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ABSTRACT

As the military moves toward higher fidelity modeling for live and constructive training, they need more precise 3D
models of target entities. This paper presents an approach for using 3D target models in a high fidelity end game
methodology. (“End game” in this paper refers to the end of an engagement; i.e., a munition impacting its target.)
The methodology uses the models to determine if a player was hit in an engagement, and if so, where the impact
occurred.

Military training and testing systems are one of many possible applications for this methodology. In future live
training and testing domains, each player unit holds the 3D model of the target it represents. This allows the
embedded unit to run the algorithm and advise the trainee if he/she was hit by an engagement and if so,
approximately where. Using high fidelity models results in less false hits and false misses, avoiding negative
training. Other applications of this strategy include sensor system evaluation and calculation of visual center of
mass.

This paper will discuss the basics of the methodology including how 3D information is stored on the player unit,
inputs required to calculate hit location, orienting the model for delivery, and the hit location calculation. We will
present an implementation of the algorithm and strategies to optimize processing and memory usage.
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INTRODUCTION

Force-on-force live training systems (MILES, 2006)
typically assume that a shooter aimed and shot at a
target’s visual center of mass (AMSAA, 2004).
Historically, sensor systems were too inaccurate to give
a precise aim point. Note in Figure 1 that the shooter is
aiming at a point (the true WPD aim point) well below
the visual center of mass.

Technological advances in orientation sensors have
made it possible to more accurately determine the
weapon pointing direction (WPD). GPS systems can
report the shooter and target position. From this
information we can calculate the simulated munition’s
trajectory. We can create an ‘“‘electronic bullet”, a
message that contains engagement parameters
necessary to determine the results of the engagement.
The information in the electronic bullet can also be
used to calculate the measured WPD aim point shown
in Figure 1.

WPD = Weapon Pointing Direction

True WPD
Measured WPD

0 = Visual center of mass/
assumed aim point

. = True WPD aim point
@ = Measured WPD aim point

Figure 1. Current systems assume the shooter
accurately aimed at the visual center of mass (point
V). Our proposed methodology uses the measured
weapon WPD aim point (point M) to determine the

engagement result.
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The simulated intersection
point is more realistic when
using a more accurately
measured WPD aim point.
We can use this more
realistic simulated inter-
section point to determine
more precisely if a target
was hit. If the target was
hit we can also report what
part of the target was hit
(e.g. head or leg for dis-
mounted infantry, turret or
hull for a tank). This

The  vertical target
plane, or VTP, is the
plane passing through
the target’s visual center
of mass that is normal to
the vector between the
shooter and the target.
We will refer to the
intersection of the sim-
ulated munition with the
vertical target plane as
the  simulated inter-
section point.

methodology uses a 3-dimensional model of the target
to make that assessment.

A higher fidelity end game methodology would benefit
many applications. Vulnerability calculations can use
the additional information about what part of the target
was hit to perform a higher fidelity vulnerability
assessment, resulting in more accurate engagement
results. Training systems can use this information for
health assessment and realistic medical training. The
trainee’s confidence in training is enhanced by the
higher fidelity end game assessment. Also, with a more
accurate target model, we can make a more accurate
estimate of the target’s visual center of mass and visual
mass area.

Sensor system evaluation is another potential
application of this methodology. Using these methods
with 3D target models, simulations could evaluate a
sensor system’s algorithms against targets of various
sizes and geometries. Setting up laboratory tests for
these various targets would be expensive and
impractical.  This methodology could be used to
simulate these tests without laboratory setup. This
application is not further explored in this paper.
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BACKGROUND
Aim Point Error

Note that in Figure 1 the measured WPD aim point is a
closer approximation to true WPD aim point than the
visual center of mass. For this to truly be the case, the
sensors measuring position and orientation must meet
certain accuracy criteria. These are discussed in
“Calculating Error Tradeoffs in Weapon Simulation for
Live Training” (Hall, 2006). In some cases, one may
have some confidence in the measured WPD aim point,
but not enough confidence to trust it entirely. In this
case, an averaging or hybrid methodology can be used.
In this paper we assume some intersection point with
the vertical target plane has been chosen. It can be the
measured WPD aim point, the visual center of mass, or
some point in between.

3-Dimensional Geometric Formats

We considered several factors in choosing a 3D format
for use with our methodology. This methodology
needs a polygonal representation of the target. We read
the model file at initialization and store the polygons.
Therefore we have no need for the model file after
initialization. Thus our requirements are a format that
is easy to parse and easy to build polygons from. We
prefer an ASCII based XML format as these are
simplest to parse and build hierarchies from. We also
prefer a format which has a pre-existing comprehensive
library of military models.

X3D is a common format with all the features
necessary to support this methodology (Web 3D
Consortium, 2006). The format is an extensible, XML-
based format for representing 3-dimensional objects. It
is the successor to the popular VRML format. There is
a wide variety of military equipment models available
in X3D. The Navy SAVAGE project has 972 military
models available online (Brutzman, 2006). The Army
Model Exchange also has a comprehensive library of
674 military models (Department of Defense, 2006).

Figure 2 shows an example of the X3D format.
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<7xml wversion="1.0" encoding="UTF-8"1>
<X3D profile="Immersive">
“Scene>
<Transform translation="0 .55 0"»
<Shaper
<Zphere DEF="head" radius="_138"/>
<Appearance DEFE"app">
<Material diffuseColor="0.008 0
</Appearance>
</Shape>
<fTrans form>
<Transform translation
<Shaper
<Cylinder DEF="
<Appearance USER"
< fEhape>
<fTransform>

g .4 0"
" height=".1l" ¥

pp" >

<Transform translationfF" .08 0"

<Shaper
<Box DEF="body" 3ide="_.6 .30 .3"/>
<hAppearance NYSE=" o

</Shape

<fTransfox

<l=-=- ata.

Figure 2. Sample X3D file. X3D uses XML syntax
with nodes for appearance, 3D primitives,
rotational and translational transforms, and more.
The model shown here describes a human head,
neck, and body.

The shapes are defined in XML style blocks. The
hierarchal nature allows grouping and nesting of shapes
to facilitate association and geometric transforms. Note
also the material properties block. Since the format is
extensible, this could be used to define any material
property imaginable. (Material properties are not
currently used by this methodology but could be used
for vulnerability calculations.)

METHODOLOGY DESCRIPTION

In this section we describe the methodology used to
determine a munition’s impact on a target using an
X3D model of the target’s geometry. We will describe
the general software architecture, model initialization,
and engagement processing. We will also describe
optimization strategies and visual center of mass
calculation.
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Methodology Architecture

The methodology architecture uses inheritance and
object containment for efficiency, maintainability, and
flexibility. The architecture is illustrated in Figure 3.
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Figure 3. Player geometry class diagram. A
PlayerGeometryModel is a collection of PolyShapes.
PolyShapes are a collection of Polygons, which are a

collection of Vertices. Each hierarchal level has a
BoundingBox.

These classes contain the polygons that define a
target’s 3-dimensional geometry. The
PlayerGeometrylnterface provides a common base
class so others wishing to define their own geometry
model may do so with minimal impact to the software.
The PlayerGeometryModel realizes this interface. It
contains multiple PolyShapes.  These shapes can
contain several Polygons. A Polygon can contain
multiple Vertices. Note that all levels in this hierarchy
contain a BoundingBox. This box serves as a filter for
engagement processing (see optimization strategies
section).

There are six types of PolyShapes. They of course all

have different shapes, but are all built from the
collection of Polygons.
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Model Initialization

At initialization we build the player geometry model
from the X3D file. Initialization is illustrated in
Figure 4.

[ ParseX3Dfile |
[Buil(l XML tree structure)
with X3D/geometry data

Traverse XML tree |
(i)
)

Add Polygons to
PolyShapes

Add PolyShapes to
PlayerGeometryModel

Return
PlayerGeometryModel

Figure 4. Software Initialization. We parse the
X3D file, build an XML tree from the X3D model,
then traverse the tree, building the player with
polygons and shapes.

We parse the X3D file using a standard third party
XML parser (Apache Software Foundation, 2006). The
XML parser outputs the node model tree defined in the
file. We then traverse the tree, creating polygons as we
go from the node information. The polygons are added
to the PolyShapes, which are in turn added to the
PlayerGeometryModel. At the end of this process, the
PlayerGeometryModel is complete and we no longer
need the information parsed from the X3D file.

Methodology Processing
This section describes the processing of the

engagement. These steps determine if the target was hit
and if so, where. The process is outlined in Figure 5.
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System from target and

Derive Delivery Coordinate
shooter states

Transform geometry from
target to delivery
coordinate system

Get visual mass area and
center of mass

Get hit/miss; hit location

Aim point processing,
if necessary

Figure 5. We calculate hit or miss via this five step
engagement process.

Firstly we derive a coordinate system convenient for
engagement processing. We transform the target
geometry to this coordinate system then calculate the
visual mass area and center of mass. In parallel to
these steps, we process the aim point to get its
intersection with the vertical target plane. (We will not
describe this step since it is trivial and the aim point
could be pre-processed making this step unnecessary.)
Finally, we determine if the target was hit. If it was hit,
we find the impact point.

We derive the delivery coordinate system from the
inputs.  Defining our geometry in the delivery
coordinate system makes processing simpler and more

efficient. The following figure illustrates this
coordinate system.
y
X
y
)
- ;
A
X " :
g Shooter Location
4
z g: global
Coordinate System—{ t: target
d: delivery

Figure 6. The delivery coordinate system puts all
the relevant geometry into an XY plane, turning a
3D problem into a 2D problem.
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The origin of the coordinate system is at the shooter’s
weapon location. We define the Z axis of the delivery
coordinate system as the vector from the target’s visual
center of mass to the shooter’s weapon location. The X
axis is defined by being orthogonal to Z and parallel to
the ground plane (global XZ plane). The Y axis
completes a right-handed coordinate system.

Next, we transform the player model into delivery
coordinate system coordinates. The shooter is viewing
the vertical target plane, which is parallel to the
delivery coordinate system’s XY plane. This allows us
to ignore the Z coordinate of the geometry and assess
the hit based purely on the X and Y coordinates,
turning a 3D problem into a 2D problem.

Finally, we determine if the simulated munition
impacted the target. (The intersection point of the
munition with the vertical target plane must be
provided as an input.) If we determine a hit occurred,
we will in turn determine the impact location. We
traverse the model tree, iterating through the shapes and
polygons. We potentially check each polygon to see if
the plane intersection point is inside. (Typically, each
polygon is not checked. See optimization strategies
section on bounding box filtering below.) Because we
transformed the geometry, we can ignore the polygons’
Z coordinate and use a 2D polygon check to see if the
point is inside.

We use the Jordan Curve Theorem to determine if the
intersection point is inside the polygon (Haines, 1994).
Given a point, draw a line from it to the polygon’s
furthest vertex from that point. The theorem states that
if the line crosses polygon edges an odd number of
times, the point is inside the polygon; an even number
and it is outside. (Count a vertex intersection as one.)

A A
= =

Figure 7. Both polygons on the left have points
inside and the line crosses the edges an odd number
of times. Both polygons on the right have points
outside and the line crosses the edges an even
number of times.
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Figure 7 illustrates this principle. For each point
(shown as circles) a line is drawn from it through the
polygon’s furthest vertex. For trivial polygons with no
concave edges like the triangles at the top, the line
crosses the edges once when inside (odd number), and
twice when outside (even number). For more complex
shapes like the two on the bottom, points might cross
the edges more than once or twice, but the principle
still holds. The one on the bottom left crosses the
edges 3 times (odd number). The outside point on the
bottom right crosses the edges 4 times (even number).

If we find an impact, we save the point along with its
distance to the target. We continue to search for impact
points. When another is found, the one closest to the
target is saved and the other discarded. This ensures
we will have the impact point that will be reached by
the munition first. If no impact point is found, the
simulated munition did not hit the target.

Optimization Strategies

We employed various strategies to ensure the software
runs in real time, regardless of model fidelity level.
Each element in the player geometry hierarchy has a
bounding box starting with the entire player geometry
model (see Figure 3). These bounding box checks are
done at all levels in the hierarchy to ensure the
expensive polygon check previously described will
only be done when the munition is in the neighborhood
of the geometry to be checked. The following figure
illustrates the bounding boxes.

Player
Bounding
Box

Shape
Bounding
Box| §

max

ymin

X

Figure 8. Bounding boxes at different hierarchal
levels. The figure at left shows the bounding box
around the entire player. The one at the right
shows bounding boxes around the shapes. Polygons
and vertices also have bounding boxes (not shown).
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The points A, B, and C in Figure 8 illustrate the use of
bounding boxes. A shot at point A is outside the
bounding box of the entire player model, and
immediately returns a miss with no further processing.
Point B is inside the player model boundary, thus we
iterate through the shapes and look for a hit in each.
However, each check immediately returns as point B is
outside the bounding box for each. Point C is similar,
except for one shape (the head and neck). We iterate
through this shape’s polygons searching for a hit. The
polygons also have bounding boxes (not shown). Thus
we only do the computationally expensive polygon
check for a few polygons instead of the hundreds in this
model.

Another strategy we use to ensure computational
efficiency is results caching. This refers to saving then
reusing results or other calculated parameters from the
previous engagement if the engagement input
parameters are similar enough. We save several
parameters from the previous engagement. Based on
the “level of similarity” shown in Table 1, we can reuse
some of these parameters, saving the computational
time we would have spent recalculating them. These
similarity levels are shown in the following table.

Table 1. Similarity Levels. How similar is the
current engagement to the previous. Used to
determine how much we can reuse cached results.

Similarity Level | Description
All Same v The

target and shooter
locations are the same

v' The target orientation is the
same

v The weapon pointing
direction is the same

Locations and | v/ The

orientation same

target and shooter
locations are the same

v' The target orientation is the
same

Locations same | v/ The target and shooter

locations are the same

None same v’ Nothing is the same

To illustrate results caching, imagine a target and
shooter who are in set positions. The shooter is
shooting a mounted weapon. From shot to shot, the
locations, target orientation, and weapon pointing
direction do not change. (Burst fire weapon
engagements are one example of when this might
occur.) Therefore, many steps in the engagement
process do not need to be redone, including the
expensive step of transforming the target geometry to
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the delivery plane. How much can be reused depends
on how similar the engagements are.

Visual Center of Mass and Mass Area

This methodology provides a convenient method for
calculating the visual center of mass and visual mass
area. The visual center of mass is the area center of
mass from the shooter’s perspective in the vertical
target plane. The visual mass area is the area of the
target profile in the plane.

These values are not necessary for determining hit if
the munition intersection with the vertical target plane
is provided. However, hybrid approaches may use an
average of the visual center of mass and the measured
weapon pointing direction aimpoint. If these values are
desired, this methodology can provide them.

To calculate visual center of mass and visual mass area,
we divide the player bounding box into a grid (left
image, Figure 9). We then check the center point of
each grid cell for geometry (right image, Figure 9). To
check for geometry we use the same polygon algorithm
previously described for checking target/munition
impact. If there is geometry, we increase the count of
visual mass area by the cell area, and add the point to a
running average to get the center of mass.
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Figure 9. To determine visual center of mass and
visual mass area, we divide the bounding box into a
grid (figure on left), then iterate through the grid
cells checking for geometry in each (figure on right).
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CASE STUDY RESULTS

We performed tests to assess the processing time used
by the algorithm. The tests were performed on three
target models of varying fidelity level.

Figure 10. Models used in timing tests. The low
fidelity tank at left has 24 polygons, the simple
soldier in the middle has 128 polygons, and the

detailed soldier at right has 1214 polygons.

The tests also evaluated the effectiveness of the
optimization strategies. We ran tests with and without
results caching. We also ran tests with and without the
bounding box filtering technique. The tests were run
on a laptop machine with the following specifications.

Laptop Specs
2.26 GHz Intel Pentium processor
2.00 GB RAM

We also tested on an embedded processor for
comparison. Fewer tests were run on this processor,
but those that we ran had nearly identical results to the
laptop results. These are not shown below since they
were so similar.

Embedded Processor Specs
500 MHz AMD Geode GX 533
500 MB RAM
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Figure 11. Processing time with different models.
Bounding box optimization was used, but no results
caching.

Figure 11 shows processing times per engagement
(with bounding box optimization) were 15, 40, and 297
milliseconds for low, medium, and high fidelity models
respectively. For most applications, a processing time
of 40 milliseconds per engagement would be
acceptable. The detailed model had a processing time
of nearly 300 milliseconds. Whether or not this would
be acceptable depends on the application. This would
be fine for most live training exercises assuming there
is very little further processing that must occur. If
further processing is required, a less detailed model
should be used.
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Figure 12. Processing time with and without the
bounding box optimization. Note it is very
important for the detailed model.

Figure 12 demonstrates the importance of the bounding
box optimization, particularly for larger models. This
result shows that bounding boxes are a critical part of
the methodology.
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Figure 13. Processing time with and without results
caching. Note reusing parameters greatly improves
efficiency.

Figure 13 shows that results caching can greatly
improve your efficiency. Note however that this
assumes the engagement is nearly identical to the
previous. This will happen occasionally, but not
frequently. Occasionally there will also be a medium
level of reuse, when the engagement is somewhat
similar to the previous. Therefore, this strategy is
helpful to reduce processing time, but cannot be relied
on consistently due to its dependence on scenario
events.

CONCLUSION

A high fidelity end game methodology using 3D target
models is now feasible due to technological advances.
This methodology can more accurately assess the
results of an engagement, for both munition delivery
accuracy and damage assessment.

This paper demonstrated that an implementation of this
methodology can be sufficiently optimized for real-time
live training systems. For low to medium fidelity target
models, the processing time was acceptable (less than
100 milliseconds). For high fidelity target models, the
processing time was higher (about 300 milliseconds).
Whether or not this is acceptable would depend on the
application.

Further work in this area could be done. This
methodology could be extended to other geometric
formats.  Other optimization techniques could be
explored to improve processing time, particularly for
high fidelity models.  Also, the results of this
methodology could be applied to physics-based models
to give even higher fidelity engagement results.
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