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ABSTRACT 

Historically, ground-warfare simulation programs have developed project-specific terrain generation systems. These 
stove-pipe systems satisfy a single program’s requirements, involve a lot of manual editing, and employ little 
verification during processing. The government has invested millions of dollars developing runtime databases 
covering the same geographic areas. The generated databases lack correlation due to different processing tools and 
techniques, resulting in fair-fight issues and visual anomalies when interoperating in a confederacy. 

The effort described in this paper strives to solve these problems. The goal is a means to rapidly generate high-
fidelity urban terrain databases using existing applications while removing dependence on any particular tool. In 
addition, the solution must have the flexiblibility to evolve as programs identify new requirements. The resultant 
capability must import from a wide variety of sources, clean and normalize source data to a consistent 
representation, and deliver a correlated dataset that meets the needs of a confederacy. 

This paper describes the technical challenges involved with developing an adaptable urban terrain generation 
framework. We’ll take a look at each how the components of the system interact and discuss problems, deficiencies, 
and bottlenecks encountered during development. Finally, we conclude with the current state of the system and to 
what degree it is meeting overall expectations. 
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INTRODUCTION 

Generation of correlated, high-resolution urban terrain 
databases is challenging. Source data comes in many 
formats with varying content. Runtime compilers 
accept different types of source data and manipulate it 
into formats optimized to meet particular needs, 
whether for visual, semi-automated forces, C4I, or 
other applications. And finally, data sets are massive 
even by today’s computing standards. 

Designing an infrastructure to support integration of 
different COTS and GOTS tools is also challenging. 
Each tool has unique capabilities. By design, they 
typically handle processing in isolation. We want to 
use the best of each tool in a collaborative 
environment. 

Our research started at the heart of the problem, 
establishing a data model to represent source data in a 
consistent manner, and a mechanism to persist the data 
over time. From there we tackled how to provide and 
receive information to and from external plugin tools 
and track modifications. This design accounted for 
distributed and parallel processing. As the design 
progressed, we incorporated utilities to report status, 
collect and store information, and verify correctness. 
To increase usability, we developed a user interface to 
assist composition, execution, and analysis of terrain 
generation processes. 

Many of our initial concepts and goals are operational. 
We have laid the foundation. Still, much work remains 
to achieve our overall goals. We now report the status 
of our efforts. 

MUDM 

A data model lies at the core of any terrain generation. 
The Master Urban Data Model (MUDM) defines all 
features and attributes required to represent urban 
environments suitable for military training simulations. 
Attributes have a label (name) and a value. The 

runtime software uses the MUDM to associate 
attributes to features and values to attributes. The 
runtime structures accommodate these associations so 
that the data dictates the layout of internal structures. 
This data-driven approach means the data model can 
evolve and adapt to new requirements without 
requiring software modifications. 

We chose the OneSAF Objective System (OOS) 
Environment Data Model (EDM) (Miller, 2002) as a 
basis for the MUDM. The OOS EDM contains a rich 
feature set and attribution definitions for urban 
environments. We augmented the OOS EDM with 
structural information for buildings and tunnels to 
support physics-based weapons effects modeling. The 
software did not change to support storage and retrieval 
of the new attributes, substantiating the flexibility of 
the approach to easily accommodate new requirements. 

The selection of the OOS EDM as a starting point 
implies using the SEDRIS Environmental Data Coding 
Standard (EDCS) (Birkel, 1999) as the data dictionary. 
The National Geospatial-intelligence Agency (NGA) 
uses the Feature Attribute Coding Catalog (FACC) for 
their data model. SEDRIS developed the EDCS to 
address gaps between FACC and modeling and 
simulation training requirements, and provides a 
mapping between FACC and EDCS. The data 
dictionary chosen isn’t critical to a data-driven 
architecture, since the software processes the data 
generically. 

The MUDM facilitates data verification. Each attribute 
has associated default, minimum, and maximum 
values. The verification module checks imported data 
values against defined ranges and reports anomalous 
data. We chose to snap anomalous data to the nearest 
bound to most closely preserve original data. Other 
options include setting values to their default or 
continuing without modification while logging the 
detected inconsistency. 
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Figure 1. The in-memory data component is capable 

of holding any type of source data. 

In-Memory Data Component 

We desired a single in-memory data structure to 
simplify moving data through the framework. This data 
structure holds multiple representations of information. 
It contains fields for metadata, attribution, and a 
physical representation such as the points of a line, 
elevation posts in a grid, texture, imagery, or feature 
model. Figure 1 displays some of the fields in our 
modular data component. The data structure also 
houses a globally unique identifier to facilitate specific 
object lookup. Later, we identified the need to maintain 
relationships and external references between objects. 
The internal data structure’s modular design of the 
made this a simple matter of adding new fields. None 
of the existing interfaces required modification. 

We also needed a layered data manager to store and 
track all in-memory data objects. This approach 
encapsulates the burden of memory management and 
object retrieval away from the rest of the framework. 
This implementation has basic hierarchical layers and a 
quick indexing mechanism to retrieve objects from 
them. Figure 2 illustrates the hierarchical structure of 
the layered data manager. All data that flows through 
the framework resides in this data manager construct. 
Hiding storage details behind the data manager 
interface affords us the option of implementing caching 
mechanisms to reduce the number of objects in 
memory at any given time without affecting the rest of 
the framework.  

 
Figure 2. The layered data manager sorts and 

tracks all in-memory data components. 

Master Urban Database 

Terrain generation systems typically process huge 
amounts of data. Persistent storage is required to save 
interim data during processing. Efficient and robust 
data storage became our challenge. We initially 
explored two possibilities. The first involved creating a 
new optimized binary format in which to store 
environment data. The second entailed storing 
environment data in a relational database mechanism.  

We did not have time to fully design and implement 
both solutions to determine the better solution. We 
decided to explore the relational database mechanism. 
The full relational database mechanism quickly proved 
cumbersome. Changes or additions of new data types 
would require re-engineering a new set of database 
table structures and storage of large imagery and 
elevation data would require preprocessing, such as 
chunking the raster data into smaller blocks of the 
binary data suitable for database storage. Conversely, a 
complete binary format would require reading and 
writing to physical storage at all stages, even simply to 
determine if the data met some criteria that was being 
fetched from the MUDB. In addition, binary storage 
would require significant up-front design and testing of 
the new format before we could even determine if it 
would be scaleable enough to use for the MUDB.     

We chose to implement a hybrid storage system for the 
Master Urban Database (MUDB). We store the 
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physical representation of data on disk in standard 
formats (see Table 1).  

Table 1. Physical data representation is stored to 
disk in standard, open formats. 

• Geographic Imagery – GeoTiff & ECW 
(with/without compression) 

• Elevation Data – GeoTiff (with/without 
compression) 

• Terrain Feature Data – ShapeFile  
• Texture Data – PNG 
• Building Structural Data – U2MG (Mann, 2004) 

A relational database houses attribution, metadata, 
external references, relationships, and other indexing 
information such as spatial extents of the data 
component. This flexible approach uses the SQL 
(ANSI, 1992) language to build queries on the data 
stored in the MUDB. The relational database indexing 
mechanism makes it easy to build complex queries. We 
leverage optimized search techniques provided by 
relational database technologies to maximize 
performance. 

We began with a simple MUDB design. It covered a 
segmented storage mechanism for indexing, metadata, 
and attribute information. As shown in Figure 3, the 
design calls for a separate component responsible for 
storing each set of data. This way, the MUDB stores all 
data in parallel and each component can optimize to 
the particular type of data it handles. As the 
implementation evolved, this approach allowed 
changes to portions of the design to work within the 
framework efficiently without rewriting the interface 
code. For example, we redesigned the metadata storage 

mechanism to record values once and reference the 
stored value from multiple data elements for which it 
applies. This redesign affected no other piece of the 
MUDB system.   

The segmented storage design facilitated rapid 
implementation of multi-threaded storage and retrieval 
algorithms. Each thread stores/retrieves distinct 
segments of data from the different storage services. 
This alleviated bottlenecks by placing input/output on 
separate threads of execution. This allowed parallel 
retrieval operations, maximizing CPU usage and 
accelerating MUDB storage and retrievals. 

We designed the MUDB physical format handler 
interfaces to avoid reliance on any particular format. 
The MUDB contains a standard format handler 
interface for integration to the framework. An XML-
driven mapping mechanism associates each physical 
representation to a format handler. We have 
implemented format handlers for standard formats seen 
in Figure 4. The MUDB records the format handler 
chosen to store an object with the object indexing data. 
The MUDB uses this information to select the correct 
format handler to read the data. This allows continual 
upgrade to the underlying storage mechanism without 
affecting access to older MUDB content. For example, 
if we chose to replace our ShapeFile format handler 
with a SEDRIS transmittal handler for terrain features, 
we could update the XML mapping file to point all 
terrain feature data to the SEDRIS format handler. 
Subsequently, the MUDB would store all newly 
created data objects of that type using the SEDRIS 
format handler. However, the MUDB would read and 
write all previously stored objects with the ShapeFile 
format handler. 

 
Figure 3. The MUDB implements a segmented storage design that allows for a multi-threaded storage engine 
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Figure 4. The reconfigurable format repository uses a variety of industry standard formats.  

Our original format handlers were all disk based 
storage mechanisms; however, we had trouble with 
shared file handles in our ShapeFile format handler that 
wrote directly to disk. We replaced it with a format 
handler that instead wrote the binary data to a 
relational database. This change was transparent to the 
rest of the MUDB. 

As our relational database experience grew, we began 
optimizing our storage techniques using stored 
procedures. Stored procedures save processing logic in 
the database server that triggers when data is stored to 
it. This optimization allows handling the entire 
configuration management system in stored logic on 
the database server. This approach offloads the costs 
associated with tracking earlier revisions of data 
components. Offloading all operations associated with 
storing revision data to the data server simplifies the 
MUDB storage implementation to only store updated 
information. This permits the stored procedure logic to 
identify and process revision tracking information 
automatically in the database server. 

With relational database tables and revision tracking in 
place, we could begin building a complex MUDB 
query API on top of simple SQL statements. The 
search mechanism can use any segmented data in a 
query. We designed a simple API to build atomic query 
operations (bounding box query, MUDM component 
category query, etc), and extended that API to allow 
the logical combination of atomic search criteria to 
construct complex query operations. 

Plugin Architecture 

A plugin architecture provides a means to integrate 
COTS and GOTS tools. For terrain generation, plugin 
interfaces need to support data importers, automated 

and manual manipulation tools, and data exporters. 
Other useful capabilities include inspection tools, 
metrics collection, verification and validation, and 
metadata gathering. 

 
Figure 5. Terrain database processing products 

from various COTS/GOTS developers integrated 
within a distributed plugin architecture. 

Distributing processing among several heterogeneous 
workstations can increase performance (Vinoski, 
1997), and also allows us to take advantage of tools 
running on different operating systems, as shown in 
Figure 5. This is critical to completing the terrain 
generation within the 96 hour timeframe.  
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We explored several remote procedure call 
implementations for reuse as the information 
distribution mechanism, including SOAP (Ehnebuske, 
2000), XML-RPC (Winer, 2000), and CORBA (OMG, 
99). The need to support C++ clients ruled out use of 
the language-specific Java RMI (Sun, 1998). SOAP 
and XML-RPC use XML as their transport mechanism. 
Their underlying text-based communication results in 
greater network traffic and slow translation. CORBA’s 
binary object transfer provides better performance. 
Unfortunately, it requires more development effort. In 
the end, the speed gain using CORBA outweighed the 
shorter implementation effort of SOAP and XML-
RPC. 

We designed the CORBA plugin interfaces to provide 
two-way communication. The framework houses 
servants for the data components and plugin 
management objects. The plugin SDK encapsulates 
servants for the plugins themselves. 

Implementing the CORBA layer required several parts. 
We wrote IDLs for the various plugin interfaces and 
data component structures. The basic data components 
require representation in the CORBA IDL so the 
framework can distribute them via CORBA interfaces. 
A remote plugin manager CORBA IDL object 
encapsulates remote plugin access to the framework. 
This CORBA-based plugin manager object allows 
remote GOTS/COTS plugins to register and interact 
with the centralized framework. To expose remote 
plugin capabilities through the distributed CORBA 
mechanism, we recreated each identified plugin 
interface with a CORBA IDL object. This results in a 
1-to-1 mapping from the original java plugin interface 
to a CORBA object that the framework can use in 
distributed processing.  

The CORBA interfaces evolved throughout 
development. As we identified a new need for 
framework information, such as direct access to the 
MUDM, we implemented the IDL structures and the 
servants to expose those objects over CORBA.    

We monitored several concerns from the start. The 
framework needed to optimize performance, memory 
management, data transfer, and tool integration 
flexibility. 

A functional source data importer allowed stress 
testing the framework implementation using larger 
amounts of data. Our first noticeable problem occurred 
in the CORBA data component servant 
implementation. Our inexperience with CORBA 
resulted in inefficient memory usage. Rather than 
building CORBA-defined structures, we exchanged 

feature attribution through servants. With millions of 
objects flowing through the system, each with upwards 
of 10 attributes, these servants saturated the memory 
footprint. We refactored the CORBA implementation 
to translate structures and only spawn CORBA 
servants when necessary. In addition, we added a local 
cache of data component information to minimize 
CORBA traffic. These two modifications resulted in an 
increase in performance while significantly reducing 
memory usage and network traffic. 

With the plugin interfaces in place, the architecture 
expanded to include inspection tools and metrics 
collection interfaces. We implemented these interfaces 
in pure java and run them as local plugins. We 
implemented a prototype plugin manager to keep track 
of all plugins and make their services available to the 
rest of the system.  

C++ Plugin SDK 

Since C++ is the most commonly used language for 
terrain generation tools, we needed a C++ plugin 
interface with which they could integrate. We started 
with the goal of making the C++ Plugin SDK very easy 
to use and understand. We wanted to hide all CORBA 
complications away from users of the SDK. To 
accomplish this, we wrapped each CORBA interface 
and structure with a local implementation as shown in 
Figure 6. Under the covers, the CORBA interfaces 
hook directly to abstract methods, which allow plugin 
processing to enter third party plugin code. 

 
Figure 6. The C++ Plugin SDK hides the complexity 
of the CORBA layer and distributed programming 

from third party plugin developers. 

The initial C++ plugin SDK contained several 
deficiencies. The original design neglected to provide 
the ability to configure plugins with various 
parameters. We implemented a generic set of plugin 
parameter types and exposed an API in the C++ plugin 
SDK for third-party plugins. This API allows plugins 
to describe their parameters with a name, description, 
parameter type, and default value. With this interface 
update, plugins could expose their parameters to users 
of the system using a common interface. 
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We implemented several test tool plugins on top of the 
C++ plugin SDK. They print out debugging 
information about data objects to help debug 
processing problems and verify the integrity of the data 
translations in the importer tools. The test tools accept 
RUGUD data objects and print the object 
representation information to a plain text file. We 
compared this file to output from the original source 
data to determine whether any data loss occurred. 

Metadata 

A good terrain generation capability should collect and 
maintain metadata throughout the process. Metadata 
provides valuable information about the origin, 
content, and history of the data. It allows others to 
quickly and easily understand details of the data stored 
within the MUDB. Otherwise clients would need to 
interrogate the data, expending valuable resources just 
to determine if the dataset contains the desired content 
for their purpose. 

We designed a very flexible key-value metadata 
implementation to associate with each in-memory data 
component. We wanted to support any string metadata 
key/value pair. Our longer-term design uses an XML 
driven set of mandatory metadata requirements, with 
validation of those requirements built into the system. 
This design remains in place, but the implementation 
simply supports open-ended metadata values. 

MUDM Mapper 

The framework normalizes imported data to the 
MUDM. This mapping involves translating feature and 
attribute labels and converting units of measurement to 
the metric system.  

Mapping source data to a consistent internal 
representation is a difficult task. Some data sources, 
such as shape and OpenFlight, can represent data using 
radically different labels and arrangements. This led us 
to think about a way to facilitate creating and using 
mappings from different sources to the internal 
MUDM representation.  

We designed and implemented a MUDM mapper. 
Mappings are contained in an XML-based mapping 
file. We developed a configurable mapping library that 

uses a mapping file to control the normalization of 
incoming source data. The beauty of this data-driven 
approach is that the library interfaces to the MUDM 
mapper should never change. As the MUDM, the 
MUDM mapper, and the XML structure evolve, the 
importer plugin code reaps the benefits of the updated 
mapping infrastructure with a simple re-link to the new 
library. 

We have implemented simple one-to-one mappings 
with unit/scale conversions. In the future, we can fully 
flesh out the MUDM mapper. The one-to-one 
mappings can handle a large percentage of the datasets 
in the world. Additionally, we implemented the ability 
to capture metrics about missing or incomplete 
mapping files, so that as users of the framework 
encounter more diverse sets of source data with various 
attribution schemes, they have the information needed 
to quickly adapt the mapping files to handle that new 
source data. 

Pipeline Processing 

The processing engine manages data flow and 
execution during the terrain generation process. To 
address project goals, the design took desired 
capabilities into account, including parallel processing, 
easy addition of future capabilities, and flexible 
configuration. 

We began thinking of each data processing capability 
as a separable component. We defined an XML-based 
specification for components to define their specific 
requirements and capabilities. The engine became 
completely open-ended with respect to processing 
flow.  

A user can compose pipelines by sequencing 
capabilities together in a logical fashion as 
demonstrated in Figure 7. This approach allows for 
different terrain generation processes, which may 
prove useful for generating different output formats. 
The pipeline approach supports using the right tool for 
the right job. 
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Figure 7. Pipelines compose various processing capabilities into a cohesive processing unit. 

Pipelines can start by importing data from a native data 
source via an importer plugin. Alternatively, pipelines 
can start by specifying an MUDB load operation with a 
query for which types of data should be loaded for 
pipeline processing. In other words, pipelines can use 
new or previously processed data sources 
transparently. 

The pipeline approach supports parallel processing 
through simultaneous execution of multiple 
components. The processing engine splits processing 
into multiple parallel threads and combines them back 
together as they complete. We concerned ourselves 
with the problem of safely sharing data across parallel 
threads of execution. The initial design used a fine-
grained locking mechanism. This placed a burden on 
plugin developers to lock and unlock data when 
editing. We decided we needed a mechanism to filter 
data to components while guaranteeing a unique 
dataset for each thread.  

Data Filtering 

Populating a high-resolution urban terrain database 
requires an enormous quantity of data. In a composable 
framework, this data flows from component to 
component and, possibly, workstation to workstation. 
We recognized the need for data filtering to reduce the 
amount of data transferred between nodes. 

Data filtering occurs on many levels. Pipeline 
components may filter data to extract only the features 
and attributes they need to perform their task. Remote 
tool plugins also needed to be able to provide filtering 

information, so we implemented interfaces to specify 
filters in the C++ plugin SDK. Terrain generation 
operators may add their own level of data filtration to 
pipeline processing components to further customize 
the pipeline process. Each stage potentially reduces the 
amount of data transferred. 

Data filters also assist parallel processing. Using filters 
reduces the set of required information for a 
component. Since the component doesn’t need all data 
for an area, another component can work on the same 
area provided the data requirements do not overlap. 
Using the XML-based configuration files, the 
validation module can check for data requirement 
conflicts between parallel components during pipeline 
construction. 

GUI 

A graphical user interface (GUI) aids construction of 
urban database generation pipelines. Without it, 
pipeline construction would require manual editing of 
XML-based configuration files. We performed some 
research and found the Eclipse Rich Client Platform 
(Lam, 2005), a mature open source user interface 
builder. It had all of the capabilities we required and 
allowed us to develop a graphical front-end to the 
framework with minor effort.  

The GUI puts power and usability in the hands of the 
user. It provides drag and drop pipeline construction 
using components. Split and join components present a 
means to parallelize execution into multiple threads. 
Newly developed components appear in the component 
list and become available for immediate use. 
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As shown in Figure 8, the GUI incorporates several 
additional features. A source data scanner can analyze 
directories and present discovered source data for 
import. A metrics window presents real-time statistics 
such as memory usage, number of threads executing, 
number of features imported by type, and execution 

time of each component. An information window 
displays metadata for source data products, 
components, and MUDM elements when selected. A 
fault window reports verification and validation errors. 
A logger window provides several levels of system 
information, such as warnings and debug statements.

 
Figure 8. The RUGUD user interface presents information in a compact, intuitive manner.

Messaging 

Our initial GUI design and implementation was in the 
same process space as our framework processing 
objects and threads. This tight coupling caused certain 
GUI operations to impinge upon the framework’s 
ability to accomplish the data processing tasks. It also 
left us with only the single GUI interface to interact 
with the system. It also forced us to run the master 
framework processing on the same workstation as the 
desktop components of the system. In addition, we 
have a requirement for a web-based interface to the 
framework system, which the current mechanism was 
not adequate to handle. 

We analyzed several messaging frameworks for this 
separation of the framework from the GUI, including 
reusing CORBA or implementing SOAP interfaces. 
We had encountered a message-oriented middleware 
called xmlBlaster (Ruff, 2000) during our early 
research for the distributed plugin architecture. Since it 
was a cross-platform, multi-language solution as 

shown in Figure 9, we decided to prototype a 
messaging architecture using xmlBlaster.  

 
Figure 9. xmlBlaster provides a cross-platform, 

multi-language distributed messaging middleware. 
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We quickly defined several message types, including 
event/subscribe, request/response, and command/result 
message pairs. Because xmlBlaster is very flexible 
regarding the content of the messages it propagates, we 
simply serialized/de-serialized our java-based message 
classes into the xmlBlaster message payload. This 
seemed the quickest way to prototype the distributed 
messaging system. The downside of this design 
decision is that the messages are often far larger than 
the actual content due to the overhead of java 
serialization information. The upside is that we are able 
to define new messages and implement them in a 
matter of minutes due to the generic serialization of 
messages into the stream. 

With the distributed messaging system in place, we 
separated the GUI from the framework and defined all 
messages required for the GUI to interact with the 
framework. This approach supports running the GUI 
from a remote workstation and attaching to any 
running framework. In addition, it enables rehosting 
the GUI on a different platform to support, for 
example, handheld player units.  

Conclusion 

We have presented the basis for an open, adaptable 
framework that supports cooperation among COTS and 
GOTS terrain generation tools. This framework is in 
place and capable of proof-of-concept operation. We 
have demonstrated a simple urban terrain generation 
composed of several COTS and GOTS tools in 
cooperation. This demonstration illustrates the ability 
to use the right tools for the right job in an easily 
configurable system. 

The framework follows the modular architecture 
design. Well-defined interfaces encapsulate each 
component from other components. Modification or 
replacement of components does not affect other parts 
of the system. This approach provides an evolutionary 
development path for future expansion. 

The modular architecture supports monitoring and 
observation utilities. Our implementation supports 
metrics collection, data verification, revision tracking, 
and data preview. Developers can extend or add new 
types of capabilities to provide additional insight into 
the generation process as it executes. 

This effort shows a reduction in urban terrain 
generation cost and schedule is achievable. The key is 
that source data is processed and stored once, at its 
highest resolution and fidelity. Newly collected source 
data augments or replaces existing data. Data filtering 

provides the means for reusing datasets to generate 
multiple databases at different fidelities. This approach 
supports generation of a wide variety of correlated end-
use products including visual and SAF runtime 
databases, paper maps, and interchange formats like 
SEDRIS.  

An open, accessible, low- or no-cost urban terrain 
generation capability remains our long-term objective. 
We continue to improve the underlying infrastructure 
to support advanced capabilities while extending the 
breadth of urban database generation resources. 
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