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ABSTRACT

Next generation instrumentation systems for live military training will simulate weapon engagements (shots) using
geo-pairing: matching shooter with target by geometric computations that determine whether the trajectory or blast
of the round intersects the target. Such calculations depend critically on accurate sensor readings, including positions
of shooter and target(s), the pointing angle of the weapon at the time of the simulated shot, and positions of terrain
obstacles. However, perfect sensors are unattainable, so a key question for system engineers is just how accurate do
the sensors need to be? After all, physical weapons themselves have inherent inaccuracies (weapon “dispersion” or
“spread”); for training purposes, it is not necessary to simulate better accuracy than exists in the weapons themselves.
Moreover, a less accurate point angle sensor can to some degree be compensated for by a more accurate position
sensor, and vice versa. Thus, ultimately we would like to understand this tradeoff quantitatively in order to support
cost effective system engineering decisions.

This paper describes an iterative statistical approximation method, implemented as a set of computational tools, used
by the U.S.Army’s One Tactical Engagement Simulation System (OneTESS) Project for supporting these design trade-
offs. In particular, we show how to compute the probability of correct sensor-based shot adjudication for given sensor
combinations, as well as tradeoff diagrams showing which combinations of sensors can be used together to achieve
realism matching the physical accuracy of actual weapons systems. A key part of this method is building approximate
computational models of aim, weapon spread, and sensor error distributions based upon input gleaned from subject
matter experts in the areas of live training and instrumentation. We illustrate the method with case studies involving
direct fire, indirect fire, and terrain problems.
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INTRODUCTION AND GOALS

The military wishes to train its troops and test its systems
in situations as realistic as possible short of using live
fire and thereby risking serious injuries. To support this,
an instrumentation system replaces live fire with simu-
lated fire. The U.S. Army’s One Tactical Engagement
Simulation System (OneTESS) is a next generation in-
strumentation system based upon accurate sensor tech-
nology and Mobile Ad Hoc Networking (MANET).

A critical capability of OneTESS (U.S.Army - OneTESS
2006) will be its ability to compute the outcome of sim-
ulated engagements based on sensor measurements. We
term this process adjudication. Measurements are taken
at weapon, shooter, and potential targets; these are con-
centrated to one location during engagement adjudica-
tion using the MANET wireless network (Hall 2005);
and geometric calculations are performed using sensor
data and a terrain database to compute who, if any-
one, is damaged by the engagement. These calculations
are termed geopairing (U.S.Army - OneTESS 2006;
SRI International 2006) as they pair shooter with tar-
get(s) using geometric calculations (Parry 1995) based
on geographic data. This sort of adjudication is as op-
posed to laser-based pairing, where a laser is used to
designate a shot target via a physical line of sight. The
limitations of laser-based approaches are many, includ-
ing susceptibility to obscuration by things (such as dust
and tent flaps) that do not stop bullets, and inability to
handle indirect fire (highly curved trajectories and area
effects) at all. Geopairing has potential to improve on
these aspects. Using wireless networking, which may
relay around line of sight obstructions, messages can get
from shooter to target even when the latter is visually
obscured. Also, the system can simulate any sort of non-
light-like trajectory, including curved, guided, and even
intelligently controlled.

However, the Achilles’ Heel of geopairing is sensor ac-
curacy. If sensors or terrain information are inaccurate,
say reporting a target’s position as a few meters to the
left of the body’s actual position, or reporting the point-
ing angle of the rifle a few fractions of a degree off from
the true aim, the outcomes of engagements will be in-
correct and useless for training. Many human shooters,
particularly the more highly skilled ones, can tell when
they are likely to hit their target, and if the system reports

the opposite result too often, they will lose confidence
in it or, worse, find ways to cheat the system to improve
scores without actually becoming trained for real battle.

Perfect sensors do not exist; all real-world devices have
some error. Terrain cannot be measured exactly, either.
Usually, by spending more money, one can purchase
more and more accurate sensors, so the economic ques-
tion becomes, how much money should a system devel-
oper spend to get a system that is accurate enough to
meet its goals? To begin to answer this question, the
present study addresses the slightly simpler question of
how accurate sensors and terrain measurements need to
be for the system to meet its goals.

Geopairing calculations involve inputs from multiple
sources; inaccuracies in one sensor can, to some de-
gree, be compensated for by increased accuracy in oth-
ers. Thus, we are really attempting to study the tradeoffs
possible among measurement inaccuracies, with tradeoff
diagrams showing allowable combinations. Such dia-
grams can support economic decisions about which sen-
sors to buy. Of course, costs of sensors will not corre-
spond simply with position in the diagram; for example,
a highly accurate position sensor coupled with a less ac-
curate point angle sensor may be cheaper overall than a
highly accurate point angle sensor coupled with a less
accurate position sensor. But having the diagram to de-
lineate the space of combinations “good enough” should
be useful in making these economic decisions.

To summarize, the goal of our study is to determine the
tradeoffs possible among sensor and terrain inaccuracies
that allow geopairing to attain an acceptably high level
of accuracy for particular weapon types. The novel con-
tributions of this paper are aspects of the computational
techniques themselves and illustrative results obtained
for particular weapons and situations. Note that this
paper does not attempt to derive requirements for the
OneTESS program; OneTESS must encompass results
like these over many weapon systems and varied situa-
tions. Our study has only begun this work. In particu-
lar, this paper is limited as follows: 2-dimensional direct
fire only (i.e., ignoring elevations); very simple weapon
models, such as ignoring effects of turret acceleration;
inferring elevation from the terrain database instead of
using GPS z meaurements; and perfect aim (see below).

The next section discusses the computational tools,
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and the three succeeding sections overview the specific
methods and results for direct fire, indirect fire, and
terrain-related problems. Due to space restrictions, we
can only summarize the full results of our study.

Note on weapon information and result data. In our
OneTESS work, we analyzed and obtained results for
real military weapon systems. Since the U.S. Gov-
ernment has not approved the public release of certain
weapons capabilities and performance data, we are re-
stricted from disclosing that information in this paper.
In the interest of national security we have chosen to
rename the weapon systems to fictional names (DF00,
IF01, etc); any performance information relating to a fic-
tional name has been fictionalized as well; direct fire re-
sult graphs apply to a large class of direct fire weapons
and do not reveal any sensitive information; indirect fire
result graphs (with and without elevation error) are ob-
fuscated by being expressed in incompletely specified
measurement units. Finally, some subsections, such as
direct fire and foxhole problem, do not contain sensitive
information and are unchanged.

COMPUTATIONAL MODELING TOOLS

Our approach is to model sensors’ error distributions,
aim distributions, and weapon spreads, and to build com-
putational tools for combining these along with a com-
putational model of each engagement type, and then
compute tradeoff graphs showing which sensor error
combinations are “good enough” in each situation. This
section expands on this method.

Modeling Sensor and Terrain Errors

Sensor errors are modeled as probability distributions
yielding the deviation from nominal. For this study, we
have modeled the following.

Global Positioning System (GPS): A GPS sensor pro-
duces the x and y coordinates of the sensor’s position
on the surface of the Earth. According to vendor litera-
ture and corroborated by limited lab tests, each coordi-
nate reading deviates according to its own independent
1-dimensional Gaussian normal distribution. We con-
structed computational representations of these distribu-
tions, parameterized by the 3-sigma radius: the distance
within which 99.7% of all errors occur. Thus, for ex-
ample, if a node is positioned at (0,0), then 99.7% of
the readings of a sensor with 3-sigma radius of 1 meter
will have x value in [-1, 1]. Independently, 99.7% of the
readings will have y value in [-1, 1]. Therefore, 99.4%
will have both readings in those ranges.

Point Angle Sensor (PAS): A point angle sensor de-
termines (typically, through magnetic and/or inertial

means) the direction relative to North (or inclination
angle relative to horizontal) that it is pointing. This
is sometimes referred to as Weapon Orientation Mea-
surement (WOM). Again according to vendor literature,
these devices give readings whose errors obey normal
distributions independently in each dimension (a dimen-
sion is either azimuth or elevation).

Terrain Database: the terrain database is not a sensor,
as such, in that readings are taken off-line and stored
for later use during geopairing calculations. However,
we are interested in how accurate such stored data must
be in order to support geopairing involving terrain oc-
clusion. While we do not really know a lot about the
distribution of errors during terrain measurement, once
these measurements are made, they are “frozen” into the
database. Thus, every geopairing calculation made near
a particular point of the database will have exactly the
same reading each time. Therefore, it is not appropriate
to treat it the same way as we treat random GPS and PAS
errors. In our studies of terrain, we will look at behavior
near terrain edges and characterize the error simply by
the edge’s offset from reality.

Aim Points and Weapon Spreads

In a given engagement situation, there are two physical
factors affecting what it means for sensor-based geopair-
ing to be good enough, the aim point distribution and the
weapon spread distribution.

The aim point distribution is the distribution of aiming
angles at which the weapon (whether it be an instru-
mented sensor-based weapon or an actual weapon) is
pointed during a representative set of scenarios.

The weapon spread distribution is the distribution of de-
viations inherent in the physical weapon itself. Each
weapon is itself imperfect, in the sense that not every
round will go to exactly the same place given a fixed
aim (and environmental conditions). This inter-round
dispersion is due to factors such as materials variations
in the loads, mechanical or heat strain on the weapon,
and other factors. Note that for this study, when we wish
to model environmental factors, such as weather, we in-
clude these effects in weapon dispersion.

Our general goal is to adjudicate as accurately as the
physical weapon, so sensor-based adjudication need not
be perfect. If the physical weapon would hit H% of the
time in a given class of situation, then the sensor-based
weapon should adjudicate a hit H% of the time as well
in that class. Thus, it need not be the case that the sim-
ulated “bullet” is calculated to hit at exactly the same
place each time. In general, a target has equivalence
classes of points, any member of which, if hit, yields
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the same outcome. For example, if we model only “hit”
or “miss”, then any point within the target body is good
enough. If we have a richer model such as “catastrophic
kill”, “mobility kill”, “near miss” , etc, then each of these
represents an equivalence class of points on (or near) the
target. All the sensor-based weapon has to do is score
the same class of hit as the physical weapon would. This
is a looser requirement than requiring that each round be
adjudicated within the weapon’s spread area.

As an example of this distinction, consider rifle fire at a
60 cm wide target. If the rifle guarantees to deliver all
rounds within a circle of diameter 14cm, all such shots
(perfectly aimed) would be hits. However, a sensor-
based weapon need only register every shot a hit on the
target, which can be achieved by hitting anywhere within
the 60 cm wide body. For each engagement type evalu-
ated below, we will define exactly what criteria are being
used to compare sensor-based weapons to physical.

Computational Tools

The computational tool set we developed comprises a
representation for error distributions, techniques for de-
termining the probability of correct outcome for both
physical weapon engagements and sensor-based engage-
ments, and techniques for computing tradeoff diagrams.
A tradeoff diagram is a graph whose axes correspond
to the error radii of two sensors. We draw curves in
this space to represent the boundary of the set of points
representing sensor combinations that meet or exceed a
particular criterion. For example, we will show combi-
nations of GPS and PAS for which sensor-based DF00
engagements achieve at least 99.5% of the correct out-
comes achieved by the physical weapon.

This section will overview the computational techniques
we use to compute both probabilities of correct outcome
for particular sensor combinations as well as the tradeoff
diagrams themselves.

Discrete Probability Distributions
The basic tool we need for computing tradeoff diagrams
is the ability to approximate an integral over a proba-
bility distribution. Suppose we have a random variable
X whose value represents some quantity in a calcula-
tion. For example, X could be the difference between
the actual x-value of the position of a body and the x-
coordinate reading of the body’s GPS unit. We model X
using a probability distribution, which (roughly speak-
ing) represents the probability that if we take a GPS
measurement we will get a particular measured value. In
this study, we will use only 1-dimensional distributions,
treating each dimension independently.

Our goal is to compute for given types of physical sit-

uation, whether the sensor-based weapon will compute
the correct outcome for the engagement with probabil-
ity at least as high as (or within a small tolerance of)
the probability that the physical weapon will itself pro-
duce the correct outcome. The weapon’s outcome can
be “incorrect” if, for example, a well-aimed shot misses
the target due to random variation within the spread. To
compute these probabilities (both for physical weapon
and for sensor-based weapons), we need to look at every
possible situation-variant that could arise due to partic-
ular errors and variations, grade the outcome as correct
or incorrect, and then add up the grades weighted by the
probability of that situation-variant arising. For exam-
ple, for rifle fire, we need to look at all possible choices
of (a) aim point relative to center of target, (b) shooter’s
position error, (c) target’s position error, and (d) point
angle sensor error. Using these values, we compute the
outcome geometrically and compare it to the outcome
as it would be deduced from a perfect weapon aimed at
the aim point. This basic method is used for all types
of engagements. To compute physical weapon outcome
correctness probability, we look at all possible choices of
(a) aim point relative to center of target and (b) weapon
spread deviation value. We then compare geometrically
the perfect-weapon outcome (ignoring spread) and the
actual-weapon outcome (including spread). Note that
the accuracy of a weapon (or sensor) refers to charac-
teristics of the probability distribution of its outcomes
over time, while correctness refers to how well a single
trial matches with reality.

Of course, it is impractical to look at all possible com-
binations of error values, as there are infinitely many.
Instead, we will discretize the distribution, looking sys-
tematically at a finite sampling of its domain and looking
at all combinations of the sample values of all distribu-
tions. We establish a finite, uniformly spaced mesh over
the domain of the distribution, as shown below.

Figure 1 shows a Gaussian Normal distribution (Patel
& Read, 1996) of 4-sigma radius R. All distributions in
this study are centered at 0. We have discretized it us-
ing mesh 12, meaning we have chosen 12 evenly spaced
points of the domain: -11R/12, -9R/12, ... 11R/12. We
then do our calculations once for each of these points.
Then, to compute the final probability, each point’s re-
sult is weighted by the probability value at that point.
Probability values are computed as follows: sum the
values of the curve at all 12 points and then divide the
value at each point by this sum. This produces 12 num-
bers between 0 and 1 whose sum is 1 and whose val-
ues are proportional to the height of the Gaussian at that
point. For example, the diagram shows the point -3R/12
is weighted with probability 0.1613. I use mesh 12 here
for illustration; our data is based on higher mesh values.
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Figure 1: Discretized Normal Distribution (mesh 12).

This method ignores the infinite tails of the normal dis-
tribution, effectively assuming that all samples lie be-
tween +/−4σ. Our parameterization of sensor families
will be in terms of the 3σ radius of the distribution; how-
ever, we represent and iterate over values across +/−4σ
for increased accuracy.

By iterating over a (discretized) distribution, we will
mean this process of successively choosing each of the
discrete points defined by the mesh, each of which is
termed a mesh point with associated probability weight,
performing some calculations, and then adding up re-
sults by weighting according to the probability weight
of each mesh point for that case. This fundamental op-
eration will underlie all of our studies below. Note that
we can nest such iterations: after choosing a mesh point
for a first distribution, we then iterate over all values of a
second distribution. The weights used to combine the re-
sults from all such combinations are simply the products
of the individual probability weights. For example, com-
bining two distributions identical to the above, one case
would have X1 = -3R/12 and X2 = R/12. The probabil-
ity weight of this case is 0.1613 x 0.2516 = 0.04058308.
For two mesh-12 distributions, there are 144 cases; in
general, for n distributions with meshes mi, there are
Π mi. It is easy to show that this method of combin-
ing distributions is again a (multi-dimensional) discrete
distribution whose probability weights also sum to 1.

Thus, for nested distributions, the computational cost is
proportional to the product of the meshes (and poten-
tially exponential in the nesting depth). A number of
optimization tricks are quite useful in reducing the con-
stants of the complexity function, such as precomputing
the mesh points and their probabilities and cleverly man-
aging intermediate results, but fundamentally complex

engagement geometries involving many error sources
will lead to long computational runs to get results. Ob-
viously, there is a natural desire to keep meshes small,
but if they are too small, the results are not very accu-
rate. Thus, part of the art of this study is choosing mesh
values large enough for accuracy and small enough for
tractability. This generally involves multiple runs to be
sure the meshes are large enough to give stable results.

Another approach to integrating over error distributions
we did not explore here is the use of Monte Carlo Simu-
lation (Robert & Casella, 2004). The idea is that instead
of systematically looking at weighted values as we do,
one simply repeatedly selects randomly from each distri-
bution and computes the situation result from the partic-
ular choices made. By repeating this for a large number
of samples, a reasonably accurate estimate of the results
can be obtained. While this may be less computationally
intensive, since one can always choose the total number
of samples to be any amount desired, it may lead to less
accuracy for a given amount of computation, since the
choosing process is less systematic. Thus far, the com-
putational burden of our approach has not been too great,
but it is possible we will need to move to Monte Carlo
methods in future work.

Computing Probability of Correct Outcome
For each engagement type discussed below, we identify
the geometric calculation that needs to be performed to
compute the probability of correct outcome. Such cal-
culations involve sensor readings, such as shooter and
target positions and weapon pointing angle. For a given
particular choice of sensors, we compute the probabil-
ity of correct outcome of a sensor-adjudicated shot as
follows. Represent each sensor by a discretized normal
distribution of appropriate 3-sigma radius and choose a
mesh. We then nest iterations over all of the selected dis-
tributions, perform the geometric calculation within the
nested iteration, and compute from it whether or not the
outcome is adjudicated correctly. For each correct out-
come, we add the probability of this nested-sensor case
(i.e. the product of the probability weights associated to
the mesh points chosen at the iteration step) to the result
sum. After the entire nested iteration is complete, this
result sum is the desired probability of correct outcome
given the selected combination of sensors.

Computing Tradeoff Diagrams
Tradeoff diagrams represent significant computational
effort, since in theory each point in the space must be
evaluated using the approach above. However, we can
speed this up quite a bit using the following approach,
explained for concreteness for the case of 2-D rifle fire.
(Similar techniques apply to tradeoff diagrams for other
types of engagement.)
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Assume the x-axis of the graph will denote the 3-sigma
radius of the 1-D GPS error. (Thus, for example, in 2-D
Direct Fire, there will be four instances of this in each
calculation, corresponding to x and y errors of Shooter
and Target.) Assume the y-axis of the graph is the 3-
sigma radius of the angular error distribution for the
PAS. We will iterate over the x axis starting from 0 and
increasing in fixed (e.g. 10 cm) steps. At x = 0, we start
from some initial large y value (e.g. 10 milliradians).
For x > 0, we start with y equal to the same y value
of the curve point found for the previous x value. We
compute the probability of correct outcome for the cur-
rent x, y pair. If this probability value is greater than or
within a small tolerance of the target value (typically, the
probability of correct outcome for the physical weapon),
then this is the next curve point and we increment x. If
the probability value is significantly less than the target
value, we decrement y by a fixed amount (e.g. 0.5 mil-
liradians) and continue the iteration. Thus, instead of
computing all the points in a 2-D area of the graph, we
are following the curve down and to the right. This is
possible because, as we increase the error in GPS, we
must decrease (or keep the same) the error in the PAS.

The outputs of this iterative curve following are points
in the 2-D tradeoff space. We plot these and fit them
with a curve to get the final diagram. The meaning of
this graph is that all points either on or below/left of the
curve represent sensor-error radius combinations that
allow sensor-based adjudication to meet the defined ac-
curacy requirement with respect to the physical weapon
system. Examples appear in the following sections.

RESULTS FOR DIRECT FIRE

Direct fire is typically used to mean munitions that travel
on a linear trajectory from shooter to target (e.g. ri-
fle fire). A hit is adjudicated if and only if the target’s
body intersects the trajectory prior to any other body
(or terrain) intersecting it. This contrasts with indirect
fire (next section), in which the round first travels via
a curved trajectory to a detonation point, at which time
and place a blast affects targets within an effect radius of
the detonation point. This section describes error trade-
offs for sensor-based adjudication of direct fire rounds
following 2-dimensional linear trajectories.

We will address three cases. First, we ask what it
would take to achieve perfect simulation (a simulated
shot scores a hit if and only if the corresponding physical
shot could have). Next, since that turns out to be impos-
sible, we look at what it takes to achieve perfect simula-
tion for all targets beyond a given range. Finally, we ex-
amine the most practical case, where we limit the set of
targets for which the outcomes must match. Throughout,

Figure 2: Sensor vs Physical for Direct Fire

we will use DF00 rifle fire, with a maximum range of
580 meters and weapon spread corresponding to 0.123
m groups at 100m.

While our tool set can handle non-perfect aim distri-
butions, after conferring with Subject Matter Experts
(SMEs), we determined that the most important case is
matching weapon accuracy for well aimed shots. The
reasoning is that shooters who can aim well are also
those most likely to notice when sensor-based adjudica-
tion gives a wrong answer. Thus, for the rest of this pa-
per, we will make the perfect aim assumption: all shots
are aimed dead center of the target. Future study may
determine a need to look at imperfect aim scenarios.

Perfect Direct Fire

Direct fire is impossible to mimic perfectly using sensor-
based adjudication with imperfect GPS. (See Figure 2.)

The Shooter’s position is indicated. The set of posi-
tions that the physical weapon can hit (labeled “weapon
spread” in the figure) is the triangle whose vertex is at the
Shooter. However, if the GPS sensors have nonzero er-
ror radii, then the points which can be hit by the sensor-
based adjudication lie in the trapezoid indicated. Thus,
there are points near the upper corners (yellow) which
may be “hit” by sensor-based adjudication but which
may never be hit by the physical weapon, no matter how
small the PAS sensor’s error radius may be. Note that
this assumes that the target is arbitrarily narrow, and we
are neglecting the width of the bullet itself.

Perfect Direct Fire at Minimum Range

While we can never mimic direct fire perfectly (with im-
perfect GPS), we can mimic it perfectly for shots be-
yond a minimum range, using a good enough PAS. If
the sensor-hit trapezoid has a narrower angle than the
weapon spread triangle, targets beyond the Minimum
Matching Range (MMR) will be correctly adjudicated
at least as often by the sensor-based system as by the
weapon itself.
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To calculate the MMR for a given sensor combination,
denote the 3-sigma error radius of GPS by g, that of the
PAS by p, and that of the weapon spread by w. Simple
trigonometry shows

MMR = 2g/(tanw − tan p)

Now, a DF00 has tanw = 0.000615. Given a GPS with
1.5m radius, for example, the smallest possible MMR is
3/(0.000615 - 0) = 4878m. The effective range of the
DF00 is only 580m, so it is impossible to match DF00
fire for all shots and ranges using 1.5m GPS.

To see how good GPS and PAS must be to get an MMR
value of v, we set MMR = v and graph p versus g. Since
w and p are very small, tanw ≈ w and tan p ≈ p. This
produces linear graphs (suppressed here for space). As
an example, to match all targets beyond MMR = 100m,
sensors must perform within a line whose PAS-intercept
is 0.000615 radian and whose GPS-intercept is 0.031m.
These are tight tolerances, indeed.

Direct Fire with Minimum Target Width

We can gain more leeway in sensor accuracy by only
agreeing to match weapon outcomes for targets of a min-
imum width. That is, part of our problem has been that
matching weapon outcomes for extremely narrow tar-
gets (for example, hitting a bullseye in the middle of a
target) is much more difficult than matching outcomes
for larger targets (hitting or missing the entire target).

Battlefield targets come in many sizes, from humans
whose width can range from roughly 0.5 meter when
standing up to 2 meters when lying prone (side view).
Vehicles and buildings are, of course, even larger.

For this study, we will determine a tradeoff diagram for
meeting weapon accuracy for targets 1 meter wide. We
will discuss at the end how the results vary for smaller
or larger width targets.

To compute these curves, we apply the techniques of
Section 2 to the following geopairing calculations. First,
to compute the probability of correct outcome for the
physical weapon, we iterate over aim and spread dis-
tributions (recall, however, our perfect aim assumption
for this study) and compute hit or miss according to the
geometry in Figure 3. Here, d is the nominal range of
the shot, θ is the resultant angle obtained by adding aim
deviation to spread deviation (which is just the spread
deviation, since aim deviation is assumed 0 here). Com-
mon rifles (including DF00) at the ranges we considered
have small enough spreads that the physical correctness
probability is essentially 1.0.

To compute probability of correct outcome for sensor-
based adjudication, we use the slightly more complex

Figure 3: Physical Shot Geometry for Direct Fire.

Figure 4: Sensor Shot Geometry for Direct Fire.

geometry shown in Figure 4. Here, we have both aim
and PAS errors to determine the resultant shot direction.
We also have the four deviations due to GPS (∆xs, ∆ys,
∆xt, ∆yt, two each for shooter and target). Again, the
aim deviation will be zero in this study.

The resulting tradeoff curves are shown in Figure 5 for
different nominal engagement ranges. They represent all
possible direct fire weapons having near-100% accuracy
at up to 400m range, so need not be obfuscated.

These data points are only approximate but, we believe,
accurate within 5%. Each was produced with a partic-
ular mesh level and then run again with significantly
higher mesh level. If the two values matched, the point
is recorded. Additionally, iteration was done across four
sigma for each distribution. Note if we were using ideal
normal distributions, we would expect the data points at
GPS=0.0 to be slightly higher than 20, 10, 5, 2.5, and
1.25 respectively. But our discretization results in the
stable approximated values of PAS error when GPS er-
ror is 0.0 to be about 5% higher than expected. On the
other hand, a heuristic argument indicates the (common)
x-intercept of all five curves should be 0.375, which is

Figure 5: Direct Fire Tradeoff Diagram (1m target)
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extremely close to the approximated value of 0.377. If
we wish higher accuracy, we would use the triple-mesh-
average technique described in the next section.

Other Target Widths
The results above apply directly only to engagements in-
volving targets 1 meter wide. It turns out that we can eas-
ily infer from the 1m graphs new graphs for any target
width large enough that the weapon is 100% accurate.
Suppose we are interested in target width w instead. We
simply multiply each coordinate of each data point by w
to obtain a data point on the same range curve but for tar-
get width w. For example, if we are interested in width
0.5 meter, we would obtain a Range=100m curve whose
y intercept is 2.63 milliradians (mR), whose x intercept
is 0.189 meter, and each of whose points is the scaled im-
age of one of the points shown in the 1m (Range=100m)
curve. Compared with the results for MMR=100m, for
example, this is much more attainable (GPS: 18.9 cm
vs 3.1cm; PAS: 2.6 mR vs 0.6 mR). Proof of this multi-
plicative property for target widths is suppressed here.

RESULTS FOR INDIRECT FIRE

Indirect fire (IF) rounds detonate on contact, affecting
targets within a given radius of the detonation point.
(We are not considering air burst weapons here.) For
this type of weapon, we need to account for this area
effect. That is, we would like to evaluate the accuracy
of the weapon with respect to the quantities of (a) cor-
rect hits, (b) incorrect hits, (c) correct misses, and (d)
incorrect misses. In the direct fire case, there can only
be 1 hit. For each indirect fire engagement, however,
there can be several correct hits as well as several in-
correct hits (i.e. targets adjudicated to be affected even
though they would not have been affected by the physi-
cal round) and several incorrect misses (i.e. targets adju-
dicated to be unaffected even though they would actually
have been). This section defines our methods and evalu-
ates sensor tradeoffs for both trajectory targeted, such as
rifle-mounted grenade launchers, and position targeted
IF weapons, such as larger gun platforms.

Trajectory Targeted Indirect Fire

We use the circle overlap method for computing accu-
racy of an IF shot. Consider the physical weapon first. If
it performs perfectly, a circle around the aimed detona-
tion point contains all affected targets and no unaffected
targets. However, weapon spread moves the affected cir-
cle somewhat (see Figure 6). The accuracy score for an
IF shot is the area of the intersection divided by the area
of the union, giving a number between 0 and 1, with a
perfect shot being the only way to score 1.0:

IF-Accuracy = Area(CH)/Area(IH ∪ CH ∪ IM)

Figure 6: Physical Shot Geometry for Indirect Fire.

Figure 7: Sensor Shot Geometry for Indirect Fire.

We use the same basic technique for sensor adjudicated
IF, but instead of weapon spread, we use combined sen-
sor readings. We consider here trajectory targeted IF, by
which we mean that the round’s trajectory is determined
from two point-angle sensors (one for azimuth and one
for elevation) and the GPS sensors of shooter and tar-
get. We will discuss position targeted IF later in this
section. The translated aim circle is simply the perfect-
aim detonation point (calculated from simple Newtonian
physics without air drag) translated by the target GPS
error. The adjudicated effect circle is computed from
the sensor-based position of shooter and values of the
shooter’s point angles, again based on 3-D Newtonian
physics ignoring air drag. The accuracy score for the
sensor-based adjudication is then the circle overlap score
as computed above between the translated aim circle and
the adjudicated effect circle. (See Figure 7.)

We applied the computational techniques discussed pre-
viously to approximate tradeoff curves at various nomi-
nal ranges. (Nominal range is the physical range, before
perturbation by GPS errors.) Here we used the standard
that the accuracy score of sensor-based must meet or ex-
ceed that of the physical IF weapon.

Using a single mesh value for PAS distributions re-
sults in spurious curve fluctuations, so we used instead
the triple-mesh-average method: each data point’s PAS
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Figure 8: IF01 Sensor Tradeoffs.

value is no more than 1% above the minimum PAS value
(for that GPS value) having the average of its sensor ac-
curacy scores (obtained with meshes 60, 70, and 80) ex-
ceed the physical accuracy score. Intuitively, we traced
out the average of the curves for meshes 60, 70, and 80.

We show in Figure 8 the results for the IF01 IF weapon.
Our accuracy model of the IF01 is abstracted from mil-
itary standards, but we have obfuscated the data here
as follows. We define a new angle measure termed the
“angulon” (abbreviated “A”) which we fix at a particular
Angulon conversion factor ACF relative to the milliRa-
dian; i.e. 1 mR = ACF A. We do not disclose here the
value of ACF. Similarly, we define a new linear distance
measure termed the “Lineon” (abbreviated “L”) with a
fixed Lineon conversion factor LCF relative to the me-
ter. We then multiplied the computed study data by ACF
and LCF to produce the numerical data disclosed here.

The weapon spread of the IF01 amounts to an effective
angular radius of 12.4 Angulons (A) in elevation and
15.5 A in azimuth. The maximum effective range of the
IF01 is 435.2 Lineons. Interestingly, the most stringent
conditions are those for shortest range, while for direct
fire, the opposite is true. (This is due to the fact that
shorter range IF shots are more horizontal and, hence,
more sensitive to overshoot and undershoot due to PAS
errors.) Again, using the triple-mesh-average method,
we believe the data points are within 1% of true values.

Though we have not computed curve points beyond
those shown for nonzero PAS, we have determined the
x-intercepts of the three curves: the maximum GPS er-
ror radius allowing sensor-based adjudication to meet
weapon accuracy (i.e. assuming 0.0 PAS error). For the
68 L curve, this is 10.1 L GPS; for the 204 L curve, 10.5
L; and for the 408 L curve 10.9 meters.

In our study, the IF02 weapon is both longer range and
more accurate than the IF01. Due to space restrictions,
we cannot show the curves; however, they are much
tighter than those of the IF01, lying between 2.32 A and

2.71 A for GPS radius between 0.0 and 4.08 L.

Position Targeted Indirect Fire

Some weapon systems, such as the IF03, are targeted by
the operator specifying coordinates of the desired deto-
nation point, rather than by pointing the gun tube himself
as in the IF01 and IF02 cases. We term this type of IF
weapon a position-targeted IF system. The instrumen-
tation system’s job here is much easier, because it can
obtain the target point directly from the system. To ad-
judicate the shot, one need only decide whether the GPS
position of the target is within the effect circle.

Any sensor errors within the platform itself (such as its
own GPS and PAS) will increase weapon spread, so the
instrumentation system is not “penalized” for these er-
rors. It needs only to account for the error in the target’s
position. Our analysis of the accuracy of these systems
is based on the simple observation that if the target’s
GPS error radius is smaller than the radius of the weapon
spread, then the target is more likely to be adjudicated as
hit than to be actually hit by the weapon. Conversely, if
the target’s GPS error is larger than the weapon spread,
then the physical weapon is more likely to hit the target
than is the sensor-based system likely to adjudicate a hit.
Thus, the criterion for meeting the accuracy of position-
targeted systems is GPS error radius must be no larger
than the corresponding radius of the weapon spread.

For example, an IF03 IF system can place a Projectile04
projectile within 4.6 L of the target point. Assuming
this means the 3-sigma weapon spread radius is 4.6 L,
the GPS 3-sigma error radius must be no worse than 4.6
L in order to meet or exceed the accuracy of the IF03.
Obviously, this criterion can be applied to any position-
targeted IF system, once the spread is known.

RESULTS FOR TERRAIN

Geopairing must account for the presence of terrain fea-
tures as well as shooter and target positions, because (a)
targets can be shielded by terrain, and (b) terrain eleva-
tion must be taken into account in engagement adjudica-
tion, particularly for indirect fire; this is because eleva-
tion sensing is much less accurate than using the 2-D po-
sition to locate the elevation in a terrain data base. Thus,
the third aspect of sensor error we will study here is the
accuracy of the terrain database in representing features
and elevations. We have studied three terrain problems:
the Foxhole Problem, the Direct Fire Edge Problem, and
the Elevation Uncertainty Problem.

The Foxhole Problem

The Foxhole Problem asks for the effect of terrain inac-
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Figure 9: Foxhole accuracy with terrain error.

curacy on the ability of the system to decide whether an
entity is on one side or another of a terrain edge. A crit-
ical instance of this capability is to determine whether
a target is inside a foxhole (and hence shielded from a
detonation) or outside (and hence vulnerable to damage
from the detonation). We considered here a 1 dimen-
sional problem, i.e. that of determining whether an en-
tity is left or right of an edge positioned at x = 0. We
discuss also some generalizations to multi-edge combi-
nations, but this work is only beginning to explore the
space of interesting edge configurations. (Note: since
terrain edges are not weapon systems, this subsection’s
numerical results are not obfuscated.)

There are several interesting aspects of our result graphs.
(See Figure 9.) (1) If GPS error is non-zero, then a GPS-
based approach will never be able to adjudicate foxholes
with 100% accuracy. This is because the GPS error may
randomly move a person standing near the edge to the
other side. (2) All curves cross at the same point, terrain
error = 1.1m (probability 0.725). (3) For values of ter-
rain offset approximately 0.25m and below, there is very
little increase in accuracy for decrease in terrain error.
(4) For small terrain errors, more accurate GPS is better,
yet for terrain errors beyond 1.1 meter, the less accurate
GPS is better. We believe this is because a more accurate
GPS cannot offset the position enough to put the person
back into the foxhole, while a less accurate GPS can do
so sometimes, thereby increasing the success probabil-
ity. This counterintuitive fact shows that while there is a
limited tradeoff possible between GPS accuracy and ter-
rain accuracy for terrain errors below 1.1m, when terrain
errors are above that, the tradeoff is actually reversed:
moving to worse GPS is compensated for by moving to
worse terrain error! (In other words, to improve GPS,
one must also improve terrain accuracy or else the effect
is negative.) We also analyzed two-edge situations, find-

ing that the probability of correct outcome is squared.

As one example of generalization to multiple edges, con-
sider two perpendicular edges (i.e., a corner of a square
foxhole). The entity’s position is independently placed
relative to each of the two edges, so we simply square the
success probabilities, yielding graphs similar to those
of Figure 9, but with each point’s vertical coordinate
squared. Clearly, more complex situations, such as op-
posite parallel edges, are not statistically independent
and will need to be modeled using our techniques.

The Direct Fire Edge Problem

The Direct Fire Edge Problem asks for the effect of
terrain inaccuracy on the ability to correctly adjudicate
whether a target is shielded from direct fire behind a ver-
tical terrain edge. Here again we model a simple 1-D
situation. The position of the player is uniformly dis-
tributed from -2 to +2 meters relative to the edge. The
player’s GPS is, as usual, normally distributed. The ter-
rain offset is constant as in the foxhole study. We iterate
over the nested distributions and in each case we evalu-
ate the probability that a direct fire shot at range 100m at
a 1-meter wide body placed relative to the terrain edge is
adjudicated correctly with respect to reality. (Note that
when an edge is present, the physical weapon will be im-
perfect as well, because even a small spread can lead to
a round terminating on the unintended side of the edge.)
The resulting graphs of correctness probability versus
terrain error for representative choices of GPS/PAS show
the remarkable fact that there is no tradeoff of terrain
accuracy with other sensor errors in direct fire. The
resulting graphs are linear and coincident from terrain
error between 0.4 and 1.8 meters, with small variations
outside that range. That is, while a more accurate GPS
can to some degree compensate for a less accurate PAS,
nothing can compensate for larger terrain errors, and we
cannot gain any leeway with GPS or PAS by paying for
better terrain accuracy.

The Elevation Uncertainty Problem

The Elevation Uncertainty Problem asks for the effect
on sensor tradeoffs for trajectory targeted IF when the
elevation (as recorded in the terrain database) is inaccu-
rate. Assuming we use the 2-D GPS position to locate
the player in the terrain map and then use the recorded
elevation, such inaccuracies lead to overshoot and un-
dershoot. (If instead GPS is used for elevation measure-
ment, the terrain database does not affect indirect fire
adjudication in this way.) If the terrain is, for example,
actually 1 meter lower near the detonation point of the
IF round than the terrain data base claims, we have an
undershoot situation. Similarly, if it is 1 meter higher,
then we get overshoot. (See Figure 10.)
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Figure 10: IF inaccuracy due to terrain error.

Figure 11: IF01 Tradeoffs with Elevation Error.

Overshoot can be approximated from the elevation an-
gle as O = E/ tanφ, where φ is the elevation angle of
the shot, E is the elevation error (difference between the
database-elevations of shooter and target minus differ-
ence between actual elevations of shooter and target).
Thus, for shallow angle shots, which IF01 and IF02
shots must be if used within doctrinal ranges, there is
a large multiplying factor. For example, one Lineon of
elevation error translates to tens of Lineons of overshoot
for the IF01 used at a range of 68 L.

So, if the overshoot is not too large, can we compensate
for terrain errors with tighter bounds on the GPS and/or
PAS? The answer is “yes”, but there are limits. To com-
pute tradeoff curves showing achievable compensations,
we add in the (fixed) terrain elevation error offset into
the IF calculations described previously and then use
the triple-mesh-average method to discover curves for
each weapon/range combination. Figure 11 shows one
representative compensation tradeoff curve for each of
three ranges for the IF01. The labels show the amount
of elevation error the curve compensates. Each arrow
associates a no-error curve with the corresponding with-
error curve. For example, the light blue arrow shows that
when 0.17 L of elevation error is added for 68 L shots,
the GPS/PAS tradeoff curve drops down about 1.55 A.

For the weapon/range combinations shown, it is the
case that lowering any of terrain error, GPS error, or
PAS error values from those in the graph results in bet-
ter sensor-based performance. However, counterintu-
itively, this monotonicity does not hold for all possi-
ble weapon/range combinations. For example, our tech-
niques show that an IF weapon roughly one sixth as ac-
curate as (i.e. much less accurate than) the IF01 could
be simulated by a 20.4 L GPS radius at 0.567 meter ele-
vation error, and yet could not be simulated by a perfect
(0.0m) GPS at the same elevation error! We plan to doc-
ument this phenomenon more fully in future work.

CONCLUSION

Meeting physical weapon performance with sensor-
based adjudication is a major challenge for sensor and
communications technologies. In this paper, we have
introduced computational techniques for defining the
tradeoffs among GPS, PAS, and terrain database errors.
We have summarized here the results of applying these
techniques in an initial study of direct fire (DF00), indi-
rect fire (IF01, IF02, IF03), and terrain errors (foxhole,
direct fire edge, and elevation error problems). We feel
this study has taken significant initial steps in helping
to define the space of allowable sensor combinations, as
well as defining computational techniques that can be
used in future studies.
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