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ABSTRACT 

As the military moves toward higher fidelity modeling for live and constructive training, they need more precise 3D 

models of target entities.  This paper presents an approach for using 3D target models in a high fidelity end game 

methodology.  (“End game” in this paper refers to the end of an engagement; i.e., a munition impacting its target.)  

The methodology uses the models to determine if a player was hit in an engagement, and if so, where the impact 

occurred. 

Military training and testing systems are one of many possible applications for this methodology.  In future live 

training and testing domains, each player unit holds the 3D model of the target it represents.  This allows the 

embedded unit to run the algorithm and advise the trainee if he/she was hit by an engagement and if so, 

approximately where.  Using high fidelity models results in less false hits and false misses, avoiding negative 

training.  Other applications of this strategy include sensor system evaluation and calculation of visual center of 

mass. 

This paper will discuss the basics of the methodology including how 3D information is stored on the player unit, 

inputs required to calculate hit location, orienting the model for delivery, and the hit location calculation.  We will 

present an implementation of the algorithm and strategies to optimize processing and memory usage. 
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INTRODUCTION 

Force-on-force live training systems (MILES, 2006) 

typically assume that a shooter aimed and shot at a 

target’s visual center of mass (AMSAA, 2004).  

Historically, sensor systems were too inaccurate to give 

a precise aim point.  Note in Figure 1 that the shooter is 

aiming at a point (the true WPD aim point) well below 

the visual center of mass. 

Technological advances in orientation sensors have 

made it possible to more accurately determine the 

weapon pointing direction (WPD).  GPS systems can 

report the shooter and target position.  From this 

information we can calculate the simulated munition’s 

trajectory.  We can create an “electronic bullet”, a 

message that contains engagement parameters 

necessary to determine the results of the engagement.  

The information in the electronic bullet can also be 

used to calculate the measured WPD aim point shown 

in Figure 1. 

 

Figure 1.  Current systems assume the shooter 

accurately aimed at the visual center of mass (point 

V).  Our proposed methodology uses the measured 

weapon WPD aim point (point M) to determine the 

engagement result.  

The simulated intersection 

point is more realistic when 

using a more accurately 

measured WPD aim point.  

We can use this more 

realistic simulated inter-

section point to determine 

more precisely if a target 

was hit.  If the target was 

hit we can also report what 

part of the target was hit 

(e.g. head or leg for dis-

mounted infantry, turret or 

hull  for  a  tank).         This 

The vertical target 

plane, or VTP, is the 

plane passing through 

the target’s visual center 

of mass that is normal to 

the vector between the 

shooter and the target.  

We will refer to the 

intersection of the sim-

ulated munition with the 

vertical target plane as 

the simulated inter-

section point. 

methodology uses a 3-dimensional model of the target 

to make that assessment. 

A higher fidelity end game methodology would benefit 

many applications.  Vulnerability calculations can use 

the additional information about what part of the target 

was hit to perform a higher fidelity vulnerability 

assessment, resulting in more accurate engagement 

results.  Training systems can use this information for 

health assessment and realistic medical training.  The 

trainee’s confidence in training is enhanced by the 

higher fidelity end game assessment.  Also, with a more 

accurate target model, we can make a more accurate 

estimate of the target’s visual center of mass and visual 

mass area. 

Sensor system evaluation is another potential 

application of this methodology.  Using these methods 

with 3D target models, simulations could evaluate a 

sensor system’s algorithms against targets of various 

sizes and geometries.  Setting up laboratory tests for 

these various targets would be expensive and 

impractical.  This methodology could be used to 

simulate these tests without laboratory setup.  This 

application is not further explored in this paper. 
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BACKGROUND 

Aim Point Error 

Note that in Figure 1 the measured WPD aim point is a 

closer approximation to true WPD aim point than the 

visual center of mass.  For this to truly be the case, the 

sensors measuring position and orientation must meet 

certain accuracy criteria.  These are discussed in 

“Calculating Error Tradeoffs in Weapon Simulation for 

Live Training” (Hall, 2006).  In some cases, one may 

have some confidence in the measured WPD aim point, 

but not enough confidence to trust it entirely.  In this 

case, an averaging or hybrid methodology can be used.  

In this paper we assume some intersection point with 

the vertical target plane has been chosen.  It can be the 

measured WPD aim point, the visual center of mass, or 

some point in between. 

3-Dimensional Geometric Formats 

We considered several factors in choosing a 3D format 

for use with our methodology.  This methodology 

needs a polygonal representation of the target.  We read 

the model file at initialization and store the polygons.  

Therefore we have no need for the model file after 

initialization.  Thus our requirements are a format that 

is easy to parse and easy to build polygons from.  We 

prefer an ASCII based XML format as these are 

simplest to parse and build hierarchies from.  We also 

prefer a format which has a pre-existing comprehensive 

library of military models. 

X3D is a common format with all the features 

necessary to support this methodology (Web 3D 

Consortium, 2006).  The format is an extensible, XML-

based format for representing 3-dimensional objects.  It 

is the successor to the popular VRML format.  There is 

a wide variety of military equipment models available 

in X3D.  The Navy SAVAGE project has 972 military 

models available online (Brutzman, 2006).  The Army 

Model Exchange also has a comprehensive library of 

674 military models (Department of Defense, 2006). 

Figure 2 shows an example of the X3D format.  

 

Figure 2.  Sample X3D file.  X3D uses XML syntax 

with nodes for appearance, 3D primitives, 

rotational and translational transforms, and more.  

The model shown here describes a human head, 

neck, and body. 

The shapes are defined in XML style blocks.  The 

hierarchal nature allows grouping and nesting of shapes 

to facilitate association and geometric transforms.  Note 

also the material properties block.  Since the format is 

extensible, this could be used to define any material 

property imaginable.  (Material properties are not 

currently used by this methodology but could be used 

for vulnerability calculations.) 

METHODOLOGY DESCRIPTION 

In this section we describe the methodology used to 

determine a munition’s impact on a target using an 

X3D model of the target’s geometry.  We will describe 

the general software architecture, model initialization, 

and engagement processing.  We will also describe 

optimization strategies and visual center of mass 

calculation. 
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Methodology Architecture 

The methodology architecture uses inheritance and 

object containment for efficiency, maintainability, and 

flexibility.  The architecture is illustrated in Figure 3. 

 

Figure 3.  Player geometry class diagram.  A 

PlayerGeometryModel is a collection of PolyShapes.  

PolyShapes are a collection of Polygons, which are a 

collection of Vertices.  Each hierarchal level has a 

BoundingBox. 

These classes contain the polygons that define a 

target’s 3-dimensional geometry.  The 

PlayerGeometryInterface provides a common base 

class so others wishing to define their own geometry 

model may do so with minimal impact to the software.  

The PlayerGeometryModel realizes this interface.  It 

contains multiple PolyShapes.  These shapes can 

contain several Polygons.  A Polygon can contain 

multiple Vertices.  Note that all levels in this hierarchy 

contain a BoundingBox.  This box serves as a filter for 

engagement processing (see optimization strategies 

section). 

There are six types of PolyShapes.  They of course all 

have different shapes, but are all built from the 

collection of Polygons. 

Model Initialization 

At initialization we build the player geometry model 

from the X3D file.  Initialization is illustrated in 

Figure 4.  

 

Figure 4.  Software Initialization.  We parse the 

X3D file, build an XML tree from the X3D model, 

then traverse the tree, building the player with 

polygons and shapes. 

We parse the X3D file using a standard third party 

XML parser (Apache Software Foundation, 2006).  The 

XML parser outputs the node model tree defined in the 

file.  We then traverse the tree, creating polygons as we 

go from the node information.  The polygons are added 

to the PolyShapes, which are in turn added to the 

PlayerGeometryModel.  At the end of this process, the 

PlayerGeometryModel is complete and we no longer 

need the information parsed from the X3D file. 

 

Methodology Processing 

This section describes the processing of the 

engagement.  These steps determine if the target was hit 

and if so, where.  The process is outlined in Figure 5.  
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Figure 5.  We calculate hit or miss via this five step 

engagement process. 

Firstly we derive a coordinate system convenient for 

engagement processing.  We transform the target 

geometry to this coordinate system then calculate the 

visual mass area and center of mass.  In parallel to 

these steps, we process the aim point to get its 

intersection with the vertical target plane.  (We will not 

describe this step since it is trivial and the aim point 

could be pre-processed making this step unnecessary.)  

Finally, we determine if the target was hit.  If it was hit, 

we find the impact point. 

We derive the delivery coordinate system from the 

inputs.  Defining our geometry in the delivery 

coordinate system makes processing simpler and more 

efficient.  The following figure illustrates this 

coordinate system.  

 

Figure 6.  The delivery coordinate system puts all 

the relevant geometry into an XY plane, turning a 

3D problem into a 2D problem.  

 

The origin of the coordinate system is at the shooter’s 

weapon location.  We define the Z axis of the delivery 

coordinate system as the vector from the target’s visual 

center of mass to the shooter’s weapon location.  The X 

axis is defined by being orthogonal to Z and parallel to 

the ground plane (global XZ plane).  The Y axis 

completes a right-handed coordinate system. 

Next, we transform the player model into delivery 

coordinate system coordinates.  The shooter is viewing 

the vertical target plane, which is parallel to the 

delivery coordinate system’s XY plane.  This allows us 

to ignore the Z coordinate of the geometry and assess 

the hit based purely on the X and Y coordinates, 

turning a 3D problem into a 2D problem. 

Finally, we determine if the simulated munition 

impacted the target.  (The intersection point of the 

munition with the vertical target plane must be 

provided as an input.)  If we determine a hit occurred, 

we will in turn determine the impact location.  We 

traverse the model tree, iterating through the shapes and 

polygons.  We potentially check each polygon to see if 

the plane intersection point is inside.  (Typically, each 

polygon is not checked.  See optimization strategies 

section on bounding box filtering below.)  Because we 

transformed the geometry, we can ignore the polygons’ 

Z coordinate and use a 2D polygon check to see if the 

point is inside.  

We use the Jordan Curve Theorem to determine if the 

intersection point is inside the polygon (Haines, 1994).  

Given a point, draw a line from it to the polygon’s 

furthest vertex from that point.  The theorem states that 

if the line crosses polygon edges an odd number of 

times, the point is inside the polygon; an even number 

and it is outside.  (Count a vertex intersection as one.) 

 

Figure 7.  Both polygons on the left have points 

inside and the line crosses the edges an odd number 

of times.  Both polygons on the right have points 

outside and the line crosses the edges an even 

number of times. 



Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2006 

2006 Paper No. 2720 Page 6 of 9 

Figure 7 illustrates this principle.  For each point 

(shown as circles) a line is drawn from it through the 

polygon’s furthest vertex.  For trivial polygons with no 

concave edges like the triangles at the top, the line 

crosses the edges once when inside (odd number), and 

twice when outside (even number).  For more complex 

shapes like the two on the bottom, points might cross 

the edges more than once or twice, but the principle 

still holds.  The one on the bottom left crosses the 

edges 3 times (odd number).  The outside point on the 

bottom right crosses the edges 4 times (even number). 

If we find an impact, we save the point along with its 

distance to the target.  We continue to search for impact 

points.  When another is found, the one closest to the 

target is saved and the other discarded.  This ensures 

we will have the impact point that will be reached by 

the munition first.  If no impact point is found, the 

simulated munition did not hit the target. 

Optimization Strategies 

We employed various strategies to ensure the software 

runs in real time, regardless of model fidelity level.  

Each element in the player geometry hierarchy has a 

bounding box starting with the entire player geometry 

model (see Figure 3).  These bounding box checks are 

done at all levels in the hierarchy to ensure the 

expensive polygon check previously described will 

only be done when the munition is in the neighborhood 

of the geometry to be checked.  The following figure 

illustrates the bounding boxes. 

 

Figure 8.  Bounding boxes at different hierarchal 

levels.  The figure at left shows the bounding box 

around the entire player.  The one at the right 

shows bounding boxes around the shapes.  Polygons 

and vertices also have bounding boxes (not shown). 

The points A, B, and C in Figure 8 illustrate the use of 

bounding boxes.  A shot at point A is outside the 

bounding box of the entire player model, and 

immediately returns a miss with no further processing.  

Point B is inside the player model boundary, thus we 

iterate through the shapes and look for a hit in each.  

However, each check immediately returns as point B is 

outside the bounding box for each.  Point C is similar, 

except for one shape (the head and neck).  We iterate 

through this shape’s polygons searching for a hit.  The 

polygons also have bounding boxes (not shown).  Thus 

we only do the computationally expensive polygon 

check for a few polygons instead of the hundreds in this 

model. 

Another strategy we use to ensure computational 

efficiency is results caching.  This refers to saving then 

reusing results or other calculated parameters from the 

previous engagement if the engagement input 

parameters are similar enough.  We save several 

parameters from the previous engagement.  Based on 

the “level of similarity” shown in Table 1, we can reuse 

some of these parameters, saving the computational 

time we would have spent recalculating them.  These 

similarity levels are shown in the following table. 

 

Table 1.  Similarity Levels.  How similar is the 

current engagement to the previous.  Used to 

determine how much we can reuse cached results. 

Similarity Level Description 

All Same � The target and shooter 

locations are the same 

� The target orientation is the 

same 

� The weapon pointing 

direction is the same 

Locations and 

orientation same 
� The target and shooter 

locations are the same 

� The target orientation is the 

same 

Locations same � The target and shooter 

locations are the same 

None same � Nothing is the same  

To illustrate results caching, imagine a target and 

shooter who are in set positions.  The shooter is 

shooting a mounted weapon.  From shot to shot, the 

locations, target orientation, and weapon pointing 

direction do not change.  (Burst fire weapon 

engagements are one example of when this might 

occur.)  Therefore, many steps in the engagement 

process do not need to be redone, including the 

expensive step of transforming the target geometry to 
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the delivery plane.  How much can be reused depends 

on how similar the engagements are. 

Visual Center of Mass and Mass Area 

This methodology provides a convenient method for 

calculating the visual center of mass and visual mass 

area.  The visual center of mass is the area center of 

mass from the shooter’s perspective in the vertical 

target plane.  The visual mass area is the area of the 

target profile in the plane. 

These values are not necessary for determining hit if 

the munition intersection with the vertical target plane 

is provided.  However, hybrid approaches may use an 

average of the visual center of mass and the measured 

weapon pointing direction aimpoint.  If these values are 

desired, this methodology can provide them. 

To calculate visual center of mass and visual mass area, 

we divide the player bounding box into a grid (left 

image, Figure 9).  We then check the center point of 

each grid cell for geometry (right image, Figure 9).  To 

check for geometry we use the same polygon algorithm 

previously described for checking target/munition 

impact.  If there is geometry, we increase the count of 

visual mass area by the cell area, and add the point to a 

running average to get the center of mass. 

 

 

Figure 9.  To determine visual center of mass and 

visual mass area, we divide the bounding box into a 

grid (figure on left), then iterate through the grid 

cells checking for geometry in each (figure on right). 

CASE STUDY RESULTS 

We performed tests to assess the processing time used 

by the algorithm.  The tests were performed on three 

target models of varying fidelity level. 

 

Figure 10.  Models used in timing tests.  The low 

fidelity tank at left has 24 polygons, the simple 

soldier in the middle has 128 polygons, and the 

detailed soldier at right has 1214 polygons. 

The tests also evaluated the effectiveness of the 

optimization strategies.  We ran tests with and without 

results caching.  We also ran tests with and without the 

bounding box filtering technique.  The tests were run 

on a laptop machine with the following specifications. 

Laptop Specs 

2.26 GHz Intel Pentium processor 

2.00 GB RAM 

We also tested on an embedded processor for 

comparison.  Fewer tests were run on this processor, 

but those that we ran had nearly identical results to the 

laptop results.  These are not shown below since they 

were so similar. 

Embedded Processor Specs 

500 MHz AMD Geode GX 533 

500 MB RAM 
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Figure 11.  Processing time with different models.  

Bounding box optimization was used, but no results 

caching.  

Figure 11 shows processing times per engagement 

(with bounding box optimization) were 15, 40, and 297 

milliseconds for low, medium, and high fidelity models 

respectively.  For most applications, a processing time 

of 40 milliseconds per engagement would be 

acceptable.  The detailed model had a processing time 

of nearly 300 milliseconds.  Whether or not this would 

be acceptable depends on the application.  This would 

be fine for most live training exercises assuming there 

is very little further processing that must occur.  If 

further processing is required, a less detailed model 

should be used. 
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Figure 12.  Processing time with and without the 

bounding box optimization.  Note it is very 

important for the detailed model. 

Figure 12 demonstrates the importance of the bounding 

box optimization, particularly for larger models.  This 

result shows that bounding boxes are a critical part of 

the methodology. 
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Figure 13.  Processing time with and without results 

caching.  Note reusing parameters greatly improves 

efficiency. 

Figure 13 shows that results caching can greatly 

improve your efficiency.  Note however that this 

assumes the engagement is nearly identical to the 

previous.  This will happen occasionally, but not 

frequently.  Occasionally there will also be a medium 

level of reuse, when the engagement is somewhat 

similar to the previous.  Therefore, this strategy is 

helpful to reduce processing time, but cannot be relied 

on consistently due to its dependence on scenario 

events. 

CONCLUSION 

A high fidelity end game methodology using 3D target 

models is now feasible due to technological advances.  

This methodology can more accurately assess the 

results of an engagement, for both munition delivery 

accuracy and damage assessment.  

This paper demonstrated that an implementation of this 

methodology can be sufficiently optimized for real-time 

live training systems.  For low to medium fidelity target 

models, the processing time was acceptable (less than 

100 milliseconds).  For high fidelity target models, the 

processing time was higher (about 300 milliseconds).  

Whether or not this is acceptable would depend on the 

application. 

Further work in this area could be done.  This 

methodology could be extended to other geometric 

formats.  Other optimization techniques could be 

explored to improve processing time, particularly for 

high fidelity models.  Also, the results of this 

methodology could be applied to physics-based models 

to give even higher fidelity engagement results. 
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