the implications of this research for the future of training and education. 
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INTRODUCTION 

 

Intelligent tutoring systems are intended to optimize 

learning by adapting training experiences on the basis 

of proficiency. These systems continuously estimate 

trainees’ current knowledge and skill levels based on 

performance history and build what has been termed a 

representation of the student (Hartley & Sleeman, 

1973) or student model (Greer & McCalla, 1993; Shute 

& Psotka, 1996; VanLehn, 1988). They dynamically 

update estimates of the knowledge state in the student 

model as the learner accumulates more experience and 

expertise, and then adapt training to improve the 

efficiency and effectiveness of learning opportunities. 

 

Among the most demonstrably successful intelligent 

tutoring systems ever created are the Cognitive 

Tutors® that originated at Carnegie Mellon as testbeds 

for the ACT* theory of skill acquisition (Anderson, 

1983). Their implementation was inspired by ACT-

style cognitive models of algebra and geometry 

problem solving, with skills decomposed into 

production rules. The tutors proved so effective that a 

successful spinoff company, Carnegie Learning, 

eventually formed to mature and distribute the 

technology to school districts around the country. The 

tutors are now being used by more than 800 schools. 

 

The student modeling capability in the Cognitive 

Tutors® is a Bayesian estimate of the probability of 

having mastered each of the knowledge units 

(production rules) that are targets of current instruction. 

Their Bayesian equation is used in a process called 

knowledge tracing (Corbett & Anderson, 1995) to keep 

this mastery estimate current and provide a basis on 

which to determine the course of instruction. This 

approach has been quite successful in classroom 

applications. (Aleven & Koedinger, 2002; Anderson, 

Conrad, & Corbett, 1989). 

 

Notwithstanding the documented utility of the 

knowledge tracing approach, it does have a critical 

limitation, as does every other known  student modeling 

approach. The limitation is that intelligent tutors have 

no underlying mechanism for memory decay 

represented in the model. Thus, even over significant 

periods of non-practice, when some forgetting would 

inevitably occur, the student model assumes that the 

learner’s knowledge state remains stable across periods 

of non-use, leaving all prior learning completely intact. 

This limits the utility of traditional student modeling 

approaches entirely to estimates of current 

readiness/proficiency/mastery. They have no capacity 

to predict what future readiness will be at specific 

points in time. 

 

Furthermore, traditional student modeling approaches 

are unable to make predictions regarding knowledge 

and skill changes under various future training 

schedules or to prescribe how much training will be 

required to achieve specific levels of readiness at a 

specific future time. They function only on the learner’s 

last computed knowledge state, and provide training for 

only the current benchmark task needed to be learned.  

 

The goal of the current work is to further translate basic 

cognitive science research into an effective “cognitive 

tool” (Koedinger & Anderson, 1993) for future 

warfighter training applications. We will do this 

through the creation of a mathematical model that 

integrates mechanisms that handle the spacing effect 

(distributed learning) into a computational cognitive 

process model of memory. Benefits associated with 

computationally representing the spacing effect include 

validating existing or proposed theoretical assumptions 

of learning and decay of memory traces over time, 

providing warfighters and instructors with a tool to 

predict performance given a known regimen of training, 

and helping warfighters and instructors prescribe 

practice schedules to optimize performance based upon 

mathematical regularities in training histories.  

 

We propose a new knowledge tracing equation, 

inspired largely by the learning and forgetting 

equations in the ACT-R cognitive architecture 

(Anderson et al., 2004). This equation allows us to 

calibrate student model parameters from performance 

history and extrapolate knowledge state transformation 

to predict future performance. We first begin with an 

explanation of the spacing effect dilemma, then turn to 
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the evolution of computational models to formally trace 

the intricacies of knowledge and skill acquisition in 

human memory. Finally, we address the potential 

contributions of a predictive and prescriptive cognitive 

model for improving military readiness. 

 

SPACING EFFECT 

 

One of the most consistent findings from past research 

in human memory is that performance is generally 

enhanced when learning repetitions are spaced farther 

apart temporally. This phenomenon, often termed the 

spacing effect, is extremely robust and has been 

observed not only in artificial laboratory settings, but in 

real-life training situations as well (e.g. Bahrick & 

Phelps, 1987). Due to its ubiquity, it may be inferred 

that basic principles of learning and retrieval are 

involved.  

 

On the learning side of the coin, practice that occurs 

more slowly becomes more durable (e.g. Pavlik & 

Anderson, 2005); and on the forgetting side of the coin, 

the rate of forgetting of an item decreases as time 

passes according to Jost’s Law.  This Law states that “if 

two associations are now of equal strengths but of 

different ages, the older one will lose strength more 

slowly with the further passage of time” (Woodworth, 

1938).   

 

This phenomenon is not captured by most existing 

models of human memory, which generally assume that 

memory traces additively strengthen with each learning 

opportunity and continually decay with the passage of 

time. Thus, computational models fall apart under 

distributed training conditions and it becomes evident 

that modifications to current implementations of 

computational models of memory need to be made to 

account for differences in learning and decay as a 

function of repetition timing. 

 

COGNITIVE MODELS  

 

Computational cognitive process models have been in 

existence a mere fraction of the hundred and twenty 

years of accrued research in human learning and 

forgetting of knowledge and skill (Ebbinghaus, 1885).  

Despite their infancy, such models have capitalized on 

theoretical and empirical understandings to inform the 

mathematical implementation of cognitive mechanisms 

and processes responsible for performance. Significant 

strides have been made in accounting for increasingly 

complex memory phenomena through the years (e.g. 

Anderson, 1992; Anderson & Lebiere, 1998; Anderson, 

Fincham, & Douglass, 1999; Pavlik & Anderson, 

2005).  However, much work remains to be done to 

completely capture the nuances of the dynamic human 

memory system. As it currently stands, even the best 

models in existence capture learning and forgetting 

curves only in a post-hoc manner, adequately simulate 

curves only when the grain of resolution is large 

enough to diminish inherent noise and variation and 

typically account for performance curves averaged over 

many participants rather than tracing the knowledge 

state of an individual learner.  

 

ACT-R General Performance Equation 

 
Anderson and Schunn (2000) proposed the General 
Performance Equation, which provides the basis for our 
predictive and prescriptive mathematical model. It is 
derived from ACT-R equations and comprises the 
power law of practice, the power law of forgetting, and 
the multiplicative effect of practice and retention (the 
relation between the amount of practice and the 
duration of time for which knowledge must be 
maintained). A form of neural adaptation called long-
term potentiation also shows the power laws of 
learning and forgetting (Barnes, 1979), which nicely 
aligns the cognitive mechanisms of the model with 
neurophysiological research.  
 
The General Performance Equation is formally 
expressed as (see Equation 1): 
 
     (1) 
 
where A is a free parameter scalar, N is the amount of 
practice, c is the rate of learning, T is the time since 
learning, and d represents memory decay. The 
collective effect of this algorithm is that performance 
continues to improve with increased learning 
opportunities, and continues to degrade as time 
between learning and retention increases. Preservation 
of knowledge then depends upon leveraging the amount 
of practice against the retention time. 
 
To emphasize the reasons for utilizing these core 
components in our proposed modified equation, we 
first demonstrate the model’s strengths. This ACT-R-
based General Performance Equation can replicate the 
findings from a variety of learning and forgetting 
studies in the published literature. These include studies 
concerning knowledge retention, knowledge 
acquisition, skill retention, and skill acquisition. We 
provide a sample of these model fits in Figure 1 for 
knowledge acquisition, and Figure 2 for skill retention.  

    

Anderson and Fincham (1994) required participants to 

first memorize a number of logic-based facts.  These 

facts related time between series of events, and 

participants were asked to predict when one event 

would occur, given the knowledge of when a second 
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event occurred.  Participants were tested over the 

course of four days. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1:  Model fit to knowledge acquisition 

(Anderson & Fincham, 1994)  

 

Bean (1912) taught novice participants typewriting 

skills and was interested in examining how well those 

new skills were retained as a function of time.  

Participants were initially tested on days one, four, and 

seven and were then tested weekly for four additional 

weeks, and tested a final time 35 days after initial 

learning. 

 

 

 

 

 

 

 

 

 

 

 

          
 

Figure 2:  Model fit to skill retention (Bean, 1912) 
         

These figures demonstrate the usefulness of the General 

Performance Equation for many types of data sets and 

provide correlation coefficients of 0.89 to 0.97 for fits 

to empirical human performance. We now turn to a 

dimension of learning and forgetting that this equation 

does not handle well, namely, distributed learning or 

spaced practice. 

 

Mathematical Weaknesses of the General 

Performance Equation for Handling the Spacing 

Effect  Human performance studies have revealed that 

learning and forgetting do not linearly improve or 

degrade over extended periods of time, but rather they 

approach asymptote. For example, an item presented at 

longer intervals of time will be retained better than an 

item crammed more tightly together in temporal space. 

The practice function in its current form would assume 

a discrete increment in learning or activation to be 

added at each presentation time of the item and would 

necessitate a greater decay rate to be incorporated for 

an item presented across greater intervals of time. Thus, 

the General Performance Equation would model 

superior performance for massed study compared to 

distributed study, resulting in a converse effect to that 

of actual human performance. As demonstrated in 

Figure 3, the model clearly loses its ability to fit human 

performance data when distributed training regimens 

are a part of the procedure, and correlations plummet to 

0.49.  Further, these estimations of fit can only be made 

in a post-hoc manner. 
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Figure 3:  General Performance Equation Model 

fits to data spaced at practice intervals of every 2 

and every 8 trials (Glenberg, 1976) 

 

 

PROPOSED PREDICTIVE AND PRESCRIPTIVE 

MODEL 

 

Algorithm Parameters 

 

Building upon the strengths of the previous equations, 

we sought to formalize an algorithm to capture recency, 

frequency, and spacing effects, while also providing 

flexibility and capability for predicting performance at 

later points in time. This equation is formalized by the 

following, and incorporates the same definitions for 

parameters N and c as originally defined by Equation 1 

(see Equation 2): 

 

     (2) 

 

where S equals the original scalar (A) in the General 

Performance Equation) multiplied by training history 

(known improvement rate between initial time of 

learning and last known retention session), and a equals 

an activation-based decay parameter that enfolds an 

exponential function into the decay rate (see Equation 

3), such that: 
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              (3) 

 

To further elaborate the activation-based decay 

parameter a, m equals the activation level at the latest 

known data point, defined by ln(T
-d
), so that this 

parameter is calculated from the known training history 

and is based upon the original decay rate and activation 

level at the last known point.   

 

Ability to Account for Spacing Effect   

 

In order to demonstrate the efficacy of our Predictive 

and Prescriptive Model in comparison to the General 

Performance Equation, we plotted our model fit to the 

same data set. Figure 4 reveals correlations of 0.96 

between our model and the data, showing a marked 

improvement over the General Performance Equation (r 

= 0.49).  
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Figure 4:  Predictive Performance Equation Model 

fits to data spaced at practice intervals of every 2 

and every 8 trials (Glenberg, 1976) 

 

As we have demonstrated the model’s ability to capture 

recency, frequency, and spacing effects of human 

memory, we next turn to address its predictive 

capability utilizing data collected by the Cognitive 

Engineering Research Institute (CERI) investigating 

team training and performance. 

 

PREDICTIVE MODEL FITS TO TESTBED 

DATA 

 

CERI studied human performance in an Uninhabited 

Air Vehicle (UAV) synthetic reconnaissance task 

environment, and the data proved to be ideal for 

examining the accuracy of our model’s predictions. In 

addition, the study design allowed us to investigate 

model fits at various levels of data resolution, meaning 

we were able to examine model predictions at the 

aggregate, team level, and individual team member 

level of performance.  

 

To provide some background regarding CERI’s study 

design, individual teams were composed of three 

members randomly assigned to positions (a mission 

coordinator/route planner, an air vehicle operator 

(AVO) responsible for piloting the aircraft, and a 

payload operator (PLO) to operate the camera and take 

pictures of required targets), and each team member 

was assigned certain unique duties that provided access 

to different pieces of information (e.g. the mission 

coordinator knew the location of targets and airfield 

restrictions, the altitude/speed technician knew the 

optimal parameters for reconnaissance photos, and the 

photographer knew when target reconnaissance was 

complete so that the aircraft could move onto its next 

target). Teams were required to work cooperatively so 

that mission-critical information could be passed along 

to the appropriate team member to ensure success.  

 

Participants completed five, 40-minute missions on the 

first day of training and returned 10-14 weeks later to 

complete three final missions. Outcome measures were 

based upon weighted penalty scores across team 

members, amassed across all occurrences of team 

members acting outside duty restrictions or failing to 

relay mission-critical information to the appropriate 

team member. This training scenario will be utilized as 

the model’s baseline of training history for both 

predictive and prescriptive scenarios described below. 

 

Predictive Restrictions of Computational Models 

 

As predictive capability of any model is affected by the 

level of noise in the data set, performance trends, and 

ultimately mathematical regularities, may be difficult to 

extract if the amount of noise is too high. The model 

may therefore function according to an inadequate, 

baseline training history, and may make increasingly 

poor predictions for future performance as the level of 

noise rises.  

 

This issue was important to understand as we sought to 

investigate model fits across finer and finer grains of 

data analysis. Decomposing the data from the aggregate 

level downward inherently confounds the identification 

of true, stable memory gains and losses in performance 

history (Estes, 2002), since outlier trials, participants, 

or extraneous error are less likely to be reduced through 

averaging into the overall trends.  

 

Nonetheless, these examinations will help serve some 

very practical purposes. They will reveal how much 

data, at a minimum, is necessary to make valid 

predictions for individuals or teams performing a given 

task. These analyses may provide specific 

)()1( interceptdeda m
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R = .96 

RMSD = 1.47% 
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recommendations concerning the minimal amount of 

training history (e.g. training logs) required to make 

probabilistically valid predictions for future 

performance. This is particularly critical in a military 

domain, where warfighter knowledge and skills must be 

stable and sufficient to succeed in any future maneuver 

or mission. First, we lay out basic tenets pertaining to 

this potential obstacle.  

 

Resolution of Data  Aggregate level data, by 

definition, reduces noise through averaging procedures 

that smooth out the shape of human performance 

curves. This process can be thought of as a double-

edged sword. As a benefit, averaging helps reduce the 

contribution of noise to true human learning patterns. 

However, as a drawback, it is entirely possible that true 

human learning trends become masked or distorted as a 

result of the process (Estes, 2002). The magnitude of 

distortion could be caused by the amount of noise in the 

data, variability of parameter fits to individual trials or 

participants, and the range of variables of interest.  

 

It may also be the case that producing an average group 

curve does not adequately represent the individuals it 

comprises, and further, the average group curve may 

not adequately predict individual performance. Chong 

and Wray (2005) provide evidence that the appearance 

of data at the aggregate level can be vastly different and 

even entirely distinct from curves using finer grains of 

analysis, so it is clear that these issues are not at all 

trivial at a practical level of utility.  

 

An extensive literature review by Newell and 

Rosenbloom (1981) revealed that mathematically, 

learning trajectories of practice and retention at the 

aggregate level are generally best fit to power 

functions. Of interest is that learning trajectories at the 

individual level of performance are generally best fit to 

exponential functions (Heathcote, Brown, & Mewhort, 

2000). This of course poses serious concerns for 

modeling purposes, as computational algorithms will 

always be best suited for data sets that have eliminated 

sources of spurious noise.  

 

In order to make valid predictions or prescriptions of 

training regimen for individual warfighters, these tenets 

imply that it would behoove instructors to collect an 

adequate supply of data pertaining to training history, 

as data become more predictable when greater amounts 

of training history are initially utilized to baseline 

performance trajectories. This recommendation will 

become evident in the following sections.  

 

Model Fits to Aggregate Level Data  Using the CERI 

laboratory data, we initially tested model predictions at 

the aggregate level of performance, collapsing data 

across all individual team members and across all 

teams. In this evaluation scenario, we first optimized 

model parameters using performance history from the 

first day of testing. This required determining the 

values of learning and forgetting rates that best fit the 

performance function up to the end of day one training. 

As described above, the first day of testing required the 

completion of five, 40-minute reconnaissance missions, 

and is represented in Figure 5 as missions one through 

five.  

 

After a 10-14 week delay, participants returned for a 

second session and engaged in missions six through 

eight. It is for these missions that we extrapolated 

mathematical regularities from known performance 

history to make our model predictions and compare 

against actual human performance. A correlation 

coefficient of 0.95 between the model and the humans 

was revealed, and is shown in Figure 5. 

  

 

  

 

 

 

 

 

 

 

 

 

 

Figure 5:  Predictive Performance Equation Model 

fit to aggregate level data after a 10-14 week delay 

 

Model Fit to Individual Team Level Data  Using the 

same procedure of optimization and extrapolation 

described above, we tested the efficacy of our model to 

make predictions at a finer grain of analysis, that being 

an individual team selected randomly from the sample. 

A correlation coefficient of 0.91 was revealed, 

producing the hypothesized reduction in predictive 

validity compared to the aggregate level, as shown in 

Figure 6.  

 

10-14 week delay 

R = .95 

RMSD = 10.3 
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Figure 6:  Predictive Performance Equation Model 

fit to team level data after a 10-14 week delay 

 

Model Fit to Individual Operator Level Data 

Decomposing data down to the lowest grain of analysis 

in this data set, that of a randomly selected individual 

operator, further reduces the ability of the model to 

make accurate predictions. Increased noise in the data 

drops the correlation coefficient between the model and 

the human to 0.68, as shown in Figure 7. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 7:  Predictive Performance Equation Model 

fit to individual operator level data after a 10-14 

week delay 

 

It is evident that performance curves at the individual 

team member, individual team, and overall aggregate 

levels can be very different and distinct from one 

another. Figure 8 illustrates this difference by 

presenting the randomly selected team and individual 

team member used in the model predictions, and 

compares them to the aggregate level performance 

curve.  
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Figure 8:  Comparison of true human performance 

curves at different levels of data resolution 

 

This exercise also reveals how much poorer the 

prediction becomes when finer grains of analysis are 

used. More and more noise and error are introduced 

into the data when averaging procedures are removed; 

therefore, model predictions lose their mathematical 

base and fail in predictions of future performance. One 

useful way to combat this problem with finer grains of 

analysis would be to gather more information in 

training history, so that missions may be averaged 

across blocks for example, and noise and error would 

be systematically smoothed out. 

 

Amount of Training History  Another factor that 

affects model fits and future predictions is the amount 

of training history from which mathematical regularities 

are initially extracted. As such, we again used the CERI 

laboratory testbed data to examine model predictions 

dependent upon the amount of training history 

provided. For the previous predictions displayed at the 

aggregate, team level, and individual team member 

level performance, we optimized model parameters 

based on training from the first five missions (or 

session one of testing) to make predictions for the last 

three missions (or session two of testing, 10-14 weeks 

later). For this exercise, we compared model 

predictions as a function of the amount of training 

history at the aggregate level. We optimized model 

parameters from performance gleaned from one to 

seven known data points, and made predictions for the 

remainder of training. Not surprisingly, greater amounts 

of training history led to greater predictability in the 

data, and model efficacy rapidly increased with just 

four known points in training history.  The correlation 

coefficients are displayed in Figure 9. 
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Figure 9:  Predictive Model correlations to human 

performance data as a function of known training 

history 

 

Clearly, this exercise of model predictability across 

varying amounts of performance history reveals the 

importance of collecting adequate amounts of 

performance data from the start. Stable learning 

trajectories allow the extraction of mathematical 

regularities to be implemented in a computational 

model, so that even at finer grains of analysis, the 

model may be useful in a predictive capacity. 

 

Potential Predictive Utility in the Warfighter 

Domain 

 

Of critical importance to the military and to individual 

warfighters themselves, is knowing when they have 

received enough training to be able to perform with 

consistency and to achieve success in specific missions 

or maneuvers at future points in time. Our predictive 

model has the potential to predict when a warfighter 

will achieve mission-readiness under very specific 

regimens of practice, with very specific distributions of 

practice. Take for example the following scenario: How 

long will it take an individual warfighter, using known 

performance training history, to achieve 95% 

proficiency under the current regimen of practice?   

 

We constructed a hypothetical training scenario, based 

upon the design of the CERI laboratory study described 

above, to help illustrate the potential utility of our 

model. In this scenario, five 40-minute missions were 

completed in session one of training, an additional 

three 40-minute missions were completed in a second 

session between weeks 10 and 14 later, and our 

predictions for 95% proficiency at a later date were 

then extrapolated from the performance history of the 

first eight missions in total. Timetables for predictions 

were based on learners engaging in five missions per 

day at a rate of five days of training per week. Model 

results are presented in Figure 10, where performance 

history baseline is shown in blue, and model 

predictions are shown in red. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 10:  Notional prediction scenario 

 

In this hypothetical example, the learner would require 

practice of an additional 1,120 40-minute training 

missions to achieve the desired level of proficiency. 

This translates to an additional 28 weeks of training 

above and beyond the baseline training period 

presented in blue, at a rate of five missions a day, five 

times a week.  

 

This model is also equipped with the ability to make 

predictions for future performance using different 

specified regimens of practice, spaced apart at any 

length of time. Thus, if a learner takes two months 

away from training for instance, the model would be 

able to estimate how much knowledge had decayed 

over that period of time and make predictions for how 

much additional training would be required to achieve 

proficiency. This model therefore, has the potential to 

be a valuable predictive tool, even when training 

regimen is inconsistently spaced temporally or when 

extended breaks are taken. 

 

Potential Prescriptive Utility in the Warfighter 

Domain 

 

Also of great interest to the military, educators, and 

learners alike, is the development of a tool with the 

ability to prescribe optimal training regimens and 

maximize learning and retention gains. Our modeling 

tool has a potential prescriptive ability to assess and 

compare training schedules so that knowledge and skill 

acquisition will be more effective, and memory traces 

will be more durable over time.  

 

Tapping into the history of empirical findings in the 

domain of learning and memory, it is clear that 
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practices spaced further apart result in better retention 

than those spaced closer together, so this modeling tool 

may be used to predict and assess how effective each 

training repetition will be (as a function of memory 

trace activation) and to help optimize the spacing of 

training opportunities to result in larger learning gains.  

 

Our predictive model carries the potential to function in 

these kinds of prescriptive capacities by means of 

hypothetical comparisons across learning opportunities 

spaced at varying points in time. Logistically, it can 

also help determine whether or not training 

expectations for achieving proficiency are feasible to 

accomplish within the specified boundaries of time; and 

if they are not, it may help inform trainers and 

educators as to what a more reasonable timetable would 

be. Take for example the following situation: How 

much training must an individual warfighter receive to 

be mission-ready (95% proficiency) by a specified 

deployment date four weeks away?  Four months away?  

 

We constructed a hypothetical training scenario, based 

upon the training design of the CERI laboratory study 

described in the preceding example, to help illustrate 

the potential prescriptive utility of our model. Again, 

we baselined the model parameters from the first eight 

missions of training and made predictions for the 

amount of training required to achieve 95% proficiency 

by each deployment date.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11:  Notional prescription scenario – 

deployment date four weeks away 

 

For the deployment scenario set four weeks away, this 

hypothetical warfighter would require approximately 

120 40-minute practice missions to be completed each 

of the four weeks, to achieve mission-readiness (95% 

proficient) by that deadline (see Figure 11).  This is of 

course an entirely unreasonable training expectation 

since it would require 24 training missions to be 

completed each day, and would barely allow any time 

at all for sleeping or eating.  However, this is useful 

information, since the model may help point out when 

deployment dates are too early for warfighters to attain 

high enough levels of proficiency or to achieve high 

enough degrees of success. If there is no flexibility in 

deployment dates, this model may provide a reality 

check regarding expectations for readiness at the 

beginning of the deployment.  

 

For the deployment scenario set four months away, this 

hypothetical warfighter would now require a more 

reasonable (but still aggressive) training regimen. The 

model calls for approximately 110 40-minute practice 

missions to be completed each of the four months, to 

achieve mission-readiness (95% proficient) by that 

deadline (see Figure 12).   That’s approximately five 

training missions each day, five days each week - a far 

more reasonable expectation than in the previous 

scenario.  
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Figure 12:  Notional prescription scenario – 

deployment date four months away 

 

Also of interest with these deployment scenarios is the 

fact that training spaced further apart requires less 

overall training for the learner to actually achieve 

proficiency. There is a forty mission difference between 

the scenarios because learning gains are greater when 

training is distributed rather than massed. This fits 

nicely with well-established empirical data of human 

performance and shows the utility of the model for 

prescriptive and comparative purposes.  

 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

We are enthusiastic regarding the potential uses for this 

type of model, particularly in the military domain. Use 

of this type of model can not only help determine when 

a warfighter has become proficient in a skill, but can 
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also help streamline training to optimize learning as a 

whole. As these are initial tests of the model, additional 

analyses must be completed to further refine and 

validate the model.  However, we are encouraged by 

the preliminary results and are hopeful we will have the 

opportunity to further investigate the model’s strengths, 

limitations, and eventual uses. 

 

ACKNOWLEDGMENTS 

 

The authors would like to thank the Cognitive 

Engineering Research Institute (CERI), and particularly 

Dr. Nancy Cooke, for providing data for our model’s 

evaluation. A portion of this research was completed 

during the first author’s internship at the Air Force 

Research Laboratory, facilitated by an appointment 

with the Oak Ridge Institute for Science and Education.  

 

REFERENCES 

 

Aleven, V., & Koedinger, K. R., (2002). An effective 

metacognitive strategy: Learning by doing and 

explaining with a computer-based Cognitive Tutor. 

Cognitive Science, 26(2), 147-179. 

Anderson, J. R. (1983). A general learning theory and 

its application to the acquisition of proof skills in 

geometry. In R. Michalski, J. Carbonell, and T. 

Mitchell (Eds.), Machine Learning: An Artificial 

Intelligence Approach. Palo Alto, CA: Tioga 

Publishing. 

Anderson, J. R. (1992). Automaticity and the ACT* 

theory. American Journal of Psychology, 105, 

165-180. 

Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, 

S., Lebiere, C., & Qin, Y . (2004). An integrated 

theory of the mind. Psychological Review 111, (4). 

1036-1060. 

Anderson, J. R., Conrad, F. G., & Corbett, A. T. 

(1989). Skill acquisition and the LISP Tutor. 

Cognitive Science, 13, 467-506. 

Anderson, J. R., & Fincham, J. M. (1994). Acquisition 

of procedural skills from examples. Journal of 

Experimental Psychology: Learning, Memory, and 

Cognition, 22, 239-277. 

Anderson, J. R., Fincham, J. M. & Douglass, S. (1999). 

Practice and retention: A unifying analysis. 

Journal of Experimental Psychology: Learning, 

Memory, and Cognition, 25, 1120-1136. 

Anderson, J. R., & Lebiere, C. (1998). The atomic 

components of thought. Mahwah, NJ: Lawrence 

Erlbaum Associates, Inc. 

Anderson, J. R., & Schunn, C. D. (2000). Implications 

of the ACT-R learning theory: No magic bullets. In 

R. Glaser (Ed.), Advances in instructional 

psychology: Educational design and cognitive 

science, Vol. 5. Mahwah, NJ: Erlbaum.  

Bahrick, H., & Phelps, E. (1987). Retention of spanish 

vocabulary over 8 years. Journal of Experimental 

Psychology: Learning, Memory, and Cognition, 

13, 344—349. 

Barnes, C. A. (1979). Memory deficits associated with 

senescence: A neurophysiological and behavioral 

study in the rat. Journal of Comparative 

Physiology, 43, 74-104. 

Bean, C. H. (1912). The curve of forgetting. Archives 

of Psychology, 2, 1-47. 

Chong, R., & Wray, R. (2005). Inheriting constraint in 

hybrid cognitive architectures: Applying the EASE 

architecture to performance and learning in a 

simplified air traffic control task. In K. Gluck and 

R. Pew (Eds.), Modeling Human Behavior with 

Integrated Cognitive Architectures.  

Ebbinghaus, H. (1885). Memory: A Contribution to 

Experimental Psychology. Trans. H.A. Ruger and 

C.E. Bussenius, New York: Columbia University 

Press. 

Estes, W. K. (2002). Traps in the route to models of 

memory and decision. Psychonomic Bulletin & 

Review, 9(1), 3-25. 

Glenberg, A. M. (1976). Monotonic and nonmonotonic 

lag effects in paired-associate and recognition 

memory paradigms. Journal of Verbal Learning & 

Verbal Behavior, 15, 1-16. 

Greer, J. E., & McCalla, G. I. (Eds.) (1994). Student 

modeling: The key to individualized knowledge-

based instruction. New York: Springer-Verlag 

Hartley, J. R., & Sleeman, D. H. (1973). Towards more 

intelligent teaching systems. International Journal 

of Man-Machine Studies, 5, 215-236. 

Heathcote, A., Brown, S., & Mewhort, D. (2002). 

Quantile maximum likelihood estimation of 

response time distributions. Psychonomic Bulletin 

and Review, 9, 394-401. 

Koedinger, K.R., & Anderson, J.R. (1993). Reifying 

implicit planning in geometry. Guidelines for 

model-based intelligent tutoring system design. In 

Lajoie, S., & Derry, S. (Eds.) Computers as 

Cognitive Tools. Hillsdale, NJ: Erlbaum. 

Neves, D. M. & Anderson, J. R. (1981). Knowledge 

compilation: Mechanisms for the automatization of 

cognitive skills. In J. R. Anderson (Ed.), Cognitive 

skills and their acquisition. Hillsdale, NJ: 

Erlbaum. 

Newell, A., & Rosenbloom, P. (1981). Mechanisms of 

skill acquisition and the law of practice. In J. R. 

Anderson (Ed.), Cognitive Skills and their 

Acquisition. Erlbaum:  Hillsdale, NJ.  

 



 

 

 

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2006 

2006 Paper No. 2992 Page 11 of 11 
 

 

 

 

Pavlik, P. I, & Anderson, J. R. (2005). Practice and 

forgetting effects on vocabulary memory: An 

activation based model of the spacing effect. 

Cognitive Science, 29, 559-586. 

Shute, V. J., & Psotka, J. Intelligent tutoring systems: 

Past, present, and future. In D. H. Jonassen (Ed.) 

Handbook of Research for Educational 

Communications and Technology, 570-600. New 

York: Macmillan. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Strong, E. K. (1913). The effect of time interval upon 

recognition memory. Psychological Review, 30, 

339-342. 

VanLehn, K. (1988). Student modeling. In M. C. 

Polson & J. J. Richardson (Eds.) Foundations of 

Intelligent Tutoring Systems. Mahwah, NJ: 

Lawrence Erlbaum Associates. 

Woodworth, R. S. (1938). Experimental Psychology. 

New York: Henry Holt and Company. 

 


