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ABSTRACT

Historically, ground-warfare simulation programs have developed project-specific terrain generation systems. These
stove-pipe systems satisfy a single program’s requirements, involve a lot of manual editing, and employ little
verification during processing. The government has invested millions of dollars developing runtime databases
covering the same geographic areas. The generated databases lack correlation due to different processing tools and
techniques, resulting in fair-fight issues and visual anomalies when interoperating in a confederacy.

The effort described in this paper strives to solve these problems. The goal is a means to rapidly generate high-
fidelity urban terrain databases using existing applications while removing dependence on any particular tool. In
addition, the solution must have the flexiblibility to evolve as programs identify new requirements. The resultant
capability must import from a wide variety of sources, clean and normalize source data to a consistent
representation, and deliver a correlated dataset that meets the needs of a confederacy.

This paper describes the technical challenges involved with developing an adaptable urban terrain generation
framework. We’ll take a look at each how the components of the system interact and discuss problems, deficiencies,
and bottlenecks encountered during development. Finally, we conclude with the current state of the system and to
what degree it is meeting overall expectations.
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INTRODUCTION

Generation of correlated, high-resolution urban terrain
databases is challenging. Source data comes in many
formats with varying content. Runtime compilers
accept different types of source data and manipulate it
into formats optimized to meet particular needs,
whether for visual, semi-automated forces, C4l, or
other applications. And finally, data sets are massive
even by today’s computing standards.

Designing an infrastructure to support integration of
different COTS and GOTS tools is also challenging.
Each tool has unique capabilities. By design, they
typically handle processing in isolation. We want to
use the best of each tool in a collaborative
environment.

Our research started at the heart of the problem,
establishing a data model to represent source data in a
consistent manner, and a mechanism to persist the data
over time. From there we tackled how to provide and
receive information to and from external plugin tools
and track modifications. This design accounted for
distributed and parallel processing. As the design
progressed, we incorporated utilities to report status,
collect and store information, and verify correctness.
To increase usability, we developed a user interface to
assist composition, execution, and analysis of terrain
generation processes.

Many of our initial concepts and goals are operational.
We have laid the foundation. Still, much work remains
to achieve our overall goals. We now report the status
of our efforts.

MUDM

A data model lies at the core of any terrain generation.
The Master Urban Data Model (MUDM) defines all
features and attributes required to represent urban
environments suitable for military training simulations.
Attributes have a label (name) and a value. The
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runtime software uses the MUDM to associate
attributes to features and values to attributes. The
runtime structures accommodate these associations so
that the data dictates the layout of internal structures.
This data-driven approach means the data model can
evolve and adapt to new requirements without
requiring software modifications.

We chose the OneSAF Objective System (OOS)
Environment Data Model (EDM) (Miller, 2002) as a
basis for the MUDM. The OOS EDM contains a rich
feature set and attribution definitions for urban
environments. We augmented the OOS EDM with
structural information for buildings and tunnels to
support physics-based weapons effects modeling. The
software did not change to support storage and retrieval
of the new attributes, substantiating the flexibility of
the approach to easily accommodate new requirements.

The selection of the OOS EDM as a starting point
implies using the SEDRIS Environmental Data Coding
Standard (EDCS) (Birkel, 1999) as the data dictionary.
The National Geospatial-intelligence Agency (NGA)
uses the Feature Attribute Coding Catalog (FACC) for
their data model. SEDRIS developed the EDCS to
address gaps between FACC and modeling and
simulation training requirements, and provides a
mapping between FACC and EDCS. The data
dictionary chosen isn’t critical to a data-driven
architecture, since the software processes the data
generically.

The MUDM facilitates data verification. Each attribute
has associated default, minimum, and maximum
values. The verification module checks imported data
values against defined ranges and reports anomalous
data. We chose to snap anomalous data to the nearest
bound to most closely preserve original data. Other
options include setting values to their default or
continuing without maodification while logging the
detected inconsistency.
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Figure 1. The in-memory data component is capable
of holding any type of source data.

In-Memory Data Component

We desired a single in-memory data structure to
simplify moving data through the framework. This data
structure holds multiple representations of information.
It contains fields for metadata, attribution, and a
physical representation such as the points of a line,
elevation posts in a grid, texture, imagery, or feature
model. Figure 1 displays some of the fields in our
modular data component. The data structure also
houses a globally unique identifier to facilitate specific
object lookup. Later, we identified the need to maintain
relationships and external references between objects.
The internal data structure’s modular design of the
made this a simple matter of adding new fields. None
of the existing interfaces required modification.

We also needed a layered data manager to store and
track all in-memory data objects. This approach
encapsulates the burden of memory management and
object retrieval away from the rest of the framework.
This implementation has basic hierarchical layers and a
quick indexing mechanism to retrieve objects from
them. Figure 2 illustrates the hierarchical structure of
the layered data manager. All data that flows through
the framework resides in this data manager construct.
Hiding storage details behind the data manager
interface affords us the option of implementing caching
mechanisms to reduce the number of objects in
memory at any given time without affecting the rest of
the framework.
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Figure 2. The layered data manager sorts and
tracks all in-memory data components.

Master Urban Database

Terrain generation systems typically process huge
amounts of data. Persistent storage is required to save
interim data during processing. Efficient and robust
data storage became our challenge. We initially
explored two possibilities. The first involved creating a
new optimized binary format in which to store
environment data. The second entailed storing
environment data in a relational database mechanism.

We did not have time to fully design and implement
both solutions to determine the better solution. We
decided to explore the relational database mechanism.
The full relational database mechanism quickly proved
cumbersome. Changes or additions of new data types
would require re-engineering a new set of database
table structures and storage of large imagery and
elevation data would require preprocessing, such as
chunking the raster data into smaller blocks of the
binary data suitable for database storage. Conversely, a
complete binary format would require reading and
writing to physical storage at all stages, even simply to
determine if the data met some criteria that was being
fetched from the MUDB. In addition, binary storage
would require significant up-front design and testing of
the new format before we could even determine if it
would be scaleable enough to use for the MUDB.

We chose to implement a hybrid storage system for the
Master Urban Database (MUDB). We store the
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physical representation of data on disk in standard
formats (see Table 1).

Table 1. Physical data representation is stored to
disk in standard, open formats.

e  Geographic Imagery — GeoTiff & ECW
(with/without compression)

e Elevation Data — GeoTiff (with/without
compression)

e Terrain Feature Data — ShapeFile
Texture Data — PNG
Building Structural Data — U2MG (Mann, 2004)

A relational database houses attribution, metadata,
external references, relationships, and other indexing
information such as spatial extents of the data
component. This flexible approach uses the SQL
(ANSI, 1992) language to build queries on the data
stored in the MUDB. The relational database indexing
mechanism makes it easy to build complex queries. We
leverage optimized search techniques provided by
relational database technologies to maximize
performance.

We began with a simple MUDB design. It covered a
segmented storage mechanism for indexing, metadata,
and attribute information. As shown in Figure 3, the
design calls for a separate component responsible for
storing each set of data. This way, the MUDB stores all
data in parallel and each component can optimize to
the particular type of data it handles. As the
implementation evolved, this approach allowed
changes to portions of the design to work within the
framework efficiently without rewriting the interface
code. For example, we redesigned the metadata storage

mechanism to record values once and reference the
stored value from multiple data elements for which it
applies. This redesign affected no other piece of the
MUDB system.

The segmented storage design facilitated rapid
implementation of multi-threaded storage and retrieval
algorithms. Each thread stores/retrieves distinct
segments of data from the different storage services.
This alleviated bottlenecks by placing input/output on
separate threads of execution. This allowed parallel
retrieval operations, maximizing CPU usage and
accelerating MUDB storage and retrievals.

We designed the MUDB physical format handler
interfaces to avoid reliance on any particular format.
The MUDB contains a standard format handler
interface for integration to the framework. An XML-
driven mapping mechanism associates each physical
representation to a format handler. We have
implemented format handlers for standard formats seen
in Figure 4. The MUDB records the format handler
chosen to store an object with the object indexing data.
The MUDB uses this information to select the correct
format handler to read the data. This allows continual
upgrade to the underlying storage mechanism without
affecting access to older MUDB content. For example,
if we chose to replace our ShapeFile format handler
with a SEDRIS transmittal handler for terrain features,
we could update the XML mapping file to point all
terrain feature data to the SEDRIS format handler.
Subsequently, the MUDB would store all newly
created data objects of that type using the SEDRIS
format handler. However, the MUDB would read and
write all previously stored objects with the ShapeFile
format handler.
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Figure 3. The MUDB implements a segmented storage design that allows for a multi-threaded storage engine
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Figure 4. The reconfigurable format repository uses a variety of industry standard formats.

Our original format handlers were all disk based
storage mechanisms; however, we had trouble with
shared file handles in our ShapeFile format handler that
wrote directly to disk. We replaced it with a format
handler that instead wrote the binary data to a
relational database. This change was transparent to the
rest of the MUDB.

As our relational database experience grew, we began
optimizing our storage techniques using stored
procedures. Stored procedures save processing logic in
the database server that triggers when data is stored to
it. This optimization allows handling the entire
configuration management system in stored logic on
the database server. This approach offloads the costs
associated with tracking earlier revisions of data
components. Offloading all operations associated with
storing revision data to the data server simplifies the
MUDB storage implementation to only store updated
information. This permits the stored procedure logic to
identify and process revision tracking information
automatically in the database server.

With relational database tables and revision tracking in
place, we could begin building a complex MUDB
query API on top of simple SQL statements. The
search mechanism can use any segmented data in a
query. We designed a simple API to build atomic query
operations (bounding box query, MUDM component
category query, etc), and extended that API to allow
the logical combination of atomic search criteria to
construct complex query operations.

Plugin Architecture
A plugin architecture provides a means to integrate

COTS and GOTS tools. For terrain generation, plugin
interfaces need to support data importers, automated
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and manual manipulation tools, and data exporters.
Other useful capabilities include inspection tools,
metrics collection, verification and validation, and
metadata gathering.
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Figure 5. Terrain database processing products
from various COTS/GOTS developers integrated
within a distributed plugin architecture.

Distributing processing among several heterogeneous
workstations can increase performance (Vinoski,
1997), and also allows us to take advantage of tools
running on different operating systems, as shown in
Figure 5. This is critical to completing the terrain
generation within the 96 hour timeframe.
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We explored several remote procedure call
implementations for reuse as the information
distribution mechanism, including SOAP (Ehnebuske,
2000), XML-RPC (Winer, 2000), and CORBA (OMG,
99). The need to support C++ clients ruled out use of
the language-specific Java RMI (Sun, 1998). SOAP
and XML-RPC use XML as their transport mechanism.
Their underlying text-based communication results in
greater network traffic and slow translation. CORBA’s
binary object transfer provides better performance.
Unfortunately, it requires more development effort. In
the end, the speed gain using CORBA outweighed the
shorter implementation effort of SOAP and XML-
RPC.

We designed the CORBA plugin interfaces to provide
two-way communication. The framework houses
servants for the data components and plugin
management objects. The plugin SDK encapsulates
servants for the plugins themselves.

Implementing the CORBA layer required several parts.
We wrote IDLs for the various plugin interfaces and
data component structures. The basic data components
require representation in the CORBA IDL so the
framework can distribute them via CORBA interfaces.
A remote plugin manager CORBA IDL object
encapsulates remote plugin access to the framework.
This CORBA-based plugin manager object allows
remote GOTS/COTS plugins to register and interact
with the centralized framework. To expose remote
plugin capabilities through the distributed CORBA
mechanism, we recreated each identified plugin
interface with a CORBA IDL object. This results in a
1-to-1 mapping from the original java plugin interface
to a CORBA object that the framework can use in
distributed processing.

The CORBA interfaces evolved throughout
development. As we identified a new need for
framework information, such as direct access to the
MUDM, we implemented the IDL structures and the
servants to expose those objects over CORBA.

We monitored several concerns from the start. The
framework needed to optimize performance, memory
management, data transfer, and tool integration
flexibility.

A functional source data importer allowed stress
testing the framework implementation using larger
amounts of data. Our first noticeable problem occurred
in the CORBA data component servant
implementation. Our inexperience with CORBA
resulted in inefficient memory usage. Rather than
building CORBA-defined structures, we exchanged
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feature attribution through servants. With millions of
objects flowing through the system, each with upwards
of 10 attributes, these servants saturated the memory
footprint. We refactored the CORBA implementation
to translate structures and only spawn CORBA
servants when necessary. In addition, we added a local
cache of data component information to minimize
CORBA traffic. These two modifications resulted in an
increase in performance while significantly reducing
memory usage and network traffic.

With the plugin interfaces in place, the architecture
expanded to include inspection tools and metrics
collection interfaces. We implemented these interfaces
in pure java and run them as local plugins. We
implemented a prototype plugin manager to keep track
of all plugins and make their services available to the
rest of the system.

C++ Plugin SDK

Since C++ is the most commonly used language for
terrain generation tools, we needed a C++ plugin
interface with which they could integrate. We started
with the goal of making the C++ Plugin SDK very easy
to use and understand. We wanted to hide all CORBA
complications away from users of the SDK. To
accomplish this, we wrapped each CORBA interface
and structure with a local implementation as shown in
Figure 6. Under the covers, the CORBA interfaces
hook directly to abstract methods, which allow plugin
processing to enter third party plugin code.

Transparency
Ci+ Third
RUGUD | Java Plugin - Plugin Rarsy)
Framework | Interfaces | CORBA IDL Binding sul:ng Plugin
Code

ST

Figure 6. The C++ Plugin SDK hides the complexity
of the CORBA layer and distributed programming
from third party plugin developers.

The initial C++ plugin SDK contained several
deficiencies. The original design neglected to provide
the ability to configure plugins with various
parameters. We implemented a generic set of plugin
parameter types and exposed an API in the C++ plugin
SDK for third-party plugins. This API allows plugins
to describe their parameters with a name, description,
parameter type, and default value. With this interface
update, plugins could expose their parameters to users
of the system using a common interface.
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We implemented several test tool plugins on top of the
C++ plugin SDK. They print out debugging
information about data objects to help debug
processing problems and verify the integrity of the data
translations in the importer tools. The test tools accept
RUGUD data objects and print the object
representation information to a plain text file. We
compared this file to output from the original source
data to determine whether any data loss occurred.

Metadata

A good terrain generation capability should collect and
maintain metadata throughout the process. Metadata
provides valuable information about the origin,
content, and history of the data. It allows others to
quickly and easily understand details of the data stored
within the MUDB. Otherwise clients would need to
interrogate the data, expending valuable resources just
to determine if the dataset contains the desired content
for their purpose.

We designed a very flexible key-value metadata
implementation to associate with each in-memory data
component. We wanted to support any string metadata
key/value pair. Our longer-term design uses an XML
driven set of mandatory metadata requirements, with
validation of those requirements built into the system.
This design remains in place, but the implementation
simply supports open-ended metadata values.

MUDM Mapper

The framework normalizes imported data to the
MUDM. This mapping involves translating feature and
attribute labels and converting units of measurement to
the metric system.

Mapping source data to a consistent internal
representation is a difficult task. Some data sources,
such as shape and OpenFlight, can represent data using
radically different labels and arrangements. This led us
to think about a way to facilitate creating and using
mappings from different sources to the internal
MUDM representation.

We designed and implemented a MUDM mapper.

Mappings are contained in an XML-based mapping
file. We developed a configurable mapping library that
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uses a mapping file to control the normalization of
incoming source data. The beauty of this data-driven
approach is that the library interfaces to the MUDM
mapper should never change. As the MUDM, the
MUDM mapper, and the XML structure evolve, the
importer plugin code reaps the benefits of the updated
mapping infrastructure with a simple re-link to the new
library.

We have implemented simple one-to-one mappings
with unit/scale conversions. In the future, we can fully
flesh out the MUDM mapper. The one-to-one
mappings can handle a large percentage of the datasets
in the world. Additionally, we implemented the ability
to capture metrics about missing or incomplete
mapping files, so that as users of the framework
encounter more diverse sets of source data with various
attribution schemes, they have the information needed
to quickly adapt the mapping files to handle that new
source data.

Pipeline Processing

The processing engine manages data flow and
execution during the terrain generation process. To
address project goals, the design took desired
capabilities into account, including parallel processing,
easy addition of future capabilities, and flexible
configuration.

We began thinking of each data processing capability
as a separable component. We defined an XML-based
specification for components to define their specific
requirements and capabilities. The engine became
completely open-ended with respect to processing
flow.

A user can compose pipelines by sequencing
capabilities together in a logical fashion as
demonstrated in Figure 7. This approach allows for
different terrain generation processes, which may
prove useful for generating different output formats.
The pipeline approach supports using the right tool for
the right job.
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Figure 7. Pipelines compose various processing capabilities into a cohesive processing unit.

Pipelines can start by importing data from a native data
source via an importer plugin. Alternatively, pipelines
can start by specifying an MUDB load operation with a
query for which types of data should be loaded for
pipeline processing. In other words, pipelines can use
new or previously processed data  sources
transparently.

The pipeline approach supports parallel processing
through  simultaneous  execution of  multiple
components. The processing engine splits processing
into multiple parallel threads and combines them back
together as they complete. We concerned ourselves
with the problem of safely sharing data across parallel
threads of execution. The initial design used a fine-
grained locking mechanism. This placed a burden on
plugin developers to lock and unlock data when
editing. We decided we needed a mechanism to filter
data to components while guaranteeing a unique
dataset for each thread.

Data Filtering

Populating a high-resolution urban terrain database
requires an enormous quantity of data. In a composable
framework, this data flows from component to
component and, possibly, workstation to workstation.
We recognized the need for data filtering to reduce the
amount of data transferred between nodes.

Data filtering occurs on many levels. Pipeline
components may filter data to extract only the features
and attributes they need to perform their task. Remote
tool plugins also needed to be able to provide filtering
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information, so we implemented interfaces to specify
filters in the C++ plugin SDK. Terrain generation
operators may add their own level of data filtration to
pipeline processing components to further customize
the pipeline process. Each stage potentially reduces the
amount of data transferred.

Data filters also assist parallel processing. Using filters
reduces the set of required information for a
component. Since the component doesn’t need all data
for an area, another component can work on the same
area provided the data requirements do not overlap.
Using the XML-based configuration files, the
validation module can check for data requirement
conflicts between parallel components during pipeline
construction.

GUI

A graphical user interface (GUI) aids construction of
urban database generation pipelines. Without it,
pipeline construction would require manual editing of
XML-based configuration files. We performed some
research and found the Eclipse Rich Client Platform
(Lam, 2005), a mature open source user interface
builder. It had all of the capabilities we required and
allowed us to develop a graphical front-end to the
framework with minor effort.

The GUI puts power and usability in the hands of the
user. It provides drag and drop pipeline construction
using components. Split and join components present a
means to parallelize execution into multiple threads.
Newly developed components appear in the component
list and become available for immediate use.
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As shown in Figure 8, the GUI incorporates several
additional features. A source data scanner can analyze
directories and present discovered source data for
import. A metrics window presents real-time statistics
such as memory usage, number of threads executing,
number of features imported by type, and execution

time of each component. An information window
displays metadata for source data products,
components, and MUDM elements when selected. A
fault window reports verification and validation errors.
A logger window provides several levels of system
information, such as warnings and debug statements.
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Figure 8. The RUGUD user interface presents information in a compact, intuitive manner.

Messaging

Our initial GUI design and implementation was in the
same process space as our framework processing
objects and threads. This tight coupling caused certain
GUI operations to impinge upon the framework’s
ability to accomplish the data processing tasks. It also
left us with only the single GUI interface to interact
with the system. It also forced us to run the master
framework processing on the same workstation as the
desktop components of the system. In addition, we
have a requirement for a web-based interface to the
framework system, which the current mechanism was
not adequate to handle.

We analyzed several messaging frameworks for this
separation of the framework from the GUI, including
reusing CORBA or implementing SOAP interfaces.
We had encountered a message-oriented middleware
called xmlBlaster (Ruff, 2000) during our early
research for the distributed plugin architecture. Since it
was a cross-platform, multi-language solution as
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shown in Figure 9, we decided to prototype a
messaging architecture using xmliBlaster.
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Figure 9. xmIBlaster provides a cross-platform,
multi-language distributed messaging middleware.
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We quickly defined several message types, including
event/subscribe, request/response, and command/result
message pairs. Because xmlBlaster is very flexible
regarding the content of the messages it propagates, we
simply serialized/de-serialized our java-based message
classes into the xmiBlaster message payload. This
seemed the quickest way to prototype the distributed
messaging system. The downside of this design
decision is that the messages are often far larger than
the actual content due to the overhead of java
serialization information. The upside is that we are able
to define new messages and implement them in a
matter of minutes due to the generic serialization of
messages into the stream.

With the distributed messaging system in place, we
separated the GUI from the framework and defined all
messages required for the GUI to interact with the
framework. This approach supports running the GUI
from a remote workstation and attaching to any
running framework. In addition, it enables rehosting
the GUI on a different platform to support, for
example, handheld player units.

Conclusion

We have presented the basis for an open, adaptable
framework that supports cooperation among COTS and
GOTS terrain generation tools. This framework is in
place and capable of proof-of-concept operation. We
have demonstrated a simple urban terrain generation
composed of several COTS and GOTS tools in
cooperation. This demonstration illustrates the ability
to use the right tools for the right job in an easily
configurable system.

The framework follows the modular architecture
design. Well-defined interfaces encapsulate each
component from other components. Modification or
replacement of components does not affect other parts
of the system. This approach provides an evolutionary
development path for future expansion.

The modular architecture supports monitoring and
observation utilities. Our implementation supports
metrics collection, data verification, revision tracking,
and data preview. Developers can extend or add new
types of capabilities to provide additional insight into
the generation process as it executes.

This effort shows a reduction in urban terrain
generation cost and schedule is achievable. The key is
that source data is processed and stored once, at its
highest resolution and fidelity. Newly collected source
data augments or replaces existing data. Data filtering
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provides the means for reusing datasets to generate
multiple databases at different fidelities. This approach
supports generation of a wide variety of correlated end-
use products including visual and SAF runtime
databases, paper maps, and interchange formats like
SEDRIS.

An open, accessible, low- or no-cost urban terrain
generation capability remains our long-term objective.
We continue to improve the underlying infrastructure
to support advanced capabilities while extending the
breadth of urban database generation resources.
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