
Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2006

2006 Paper No. 2720 Page 1 of 9

XML-Based 3D Models for High Fidelity End Game Methodology

Jeff Lyons, Dr. David Fisher, Matt Kraus

Applied Research Associates, Inc.

Orlando, FL

jlyons@ara.com, dfisher@ara.com, mkraus@ara.com

ABSTRACT

As the military moves toward higher fidelity modeling for live and constructive training, they need more precise 3D

models of target entities. This paper presents an approach for using 3D target models in a high fidelity end game

methodology. (“End game” in this paper refers to the end of an engagement; i.e., a munition impacting its target.)

The methodology uses the models to determine if a player was hit in an engagement, and if so, where the impact

occurred.

Military training and testing systems are one of many possible applications for this methodology. In future live

training and testing domains, each player unit holds the 3D model of the target it represents. This allows the

embedded unit to run the algorithm and advise the trainee if he/she was hit by an engagement and if so,

approximately where. Using high fidelity models results in less false hits and false misses, avoiding negative

training. Other applications of this strategy include sensor system evaluation and calculation of visual center of

mass.

This paper will discuss the basics of the methodology including how 3D information is stored on the player unit,

inputs required to calculate hit location, orienting the model for delivery, and the hit location calculation. We will

present an implementation of the algorithm and strategies to optimize processing and memory usage.

ABOUT THE AUTHORS

Jeff Lyons is a senior engineer at Applied Research Associates. He has a Bachelor of Science degree in mechanical

engineering from Florida State University and a Masters in mechanical engineering from the Massachusetts Institute

of Technology. Jeff’s experience spans the mechanical engineering and software engineering disciplines. He has

experience in structural analysis, CAD design, manufacturing support, and test support. He also has worked

extensively in simulation and software design. He has worked on tasks related to military training and testing

systems.

Dr. David L. Fisher is a senior scientist for Applied Research Associates. Since receiving his doctorate in physics

from the University of Texas at Austin in 1995, David has worked in the areas of theoretical plasma physics, laser-

plasma interactions, laser wakefield acceleration, detection of explosive materials, millimeter wave sensors and

applications, an Internet business, and systems and software engineering. David is presently supporting the

development of area weapon effects models. David has 22 professional publications and 2 patents (1 pending).

Matt Kraus is a principal scientist at Applied Research Associates. He has a Bachelor of Science degree in

computer science from Western Michigan University and a Master of Science degree in simulation, modeling, and

analysis from the University of Central Florida. His research interests are in the areas of distributed computing,

artificial intelligence, and computer graphics.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2006

2006 Paper No. 2720 Page 2 of 9

XML-Based 3D Models for High Fidelity End Game Algorithm

INTRODUCTION

Force-on-force live training systems (MILES, 2006)

typically assume that a shooter aimed and shot at a

target’s visual center of mass (AMSAA, 2004).

Historically, sensor systems were too inaccurate to give

a precise aim point. Note in Figure 1 that the shooter is

aiming at a point (the true WPD aim point) well below

the visual center of mass.

Technological advances in orientation sensors have

made it possible to more accurately determine the

weapon pointing direction (WPD). GPS systems can

report the shooter and target position. From this

information we can calculate the simulated munition’s

trajectory. We can create an “electronic bullet”, a

message that contains engagement parameters

necessary to determine the results of the engagement.

The information in the electronic bullet can also be

used to calculate the measured WPD aim point shown

in Figure 1.

Figure 1. Current systems assume the shooter

accurately aimed at the visual center of mass (point

V). Our proposed methodology uses the measured

weapon WPD aim point (point M) to determine the

engagement result.

The simulated intersection

point is more realistic when

using a more accurately

measured WPD aim point.

We can use this more

realistic simulated inter-

section point to determine

more precisely if a target

was hit. If the target was

hit we can also report what

part of the target was hit

(e.g. head or leg for dis-

mounted infantry, turret or

hull for a tank). This

The vertical target

plane, or VTP, is the

plane passing through

the target’s visual center

of mass that is normal to

the vector between the

shooter and the target.

We will refer to the

intersection of the sim-

ulated munition with the

vertical target plane as

the simulated inter-

section point.

methodology uses a 3-dimensional model of the target

to make that assessment.

A higher fidelity end game methodology would benefit

many applications. Vulnerability calculations can use

the additional information about what part of the target

was hit to perform a higher fidelity vulnerability

assessment, resulting in more accurate engagement

results. Training systems can use this information for

health assessment and realistic medical training. The

trainee’s confidence in training is enhanced by the

higher fidelity end game assessment. Also, with a more

accurate target model, we can make a more accurate

estimate of the target’s visual center of mass and visual

mass area.

Sensor system evaluation is another potential

application of this methodology. Using these methods

with 3D target models, simulations could evaluate a

sensor system’s algorithms against targets of various

sizes and geometries. Setting up laboratory tests for

these various targets would be expensive and

impractical. This methodology could be used to

simulate these tests without laboratory setup. This

application is not further explored in this paper.

Jeff Lyons, Dr. David Fisher, Matt Kraus

Applied Research Associates, Inc.

Orlando, FL

jlyons@ara.com, dfisher@ara.com, mkraus@ara.com

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2006

2006 Paper No. 2720 Page 3 of 9

BACKGROUND

Aim Point Error

Note that in Figure 1 the measured WPD aim point is a

closer approximation to true WPD aim point than the

visual center of mass. For this to truly be the case, the

sensors measuring position and orientation must meet

certain accuracy criteria. These are discussed in

“Calculating Error Tradeoffs in Weapon Simulation for

Live Training” (Hall, 2006). In some cases, one may

have some confidence in the measured WPD aim point,

but not enough confidence to trust it entirely. In this

case, an averaging or hybrid methodology can be used.

In this paper we assume some intersection point with

the vertical target plane has been chosen. It can be the

measured WPD aim point, the visual center of mass, or

some point in between.

3-Dimensional Geometric Formats

We considered several factors in choosing a 3D format

for use with our methodology. This methodology

needs a polygonal representation of the target. We read

the model file at initialization and store the polygons.

Therefore we have no need for the model file after

initialization. Thus our requirements are a format that

is easy to parse and easy to build polygons from. We

prefer an ASCII based XML format as these are

simplest to parse and build hierarchies from. We also

prefer a format which has a pre-existing comprehensive

library of military models.

X3D is a common format with all the features

necessary to support this methodology (Web 3D

Consortium, 2006). The format is an extensible, XML-

based format for representing 3-dimensional objects. It

is the successor to the popular VRML format. There is

a wide variety of military equipment models available

in X3D. The Navy SAVAGE project has 972 military

models available online (Brutzman, 2006). The Army

Model Exchange also has a comprehensive library of

674 military models (Department of Defense, 2006).

Figure 2 shows an example of the X3D format.

Figure 2. Sample X3D file. X3D uses XML syntax

with nodes for appearance, 3D primitives,

rotational and translational transforms, and more.

The model shown here describes a human head,

neck, and body.

The shapes are defined in XML style blocks. The

hierarchal nature allows grouping and nesting of shapes

to facilitate association and geometric transforms. Note

also the material properties block. Since the format is

extensible, this could be used to define any material

property imaginable. (Material properties are not

currently used by this methodology but could be used

for vulnerability calculations.)

METHODOLOGY DESCRIPTION

In this section we describe the methodology used to

determine a munition’s impact on a target using an

X3D model of the target’s geometry. We will describe

the general software architecture, model initialization,

and engagement processing. We will also describe

optimization strategies and visual center of mass

calculation.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2006

2006 Paper No. 2720 Page 4 of 9

Methodology Architecture

The methodology architecture uses inheritance and

object containment for efficiency, maintainability, and

flexibility. The architecture is illustrated in Figure 3.

Figure 3. Player geometry class diagram. A

PlayerGeometryModel is a collection of PolyShapes.

PolyShapes are a collection of Polygons, which are a

collection of Vertices. Each hierarchal level has a

BoundingBox.

These classes contain the polygons that define a

target’s 3-dimensional geometry. The

PlayerGeometryInterface provides a common base

class so others wishing to define their own geometry

model may do so with minimal impact to the software.

The PlayerGeometryModel realizes this interface. It

contains multiple PolyShapes. These shapes can

contain several Polygons. A Polygon can contain

multiple Vertices. Note that all levels in this hierarchy

contain a BoundingBox. This box serves as a filter for

engagement processing (see optimization strategies

section).

There are six types of PolyShapes. They of course all

have different shapes, but are all built from the

collection of Polygons.

Model Initialization

At initialization we build the player geometry model

from the X3D file. Initialization is illustrated in

Figure 4.

Figure 4. Software Initialization. We parse the

X3D file, build an XML tree from the X3D model,

then traverse the tree, building the player with

polygons and shapes.

We parse the X3D file using a standard third party

XML parser (Apache Software Foundation, 2006). The

XML parser outputs the node model tree defined in the

file. We then traverse the tree, creating polygons as we

go from the node information. The polygons are added

to the PolyShapes, which are in turn added to the

PlayerGeometryModel. At the end of this process, the

PlayerGeometryModel is complete and we no longer

need the information parsed from the X3D file.

Methodology Processing

This section describes the processing of the

engagement. These steps determine if the target was hit

and if so, where. The process is outlined in Figure 5.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2006

2006 Paper No. 2720 Page 5 of 9

Figure 5. We calculate hit or miss via this five step

engagement process.

Firstly we derive a coordinate system convenient for

engagement processing. We transform the target

geometry to this coordinate system then calculate the

visual mass area and center of mass. In parallel to

these steps, we process the aim point to get its

intersection with the vertical target plane. (We will not

describe this step since it is trivial and the aim point

could be pre-processed making this step unnecessary.)

Finally, we determine if the target was hit. If it was hit,

we find the impact point.

We derive the delivery coordinate system from the

inputs. Defining our geometry in the delivery

coordinate system makes processing simpler and more

efficient. The following figure illustrates this

coordinate system.

Figure 6. The delivery coordinate system puts all

the relevant geometry into an XY plane, turning a

3D problem into a 2D problem.

The origin of the coordinate system is at the shooter’s

weapon location. We define the Z axis of the delivery

coordinate system as the vector from the target’s visual

center of mass to the shooter’s weapon location. The X

axis is defined by being orthogonal to Z and parallel to

the ground plane (global XZ plane). The Y axis

completes a right-handed coordinate system.

Next, we transform the player model into delivery

coordinate system coordinates. The shooter is viewing

the vertical target plane, which is parallel to the

delivery coordinate system’s XY plane. This allows us

to ignore the Z coordinate of the geometry and assess

the hit based purely on the X and Y coordinates,

turning a 3D problem into a 2D problem.

Finally, we determine if the simulated munition

impacted the target. (The intersection point of the

munition with the vertical target plane must be

provided as an input.) If we determine a hit occurred,

we will in turn determine the impact location. We

traverse the model tree, iterating through the shapes and

polygons. We potentially check each polygon to see if

the plane intersection point is inside. (Typically, each

polygon is not checked. See optimization strategies

section on bounding box filtering below.) Because we

transformed the geometry, we can ignore the polygons’

Z coordinate and use a 2D polygon check to see if the

point is inside.

We use the Jordan Curve Theorem to determine if the

intersection point is inside the polygon (Haines, 1994).

Given a point, draw a line from it to the polygon’s

furthest vertex from that point. The theorem states that

if the line crosses polygon edges an odd number of

times, the point is inside the polygon; an even number

and it is outside. (Count a vertex intersection as one.)

Figure 7. Both polygons on the left have points

inside and the line crosses the edges an odd number

of times. Both polygons on the right have points

outside and the line crosses the edges an even

number of times.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2006

2006 Paper No. 2720 Page 6 of 9

Figure 7 illustrates this principle. For each point

(shown as circles) a line is drawn from it through the

polygon’s furthest vertex. For trivial polygons with no

concave edges like the triangles at the top, the line

crosses the edges once when inside (odd number), and

twice when outside (even number). For more complex

shapes like the two on the bottom, points might cross

the edges more than once or twice, but the principle

still holds. The one on the bottom left crosses the

edges 3 times (odd number). The outside point on the

bottom right crosses the edges 4 times (even number).

If we find an impact, we save the point along with its

distance to the target. We continue to search for impact

points. When another is found, the one closest to the

target is saved and the other discarded. This ensures

we will have the impact point that will be reached by

the munition first. If no impact point is found, the

simulated munition did not hit the target.

Optimization Strategies

We employed various strategies to ensure the software

runs in real time, regardless of model fidelity level.

Each element in the player geometry hierarchy has a

bounding box starting with the entire player geometry

model (see Figure 3). These bounding box checks are

done at all levels in the hierarchy to ensure the

expensive polygon check previously described will

only be done when the munition is in the neighborhood

of the geometry to be checked. The following figure

illustrates the bounding boxes.

Figure 8. Bounding boxes at different hierarchal

levels. The figure at left shows the bounding box

around the entire player. The one at the right

shows bounding boxes around the shapes. Polygons

and vertices also have bounding boxes (not shown).

The points A, B, and C in Figure 8 illustrate the use of

bounding boxes. A shot at point A is outside the

bounding box of the entire player model, and

immediately returns a miss with no further processing.

Point B is inside the player model boundary, thus we

iterate through the shapes and look for a hit in each.

However, each check immediately returns as point B is

outside the bounding box for each. Point C is similar,

except for one shape (the head and neck). We iterate

through this shape’s polygons searching for a hit. The

polygons also have bounding boxes (not shown). Thus

we only do the computationally expensive polygon

check for a few polygons instead of the hundreds in this

model.

Another strategy we use to ensure computational

efficiency is results caching. This refers to saving then

reusing results or other calculated parameters from the

previous engagement if the engagement input

parameters are similar enough. We save several

parameters from the previous engagement. Based on

the “level of similarity” shown in Table 1, we can reuse

some of these parameters, saving the computational

time we would have spent recalculating them. These

similarity levels are shown in the following table.

Table 1. Similarity Levels. How similar is the

current engagement to the previous. Used to

determine how much we can reuse cached results.

Similarity Level Description

All Same � The target and shooter

locations are the same

� The target orientation is the

same

� The weapon pointing

direction is the same

Locations and

orientation same
� The target and shooter

locations are the same

� The target orientation is the

same

Locations same � The target and shooter

locations are the same

None same � Nothing is the same

To illustrate results caching, imagine a target and

shooter who are in set positions. The shooter is

shooting a mounted weapon. From shot to shot, the

locations, target orientation, and weapon pointing

direction do not change. (Burst fire weapon

engagements are one example of when this might

occur.) Therefore, many steps in the engagement

process do not need to be redone, including the

expensive step of transforming the target geometry to

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2006

2006 Paper No. 2720 Page 7 of 9

the delivery plane. How much can be reused depends

on how similar the engagements are.

Visual Center of Mass and Mass Area

This methodology provides a convenient method for

calculating the visual center of mass and visual mass

area. The visual center of mass is the area center of

mass from the shooter’s perspective in the vertical

target plane. The visual mass area is the area of the

target profile in the plane.

These values are not necessary for determining hit if

the munition intersection with the vertical target plane

is provided. However, hybrid approaches may use an

average of the visual center of mass and the measured

weapon pointing direction aimpoint. If these values are

desired, this methodology can provide them.

To calculate visual center of mass and visual mass area,

we divide the player bounding box into a grid (left

image, Figure 9). We then check the center point of

each grid cell for geometry (right image, Figure 9). To

check for geometry we use the same polygon algorithm

previously described for checking target/munition

impact. If there is geometry, we increase the count of

visual mass area by the cell area, and add the point to a

running average to get the center of mass.

Figure 9. To determine visual center of mass and

visual mass area, we divide the bounding box into a

grid (figure on left), then iterate through the grid

cells checking for geometry in each (figure on right).

CASE STUDY RESULTS

We performed tests to assess the processing time used

by the algorithm. The tests were performed on three

target models of varying fidelity level.

Figure 10. Models used in timing tests. The low

fidelity tank at left has 24 polygons, the simple

soldier in the middle has 128 polygons, and the

detailed soldier at right has 1214 polygons.

The tests also evaluated the effectiveness of the

optimization strategies. We ran tests with and without

results caching. We also ran tests with and without the

bounding box filtering technique. The tests were run

on a laptop machine with the following specifications.

Laptop Specs

2.26 GHz Intel Pentium processor

2.00 GB RAM

We also tested on an embedded processor for

comparison. Fewer tests were run on this processor,

but those that we ran had nearly identical results to the

laptop results. These are not shown below since they

were so similar.

Embedded Processor Specs

500 MHz AMD Geode GX 533

500 MB RAM

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2006

2006 Paper No. 2720 Page 8 of 9

15
40

297

0

50

100

150

200

250

300

350

Tank Simple soldier Detailed

soldier

ti
m

e
 (
m

s
)
 _

Figure 11. Processing time with different models.

Bounding box optimization was used, but no results

caching.

Figure 11 shows processing times per engagement

(with bounding box optimization) were 15, 40, and 297

milliseconds for low, medium, and high fidelity models

respectively. For most applications, a processing time

of 40 milliseconds per engagement would be

acceptable. The detailed model had a processing time

of nearly 300 milliseconds. Whether or not this would

be acceptable depends on the application. This would

be fine for most live training exercises assuming there

is very little further processing that must occur. If

further processing is required, a less detailed model

should be used.

15

40

297

18

48

9500

1

10

100

1000

10000

100000

Tank Simple soldier Detailed soldier

ti
m

e
 (
m

s
,
lo

g
 s

c
a
le

)

 _

 Bounding Box

No Bounding Box

Figure 12. Processing time with and without the

bounding box optimization. Note it is very

important for the detailed model.

Figure 12 demonstrates the importance of the bounding

box optimization, particularly for larger models. This

result shows that bounding boxes are a critical part of

the methodology.

15

0.09 0.09 0.09

40

297

0.01

0.1

1

10

100

1000

10000

Tank Simple soldier Detailed soldier

ti
m

e
 (
m

s
,
lo

g
 s

c
a
le

)

 _

No caching

Heavy use of cached

results

Figure 13. Processing time with and without results

caching. Note reusing parameters greatly improves

efficiency.

Figure 13 shows that results caching can greatly

improve your efficiency. Note however that this

assumes the engagement is nearly identical to the

previous. This will happen occasionally, but not

frequently. Occasionally there will also be a medium

level of reuse, when the engagement is somewhat

similar to the previous. Therefore, this strategy is

helpful to reduce processing time, but cannot be relied

on consistently due to its dependence on scenario

events.

CONCLUSION

A high fidelity end game methodology using 3D target

models is now feasible due to technological advances.

This methodology can more accurately assess the

results of an engagement, for both munition delivery

accuracy and damage assessment.

This paper demonstrated that an implementation of this

methodology can be sufficiently optimized for real-time

live training systems. For low to medium fidelity target

models, the processing time was acceptable (less than

100 milliseconds). For high fidelity target models, the

processing time was higher (about 300 milliseconds).

Whether or not this is acceptable would depend on the

application.

Further work in this area could be done. This

methodology could be extended to other geometric

formats. Other optimization techniques could be

explored to improve processing time, particularly for

high fidelity models. Also, the results of this

methodology could be applied to physics-based models

to give even higher fidelity engagement results.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2006

2006 Paper No. 2720 Page 9 of 9

ACKNOWLEDGEMENTS

Thanks to Mary Ann Pigora for her reviews and

insightful comments.

REFERENCES

AMSAA. (2004). Physical Model Knowledge

Acquisition Document, Vulnerability from Direct

Fire Weapons for Ground Vehicles, document

number KEMA070001.

Apache Software Foundation. (2006). Xerces;

Validating XML parser located at

http://xml.apache.org/xerces-c/

Brutzman, D. (2006). SAVAGE Project; Free

repository of X3D Models from Navy Source

located at

http://web.nps.navy.mil/~brutzman/Savage/

Department of Defense. (2006). Army Online Model

Exchange, paid subscription required, located at

https://modelexchange.army.mil

Haines, E. (1994). Point in Polygon Strategies.

Graphics Gems IV, pages 24-46.

Hall, R., & Janisz, M. (2006). Calculating Error

Tradeoffs in Weapon Simulation for Live Training.

IITSEC 2006, Paper number 2515.

MILES. (2006). Multiple Integrated Laser

Engagement System. located at

http://www.peostri.army.mil/PRODUCTS/MILES/

Web 3D Consortium. (2006). X3D; XML based open

file format for representing 3D scenes. Located at:

http://www.web3d.org/

