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ABSTRACT

As a small nation, Singapore has limited human resourcesatahdirspace. The strategic use of M&S to help us
overcome these constrains is therefore crucial. We thus formwlatesimulation masterplan, called the Vision for
SAF Simulations (VSS) back in the mid-90s, and JEWELN{J&&S Environment for Wargaming &
Experimentation Labs) was conceived as the simulation environmesupport of VSS. Thienterprise-wide
approach to simulation is very much analogous to what isemiqpg in the business and C2 worlds.

Designed with reusability and interoperability as its primargcepts, JEWEL would be ampen software
environment that allows the incorporation of new technologies and stasdeoh governmental, commercial and /
or R&D bodies, and would be a launching platform from whielw application needs can be satisfied accurately
and quickly. To maintain openness and as a result future, @&FA believes that substantial attention must be
devoted to its information architecture, both in terms ofesgntation as well as content, as demonstrated in our
adoption of HLA and XML, among other standards. JEWEL ldiosupport the SAF in training, analysis,
experimentation and acquisition.

The first part of this paper is dedicated to JEWEL, its agraknt rationale, philosophy and overall structure. Part
two focuses on the key design considerations of the Disddb8imulation Engine (DSE), the core component of
JEWEL. In the third part, the Joint Battle System (IJB®)ich is based on JEWEL and is being used by the SAF
Centre for Military Experimentation (SCME), will be intnackd to exemplify the key capabilities of JEWEL.
Finally, some elaboration on potentially fruitful futureeditions will be attempted, based on known technological
and application trends.

ABOUT THE AUTHORS

Thio Seng Joais a Project Manager with the Defence Science & Technology AgendyAD8e graduated with a
Bachelor degree in Computer Science and Master of Technology wlédge Engineering from the National
University of Singapore (NUS) in 1996 and the Institut&ystems Science (ISS), NUS in 2001 respectively. Since
1996, he has led the development of complex simulation sy$terraining and experimentation, and worked with
various research institutions in Singapore to develop fapabilities. JEWEL is one of his latest endeavours.

Kong Siew Thengis a Senior Engineer with DSTA. She has a Master in Congpdtom NUS in 1998 on
distributed simulations. She is one of the key developesaraflation engine in JEWEL and led the development of
the HLA component of JEWEL to support interoperabilityJBWEL-based systems with external simulators. She
is also involved in the design and development of the Cdlation for JEWEL.

Tan Siew Fangis a Project Leader with DSTA. She graduated with a BacheloeelégiEngineering and Master
of Science in Communication Software & Networks from the Nagy&echnological University of Singapore
(NTU) in 2000 and 2005 respectively. Since 2000, she comddbto the development of complex simulation
systems for training and experimentation, and worked witlowsrresearch institutions in Singapore to develop
future capabilities. JEWEL is one of her latest endeavours.

Yeo Loon Chewis a Project Leader with DSTA. He graduated with a Bachelor degiectrical Engineer from

NUS in 2003. Since then, he has contributed to Computer &edeforces (CGF) development in DSTA, with a
primary focus on Air CGFs. He is currently also lookintpithe future enhancement of JEWEL.

2006 Paper No. 2913 Page 1 of 12



Interservice/lndustry Training, Smulation, and Education Conference (I/ITSEC) 2006

JEWEL — M&S Environment for the SAF

Thio SengJoo, KongSiewThenqg, TanSiew Fang,Yeo Loon Chev
Defence Science & Technology Agen
Singapore
tsengjoo@dsta.gov.sisiewthe @dsta.gov.stsiewfan@dsta.gov.sg

yloonche@dsta.gov.sg

INTRODUCTION

As a small nation, Singapore has limited human
resources, land and airspace. The strategic use of
M&S to help us overcome these constrains is
therefore crucial. We thus formulated our simulation
masterplan, called the Vision for SAF Simulations
(VSS) back in the mid-90s, and JEWEL (Joint M&S
Environment for Wargaming & Experimentation
Labs) was conceived as the simulation environment
in support of VSS. Thignterprise-wide approach to
simulation is very much analogous to what is
happening in the business and C2 worlds.

Designed with reusability and interoperability as its
primary precepts, JEWEL would be aopen
software environment that allows the incorporation

of new technologies and standards from
governmental, commercial and / or R&D bodies, and
would be a launching platform from which new
application needs can be satisfied accurately and
quickly. To maintain openness and as a result future
proof, DSTA believes that substantial attention must
be devoted to its information architecture, both in
terms of representation as well as content, as
demonstrated in our adoption of HLA and XML,
among other standards. JEWEL would support the
SAF in training, analysis, experimentation and
acquisition.

The first part of this paper is dedicated to JEWEL, its
development rationale, philosophy and overall
structure. Part two focuses on the key design
considerations of the Distributed Simulation Engine
(DSE), the core component of JEWEL. In the third
part, the Joint Battle System (JBS), which is based on
JEWEL and is being used by the SAF Centre for
Military ~ Experimentation (SCME), will be
introduced to exemplify the key capabilities of
JEWEL. Finally, some elaboration on potentially
fruitful future directions will be attempted, based on
known technological and application trends.
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JEWEL
Motivation

The primary motivation behind JEWEL is the
anticipated increase in demand for M&S in the SAF
to support experimentation, training and operations.
We can no longer afford to rely on the traditional
approach of developing stovepipe simulation systems
for each application. A more radical approach that
involves the development of a common,
interoperable and shared M&S environment will be
required, with these long-term benefits:

e Reduced Cost, Shorter Time-to-Deploy,
Reduced Risk. Through reuse of common
components and models, the cost to develop new
M&S applications would be greatly reduced, as
we need only develop the deltas to meet the
specific user requirements. This, in turn,
translates to shorter time to deploy. Project risks
would also be reduced, as we are reusing tested
components from similar projects.

* Meeting User Requirements “On-Demand”.
With composability built into the environment,
the systems deployed will be more flexible and
re-configurable to meet different
experimentation requirements, on-demand.

e Greater C4l-Sim and Sim-Sim
Interoperability. The focus on shared
conceptual and data models, common

interoperability standards and components will
enhance interoperability among simulations, and
with the C4l systems.

¢ Improved Consistency.  Standardization
facilitates the verification and validation of
models. Reuse of these validated models will
enhance the consistency of outcome across our
M&S systems, which is key if M&S were to aid
decision-making.
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e Extended Systems Shelf LifeThe adoption of
an enterprise architectural approach rather than
the stovepipe system approach will lend greater
manageability to continuously upgrade our
systems in order to keep up with new technology
and standards, thereby extending the shelf life of
these systems.

Anatomy of JEWEL

JEWEL is a collection of data & interface
specification standards, frameworks & tools, and
composable models & databases, as shown in Table
1. The rows of the table is explained as follows:

* Repositories of Composable Models &
Databases.This layer refers to the physical set
of reusable models and databases that are
developed or acquired to perform specific
simulation functions.

e Frameworks & Tools. This layer consists of the
technical frameworks that provide the glue
essential for the different simulation tools to
integrate seamlessly with one another. Some of
these tools are COTS while others are custom-
developed for the JEWEL environment.

e Data and Interface Specification Standards.

In order to enhance the level of interoperability
among simulation systems, and between
simulation and C4l systems, it is important that
these systems adopt consistent data and interface
specification standards. This would minimize the
problems associated with interpretation and
mapping of data as a result of representation
differences.

Across Table 1, we account for all activities during
the M&S lifecycle. The columns are explained as
follows:

¢ Modelling. Model development poses great

challenges to system developers, as it requirds bot
the technical expertise of programmers and the
domain knowledge of subject matter experts.
Maintaining models as technology changes is also
an issue. The direction is therefore towards adbrm

development approach whereby models are
captured at the conceptual level, independenteof th
underlying platforms and technologies. The

generation of platform-specific codes should be
automated as far as possible.
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e Compositon & Integration.  BattleSpace
composition adopts the “lego brick” paradigm for
M&S system development. It stems from the desire
to re-configure and reuse systems through plug and
play. It is often a stated system objective ambeg t
more recent M&S developments such as OneSAF
and is a result of the advancements made in
component-based technologies.

e Deployment & System Configuration. M&S
systems today do not normally operate in a
standalone manner. They are often embedded
within C4l systems, and operate within a federation
comprising of other simulation systems. HLA is the
current technology for integration among simulation
systems. The technology is still being enhanced to
address some of its current limitations. Integratio
between M&S and C4l systems is traditionally
achieved through the use of dedicated gateways.
Increasingly, web technologies are being considered
as the enabler for greater Sim-Ops integration.

¢ Simulation. This is the focal point of all simulation
environments as it is where the actual simulagon i
being executed. All the other stages exist to stippo
the runtime simulation. The key issues that
characterise this stage are mainly performance-
related, such as the scalabilty of the specific
runtime simulation architecture and the level of
interactivity. A simulation engine is usually aeth
heart of the runtime architecture, which in turn is
supported by other simulation components such as
behavioural or CGF engines.

Analysis. Analyses are conducted in order to
maximise the values of the simulation runs.
Standard after-action review features include the
ability to perform record & playback. More
advanced capabilities would include the ability to
use COTS tools for statistical analysis as well as
data mining of data captured during simulation
runs.

We devote the entire next section to DSE, as it is the
core component of JEWEL, and plays pivotal role in
our endeavor to achieve reuse and interoperability.
DSE also embodies high performing design and
implementation decisions, in order to satisfy the
disparate needs of various M&S communities (e.qg.
experimentation, training).

We aspire to share on the other JEWEL components
in the near future.
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Table 1. Anatomy of JEWEL

Activities
- Deployment &
Modeling Composm_on 4 System Simulation Analysis
Lzl UL Configuration

O Models (& Specifications) Repository
Repositories O Sim-C4l Interface Maps Repository
of a O Frameworks & Tools Repository
Composable 4 RPR FOM
Models & Q Battlespace Repository
Databases a 0 System Configuration Repository
a O Simulation State Repository
Q4 Integrated Model |Q On-Demand O System O Scenario Editor O Data Analysis
Development Synthetic Configuration Q Distributed Console
Environment Battlespace Editor Simulation QO After Action Review
Frameworks & | Terrain Composer Engine Tools

Tools

Development
Tools

CGF Framework
Injects Framework

Assortment of
GUIs

oo

O Data Analysis
Tools

O Models Specification

Q Sim-C4l Interface Maps Specification
Data & ] Q Tools Interface Specification
IErEEe Q HLA FOM Specification
Specifications e
Standards U Battlespace Specification

a |EI System Configuration Specification

a |EI Simulation State Specification
DISTRIBUTED SIMULATION ENGINE (DSE) e Avenues for attaching commonly used

repositories or libraries of functions. Examples

Introduction are assets definition database, scenario

DSE is a software framework that provides the
following:

A set of base classes that represent the common
concepts. These classes define by default a set of
APIs that different components of applications

may use to interact with each other (see later

sections). These base classes can be used to

define application specific concept types.

A simulation kernel that keeps track of time and

orchestrates execution of all application
components.
Communication  capability that handles

networking issues between processes built on
DSE.

Distributed database services for storing runtime
instances of all concepts.
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loader/writer, simulation state record/playback
module, environment database, etc.

Key Concepts Defined

We defined four main concepts that represent the
software equivalent of the real-life battlefield:

Entity. This refers to any object that has the
capability to act and react, which can include
brigades, squadrons, tanks, soldiers, task forces,
missiles, radar, etc. Entity contains attributes that
define its characteristics, such as the amount of
fuel, number of missiles, travel velocity, level of
casualty, physical shape and size, etc.

e« Model. Whereas entities represent the objects
that can act and react, models define how they
perform such action and reaction. For instance,
an action of one entity is to fire a missile, and the
reaction of another entity is perhaps to compute
the damage sustained. This concept includes the
following sub-concepts:
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e Behavioral Model. Analogous to the human
brain, this defines the decision-making
processes of each entity. For instance, an
aircraft performing CAP may have to
deliberate between engaging an approaching
enemy fighter or not.

 One-time Action Model. Action models
implement the exact physical level activities
that are performed by the entities.
Distinction is made between activities that
must be performed throughout the lifetime
of the entities and those otherwise. One-time
Action Model refers to the latter.

» Repetitive Action Model. This defines
activities that must be performed throughout
the lifetime of entities.

In addition to representing entities’ behavior, the
model concept also extends to modules that
display GUI that interacts with users and
modules that handle the networking aspects of
DSE.

Models in DSE are classified into two
categories: Global or Entity-based. Entity-based
models contain codes specific to individual
entity (e.g. models that implements the action of
an entity), whereas Global models maintains
visibility of all entities (e.g. User Interface
models that provides avenues for users to control
the simulation).

» Event. Events represent the “happenings” in the
battlefield. Events are created when something
happens that may be of significance to other
entities. The models that perform sensor
operations usually receive these events.

e Command. Commands represent instructions or
orders given to the entities. For example, an
order to attack an enemy position will include
the identification information of that position,
contained in a command object. This concept
includes the following sub-concepts:

e Behavioral Command. Commands targeted
for Behavioral Models.

e Action Command. Commands targeted for
Action Models.
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Command is also a convenient mechanism for
status reporting. That is, the recipient of a

command can use that same command to convey
the status of task completion back to the

command issuer.

DSE was written in C++, and was designed under the
premise that all simulations can, and should be built
by simply ‘specializing’ the base classes (‘class

inheritance’ in C++ nomenclature) of these concepts.
Thus, creating a new model class by inheriting from
the Model base class (defined in DSE) and inserting
additional attributes and logic (by means of

overriding virtual functions) that are peculiar to how

an F16 aircraft maneuvers would create an F16
aircraft motion-dynamic model.

Design Considerations for Scalability

Scalability Defined. Scalability refers to the ability of

a simulation system to support larger scenario. Larger
scenario encompasses increase in one or more of the
following: number of simulated objects and size of
battlefield. In reality, no software scales infinitely,
due to the limits imposed by the Operating Systems,
processing hardware and network infrastructure.

Objects Count. DSE was designed to represent up to
2763 objects during each simulation, although the
processor speed and network bandwidth will further
limit the number of supportable models / processes.

Process Distribution. DSE enables the splitting of a
simulation application into processes, each
simulating different objects or parts of objects. Such
splits can be attained without adding on to the load of
the inter-simulation network (typically HLA-RTI
network), because DSE implements its own intra-
simulation network. The provision of intra-
simulation network has these additional benefits:

» Allows more intimate relations between models
within the same application, thereby increasing
modeling efficiency.

e Able to scale without relying on HLA. The intra-
simulation network can also be enhanced
independently, should new and better
networking technologies surface.

 Enable scalability without affecting HLA,
especially during scenario creation. HLA
supports  runtime  co-ordination  among
applications well, but does not contribute to
convenience during scenario creation.
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Design for Extensibility

Extensibility Defined. Extensibility refers to the
ability of a simulation application to support new
kinds of objects. In a sense all applications are
extensible, just that extending some requires greater
effort than the rest.

General Techniques. DSE is an Object-Oriented
software that is highly modularized, with well-
defined interfaces that connects to all application
components (the concepts, defined earlier).
Applications built on DSE must package their models
into DLLs (dynamic loadable libraries), so that they
can be loaded/unloaded dynamically during runtime.
Another benefit of using DLLs is that models can be
added without requiring re-compilation/re-linking of
any software component.

Extensible Parts. All concepts (defined earlier) are
extensible, with DSE. All extensions to applications
built on DSE can be performed without resulting in
code compilation, except new models (in which case
coding and compilation is necessary). This
effectively means that non-technical end-users may
extend a simulation by adding new entity types
(together with their characteristics) without looking
at a single line of code. Apart from models, entities,
events and commands, databases for scenario and
environment representation can also be plugged into
DSE easily, so long as the pre-defined APIs are
adhered to.

Design for Efficiency

Efficiency Defined. Efficiency is the measure of the

throughput of a simulation against time. Basically,

the more objects that can be simulated within a fixed
time, the more efficient the software is.

General Techniques. Multithreading and parallel
execution (by process distribution) are two general
performance-enhancing techniques employed by
DSE.

Localized Memory Allocation/Reallocation. The time
consumed by the operating system during new
memory allocation is not predictable, and the delta
can range from just a few microseconds to a few
milliseconds. To overcome this potential
performance letdown, most simulation software
reserves a large pool of memory at start up and
implement  their own localized memory
allocation/reallocation routines. DSE went one step
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further, to also re-use memory lots previously
allocated to data of the same type. This further
shortened the time needed to allocate/reallocate
memory, and paved the way for more efficient
logging/networking functions.

Runtime Model. The two well-established runtime
models adopted by simulation systems are time-
stepped and event-driven models. Conventionally,
applications that require high level of user-
interactivity adopt the time-stepped model, while
non-realtime and non-interactive applications take
advantage of the event-driven model for efficiency
reasons.

DSE is time-stepped driven with adjustable frame
size and rate. One new simulation state is computed
every frame. If the frame size is x ms and rate is r,
DSE will invoke all application models at x ms
interval and the simulation clock will advance by x*r
ms, as illustrated in Figure 1.

~ Realy 1 1 1 L L L
timeline I 1 1 1 U U L
st Srx sr2x sBX SHAX sBX srHeX

Simulation 1 1 1 1 1 I
timeline I 1 1 1 U 1 L
SSH2X'r  SS+3X'r  SSHAX'T  SStBX*r  SS+EXr

ss SSHXMT

Legend:  sr - start time (real)
ss - start time (simulation)
x - frame size
r - frame rate

Figure 1. Effects of Frame Size and Rate

Figure 2 depicts the perfect scenario, in which the
computation time consumed to calculate each state
falls within x milliseconds. For DSE to handle
exceptional scenarios, three timing modes were
implemented:

» Race Mode. Simulation states are computed one
right after another. This is useful for applications
that do not require user interaction, and only the
final state is of importance.

» Disregard Real Time Mode. If the time to
compute state n exceeds the frame interval,
computation of state n+l commences
immediately after state n is computed. However,
if the time to compute state n is shorter than the
frame interval, the kernel will wait until the
frame interval elapses completely, before
computing the next state. In both cases, the
simulation time advances by the same amount —
the frame interval. Applications may assume that
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each computation computes the next state of
objects for fixed time advancement.

» Follow Real Time Mode. Advancement of
simulation time is tied to real time, at the
specified rate. Computation of one state may be
skipped if the previous state requires more than
the frame size to compute. Applications must be
built to compute states of objects for variable
time advancement.

An enhancement to the standard time-stepped model
is to implement a hybrid runtime model. This will be
elaborated next.

Execution Scheduling Palicy. It is important to note

that the battlefield is best represented if all models
execute in parallel and continuously. However, this is
not possible, as it would require one CPU for each
model. As such, some scheme of scheduling the
execution of the models within each process is
necessary.

On top of the basic runtime model, DSE implements
an efficient scheduling algorithm that supports
advanced scheduling options, as follows:

 Time Schedule Order. Much like event driven
simulation, this feature will enable models to
schedule their own execution time. However,
unlike event driven simulation, execution is
carried out only at the nearest later frame time,
rather than immediately. Entities, models and in
fact any application function can be scheduled at
a time decided by the application.

e Variable Frequency. Useful in handling models
of differing updating resolution. For instance,
the position of a tank on the ground can be
updated at one second interval, while an aircraft
requires at least 100 ms.

The advanced scheduling algorithm is able to
improve the overall efficiency of simulations because
of its ability to spread out the invocation of low
frequency entities and models. For instance, in a
scenario with 2 aircraft and 10 tanks, only 1 aircraft
and 2 tanks need to be invoked for computation each
frame if the update resolution of aircraft is 200ms,
that of each tank is 1000ms, and the simulation frame
interval is 100ms.
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Design for Reliability

Reliability Defined. Reliability refers first to how

infrequent downtimes occur for an application. The
lower the frequency, the higher the reliability.
Ideally, there should be no downtime at all. As DSE
is an extensible software framework (i.e. it will
execute together with non-native codes), it is
unrealistic to aim for the highest level of reliability
(i.,e. no downtime). Therefore, DSE provides a
mechanism to ensure quick recovery from such
downtimes.

Data Replication. There are generally four ways for
data to be shared among the processes of distributed
applications and each has its pros and cons, as
described below. DSE applies the second method:

» Centralized Database. This is the traditional
approach, in which the entire simulation
database is hosted on one server. All processes
connect remotely to access the database.
Although slow in access speed, data consistency
is maintained with ease. Adopting mirroring
technology will remove the single point of
failure.

» Replicated Database. Replicating the database
across to all processes. While utility of network
goes up and maintenance of data consistency is
tough, this method incurs low data access
latency and allows flexibility in terms of data
and scenario size.

+ Shared Memory. Using a combination of
hardware and software, this solution allows
processes across multiple machines to share the
same memory spaces. One major drawback of
this method is its limited address space and the
fact that the failure of any single component will
result in complete system failure, although the
lowest data access latency can be expected.

e Scalable Parallel / MPI. Housing all processes of
one application in one SMP machine that also
hosts the database, this method often produces
the highest performance for specially designed
applications. The drawback is the proprietary
status of both hardware and OS, leading to high
cost in deployment and maintenance.

Replication technique provides the best compromise
in access speed and scalability. With an up-to-date
local database, data access by each process can be
immediate. Besides, since each process holds a
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replicated database, there is no worry of unexpected
data loss due to faults affecting just a few processes.
However, the main disadvantage of this technique is
that redundant data may be sent to a process that does
not require them. For instance, an MMI process that
handles logistics functions need not know the radar
range of an aircraft. Also, updates need not
necessarily constitute value changes, and that means
additional possibility of network optimization.

While PCs and networking technologies are

advancing at such pace that these issues might
disappear altogether in due course, the project team
also evaluated a few techniques that could reduce the
network bandwidth required. These techniques can
roughly be categorized into two categories, as

follows:

» Filtration-Based. Techniques under this category
sought to cut down network bandwidth required
based on exploring the ‘need’ to send.

e Spatial Vicinity. Adopted by HLA Data
Distribution Management (DDM), this
technique reduces the data sent to each
federate by considering the spatial vicinities
of entities. That means, if Entity 1 is beyond
the range of interest of all entities in
Federate A, updates for Entity 1 will not be
sent to Federate A. This technique assumes
that there is no need for all federates to store
data of all entities, since the area of
operations of each federate is small,
compared to the entire battle scene.

o Declaration of Production and Needs. At
models/entities level, each object class
declares the data they produce and require.
Based on these declarations, only data
needed by a process is sent to that process.

» Ownership Migration. By migrating the
entities between processes, we can create
clusters of entities that require frequent data
exchange and run them in the same process,
to minimize data transmission across
network.

» Direct Declaration of Change. This method
demands that applications make specific
declarations each time one or more
attributes are changed. Therefore only
changed data need to be transmitted to the
network.
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» Double Buffering. Maintaining a copy of all
data, a comparison can be made each time a
decision has to be made on whether a data
needs to be sent. Both data buffers are
synchronized at the end of each frame.

* Compression-Based. Compression algorithms
could be used to compress data at the sending
point, and de-compress the same data at the
receiving point. This has the effect of reducing
the actual bits and bytes transmitted across
network.

Subiject to the availability, in future, of an algorithm
that is both efficient and effective, a compression-
based technique can be applied in addition to other
techniques. DSE implemented a combination of the
4" and %' method of the filtration-based techniques.
The choice was made based on elimination. The 1
method is well suited to federate-to-federate rather
than process-to-process communication, while
method 2 demands substantial processing just to
organize the subscription information.

Crash Recovery. The simulation state
record/playback module provided by DSE is able to
log down simulation states at a frequency specified
by the user.

Design for Reusability

Reusability Defined. Reusability defines how easy an
application, software module or component may be
reused.

Reusable Parts. DSE defined interfaces to which the
following application components can be plug-n-
played:

* Models. These include behavioral and physical
models, and their associated parameters, entities,
events and commands.

» Databases. Definition of assets,
system/application  configurations, scenario
(including environment and orbat), etc. are all
databases that may be replaced easily, thereby
enhancing their prospect of reuse.

Design for Flexibility

Flexibility Defined. Flexibility is a measure of how
easy an application can be configured and
reconfigured.
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Assets Definition Database (AssetDB). Recognizing

that the greatest stumbling block faced by the users
would be to have to wait for a system to be

reconfigured to suit their needs by technical

personnel, DSE includes a flexible asset definition

mechanism that allows new simulation entities to be
created by the end-users themselves.

All DSE objects, except models, can be defined in
the asset definition database, which is XML based.
These objects are then instantiated at run time by
DSE.

The AssetDB provides clarity, as it provides a single
file at which simulation objects are defined, instead
of having them hard-coded as classes in multiple files
within  the simulation software. Supporting
inheritance, the AssetDB makes objects creation
versatile by allowing new objects to take on all
parent attributes and have additional ones specific to
themselves. In addition, specifying the parent object
name in the model code can cause retrieval of all of
its inherited objects.

Design for Interoperability
Interoperability Defined. Interoperability refers to

how well two or more simulation applications can
contribute to a common scenario.

HLA Compliance. DSE supports HLA via a gateway
that marshals data between the HLA network and
DSE’s intra-simulation network. The gateway is
designed as a model that can be plugged in to DSE
easily. In a similar manner, DSE can support
connectivity to any new protocols and standards.

CASE STUDY
Joint Battle System (JBS)

Joint Battle System (JBS) is a distributed simulation
system used in the SAF as an experimentation testbed
and training platform. It is built upon the JEWEL
environment, and thus manifests the latter's
development rationale and philosophy. It is designed
to be flexible, scalable and highly configurable to
serve SAF’'s varied and demanding experimentation
needs.

JBS Architecture

JBS is composed of any number of Player Stations
(PLS), an Exercise Control Station (ECS) and an
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optional Data Analysis Station (DAS). These stations
are linked together via HLA.

A PLS consists of four PCs joined together by the
DSE provided intra-simulation network. The four
PCs serves the role of:

1. HLA Gateway — To communicate and exchange
simulation updates among the PLS.

2. C2 — To provide a mock-up of the console of a
generic C2 system. These mockup consoles
allow the players to exchange C2 messages via a
dedicated C2 LAN.

3. Simulation — For executing models of the entities
present in the PLS. The models would include
platform motion models, sensor models, CGF
behavioral models, weapon models, etc.

4. 3D visualization — Each PLS can provide an
Out-of-Window view of the simulation
environment, to allow the players to immerse in
and interact with the simulation.

The PLS can be configured to support different roles,
such as CGF controller, platform operator (plane
cockpit, ship bridge, vehicle commander’s seat), or
tactical commander station.

Figure 2 shows the JBS system architecture.
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Figure 2. JBS System Architecture
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Lessons Learned

In adopting JEWEL as the enterprise M&S
framework, and implementing JBS and other systems
using JEWEL, some insights were gleaned through
the experiences so far.

Model Reuse

JBS has been the base system from which new
simulation testbeds were created. These new setups
often require enhancements in the form of adding
new or modifying existing models. New versions of
the models can also be plugged back into JBS. These
activities to co-evolve reusable models illuminated
one critical limitation of JEWEL — that for models to
be plugged-n-played, additional efforts are needed to
synchronize the way models make use of the data
they exchange with other models.

Our study revealed that apart from disparities caused
by differences in simulation framework (issues aptly
resolved by adopting the same framework, such as
DSE), we need to be mindful of the following
factors:

e Different Application Needs Simulations have
been used in training, experimentation, analysis
and acquisition. Differences in use imposed
different requirements on how simulations are
designed and implemented. These affect their
data I/O requirements, with some requiring (or
produce) more data than others. Non-functional
requirements such as execution frequency and
execution condition add to their differences. All
these differences affect the models’ packaging
and interfaces. Furthermore, there is no standard
way to define what models should contain. For
example, a model in one application can consist
of sensor, decision-making, movement dynamics
and weapon system routines of an aircraft, while
in others each of the routines constitute a model.
The reason for the former is efficiency, since the
modules are now able to access functions/data
produced by other modules directly, and this is
often the adopted design for virtual applications.

* Different Fidelity, Resolution and
Granularity . Related to the above, simulations
for different uses also differ in fidelity,
resolution and granularity of their models. For
commanders’ training using constructive
systems, which requires decision making,
command and control of huge forces, low to
medium granularity models (of aggregated
forces) are common place to lighten the
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processing load. On the other hand, training of
operators using virtual systems demand entity
level granularity for realism. Virtual systems
often require high-resolution models as well to
give realistic look and behavior of the simulated
entities. Simulations for experimentation require
higher fidelity model compared to simulations
for training to ensure that the results are credible.
Even higher fidelity is necessary for acquisition
purposes since assessment of equipment would
not be accurate otherwise.

To overcome these challenges, we need to look at
ways to capture important properties of models,
perhaps to the extent of capturing the algorithmic
processes encapsulated within, and harmonize all
data required and produced by all interacting models.
We are beginning to examine the Conceptual Models
of the Mission Space (CMMS), and ideas such as the
Levels of Conceptual Interoperability Model
(LCIM), Base Object Models (BOMs) and
Conceptual Models, and we aspire to align JEWEL
along these international initiatives.

AssetDB

The goal of AssetDB is to provide a way for the non-
technically trained users to create and configure new
object types to be simulated, by mixing and matching
existing models. The current implementation,
however, can result in system crashes or unrealistic
simulation results if the users mixed incompatible
models together. For instance, a user could attach a
ground radar on an aircraft without knowing that the
ground radar model was not designed with the
automatic behavior to scan areas below the platform.

There should therefore be a way for model
developers to specify the constrains of their models.

Use of HLA & RPR FOM 1.0

HLA was chosen as the communication protocol
between the PLS. This design decision was made to
create a dual-layer network (i.e. HLA plus DSE’s
intra-simulation network) for data localization and
bandwidth optimization. We also hoped that this
implementation would enable integration with other
HLA & RPR FOM compliant simulation systems
easily, as though it is just another PLS.

While this design allowed for larger scenarios to be
enacted, the constant struggle between extending the
HLA FOM and living with limited interoperability
among simulated entities demanded a re-look into
our design philosophy. This is due to these
conflicting ideals:
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e We should conform to RPR FOM or any
internationally recognized FOM, so that
integration with similarly compliant systems
would be a bliss.

* We should allow simulated entities running in
different PLS to exchange data, so that more
algorithmic optimization can be performed.

As a result, we decided to forgo the first ideal

(assuming that a FOMs mapping gateway would be
used when connecting to external systems), and
accepted that while RPR FOM is suitable for inter-

system data exchanges, it is not suitable for intra-
system purposes that requires more “private” data of
entities to be published.

Distributed & Delta Logging

For the DSE logging mechanism to function in JBS,

every distributed process within JBS must transmit

their simulation state over to a selected process that
runs the logger. This resulted in an increase in

network bandwidth utilization, and the single logger

process could not record the complete simulation
state at 33Hz frame rate.

To overcome this problem, we modified our logging
process to allow distributed logging. Individual
processes perform recording of their own state,
which will be merged after simulation completes.
With this solution, we managed to avoid unnecessary
consumption of network bandwidth.

To reduce the amount of data to be recorded, we
further enhanced the logger with delta logging
capability, which allows snapshot interval to be
chosen and only changes in between snapshots are
recorded. Resource utilization, in this case, was
improved and requirement for large storage media is
reduced.

Fault Discovery & Rectification

During development of JBS, the lack of a simple
front-end for injecting user commands (for testing
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purposes) proofed to be painful. Adhoc codes were
created, as part of a model, to generate such
interactions, which has to be recompiled frequently
due to adjustments to test scenarios, however minor
they might be.

In addition, the distributed nature of DSE prevents
the same simulation state to be recreated, resulting in
the difficulty to re-enact the same erroneous state for
debugging purposes.

These limitations resulted in long hours of integration
testing and debugging. JEWEL should address these
limitations.

FUTURE PLANS

We intend to explore MDA-based translation
approach to component-level reuse. To overcome the
difficulties in testing and debugging of a distributed
simulation system, we plan to look into ways to
ensure data consistency. We have also begun, and
will continue to explore ways to embrace Web-based
Technologies and Service-Oriented Architecture
(SOA) for M&S.

To better manage our expanding repertoire of
reusable M&S components and the increasing
number of deployment sites for JEWEL-based

simulation, we will setup a JEWEL Knowledge Bank

to enable greater collaboration among the developers
and promote reuse.

CONCLUSION

In this paper, the authors attempted to provide a
complete picture of the rationale and vision of

JEWEL. In contrast, only selected development
efforts were captured, with the good intention of
focusing this paper on the fundamentals — the core
component of JEWEL. It is envisaged that additional
papers that deal with the other components of
JEWEL will be written and shared in the near future.
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