
Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2006

Building Distributed Simulations Utilizing
the EAAGLES Framework

Douglas D. Hodson
Capabilities Integration

Directorate
Wright-Patterson AFB, OH
douglas.hodson@wpafb.af.mil

David P. Gehl
L-3 Communications

Link Simulation & Training
Dayton, OH

david.gehl@wpafb.af.mil

Rusty O. Baldwin
Air Force Institute of

Technology
WPAFB, OH

rusty.baldwin@afit.edu

ABSTRACT

The Extensible Architecture for the Analysis and Generation of Linked Simulations (EAAGLES) software is
a framework for the design of robust, scalable, virtual, constructive, stand-alone, and distributed simulation
applications. Its design integrates concepts from both virtual and constructive simulations to achieve an
optimal blend of both.

The Simulation and Analysis Facility (SIMAF) located at WPAFB, Ohio, participates in a number of
distributed events each year. The vast majority of the distributed simulation software used in the facility has
been “home grown” utilizing the EAAGLES framework which provides native interfaces to the Distributed
Interactive Simulation (DIS) protocol and High Level Architecture (HLA). Applications built utilizing the
framework include cockpits (F-16), ground control stations (Predator MQ-9), threat Integrated Air Defense
Systems (IADS) and a futuristic battle manager. Interfaces to other systems, such as Simulink-based models,
have also been developed.

This paper describes the distributed software architecture and explains how to take advantage of low-cost
dual processor PCs to support real-time simulation systems.

ABOUT THE AUTHORS

Douglas D. Hodson is an Electrical Engineer at the Simulation and Analysis Facility, Wright Patterson Air
Force Base AFB, OH. He is the technical lead of the Extensible Architecture for the Analysis and Generation
of Linked Simulations (EAAGLES) software framework. This framework is currently being used to support
the development of both virtual and constructive and stand-alone and distributed simulation applications.
He received a B.S. in Physics from Wright State University in 1985, and both an M.S. in Electro-Optics in
1987 and an M.B.A. in 1999 from the University of Dayton. He is also a graduate student and Adjunct
Instructor at the Air Force Institute of Technology working towards his Ph.D. in Computer Engineering.

David P. Gehl is employed by L-3 Communications, Link Simulation & Training Division. He has over
30 years of experience in man-in-the-loop simulation and training for human factors engineering research
including extensive knowledge in pilot/operator-vehicle interfaces, aircraft system models (aerodynamics,
radars, weapon delivery, navigation, visual systems, etc.), and real-time system development. Currently he
serves as the primary architect for the Extensible Architecture for the Analysis and Generation of Linked
Simulations (EAAGLES) simulation framework. He holds a B.S. in Computer Science in 1979 and a M.S.
in Systems Engineering in 1986 from Wright State University.

Rusty O. Baldwin is an Associate Professor of Computer Engineering in the Department of Electrical
and Computer Engineering, Air Force Institute of Technology, Wright-Patterson AFB, OH. He received a
B.S. in Electrical Engineering (cum laude) from New Mexico State University in 1987, an M.S. in Computer
Engineering from the Air Force Institute of Technology in 1992, and a Ph.D. in Electrical Engineering from
Virginia Polytechnic Institute and State University in 1999. He served 23 years in the United States Air
Force. He is a registered Professional Engineer in Ohio and a member of Eta Kappa Nu, and a Senior
Member of IEEE. His research interests include computer communication networks, embedded and wireless
networking, information assurance, and reconfigurable computing systems.

2006 Paper No. 2628 Page 1 of 10



Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2006

Building Distributed Simulations Utilizing
the EAAGLES Framework

Douglas D. Hodson
Capabilities Integration

Directorate
Wright-Patterson AFB, OH
douglas.hodson@wpafb.af.mil

David P. Gehl
L-3 Communications

Link Simulation & Training
Dayton, OH

david.gehl@wpafb.af.mil

Rusty O. Baldwin
Air Force Institute of

Technology
WPAFB, OH

rusty.baldwin@afit.edu

INTRODUCTION

The Simulation and Analysis Facility (SIMAF) lo-
cated at Wright Patterson AFB (WPAFB), Ohio par-
ticipates in a number of distributed simulation activ-
ities each year that include live, virtual (human-in-
the-loop) and constructive players/entities. The ma-
jority of the distributed simulation applications have
been developed using the Extensible Architecture for
the Analysis and Generation of Linked Simulations
(EAAGLES) software framework.

EAAGLES is a simulation design pattern that pro-
vides a structure for constructing simulation appli-
cations. The framework aids the design of robust,
scalable, virtual, constructive, stand-alone, and dis-
tributed simulation applications. It leverages modern
object-oriented software design principles while incor-
porating fundamental real-time system design tech-
niques to meet human interaction requirements.

By providing abstract representations of system com-
ponents (that the object-oriented design philosophy
promotes), multiple levels of fidelity can be easily
intermixed and selected for optimal runtime perfor-
mance. Abstract representations of systems allow a
developer to tune the application to run efficiently so
that human-in-the-loop interaction latency deadlines
can be met. On the flip side, constructive-only sim-
ulation applications that do not need to meet time-
critical deadlines can use models with even higher
levels of fidelity.

The framework embraces the Model-View-Controller
(MVC) software design pattern by partitioning func-
tional components into packages. This concept is
taken a step further by providing an abstract network
interface so custom protocols can be implemented
without affecting system models. Examples include
the Distributed Interactive Simulation (DIS) protocol
and the High Level Architecture (HLA) interfaces.

Specific applications using the framework to sup-
port simulation activities include representative F-16
cockpits, an Unmanned Aerial Vehicle (UAV) ground
control station (Predator MQ-9), Integrated Air De-

fense Systems (IADS) and a futuristic battle man-
ager.

FRAMEWORKS, TOOLKITS &
APPLICATIONS

A framework is a set of cooperating classes that
make up a reusable design for a specific class of soft-
ware (Deutsch, 1989; Johnson, 1988). A framework
is customized to a particular application by creat-
ing application-specific subclasses of abstract classes
from the framework (Gamma, 1995). A toolkit is a
set of related and reusable classes that provide useful,
general-purpose functionality. They are the object-
oriented equivalent of subroutine libraries (Gamma,
1995).

EAAGLES itself is not an application. Applications
are stand-alone executable software programs like Mi-
crosoft Word. They typically satisfy a particular
need.

EAAGLES is an object-oriented modeling and sim-
ulation framework coded in C++. It is partitioned
into packages that serve as functional toolkits for the
developer. One example would be the EAAGLES
graphics toolkit, which facilitates the development of
operator/vehicle interfaces and displays.

The framework enables the creation of a diverse set of
simulation applications. Derived simulation applica-
tions using the framework can be run stand-alone or
distributed. Distributed applications can interoper-
ate with other systems and simulations through DIS
and/or HLA interfaces. The application might in-
clude software agents that represent human partic-
ipation (constructive), or it might need to interact
with a real human participant (virtual).

HUMAN INTERACTION & VIRTUAL
SIMULATION

Simulations that interact with human participants
must respond within a prescribed deadline (latency

2006 Paper No. 2628 Page 2 of 10



Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2006

or response time). A simulation that does not re-
spond like the system it is intended to represent will
frustrate the operator and may skew the simulation
results. Software systems faced with this demanding
requirement fall into the category of real-time sys-
tems.

Real-time systems are designed and organized so
that time-critical (often periodic) tasks can meet
their deadlines. Two standard approaches to
scheduling tasks include priority-based and fore-
ground/background systems. Priority-based designs
assign a priority to each task in the system. The task
with the highest priority that is ready to run is ex-
ecuted first. The scheduling of the task resides with
the operating system.

In a foreground/background system the application
controls the scheduling of tasks. Foreground tasks
are executed with the help of a jump-list, or a man-
aged list of pointers to functions (tasks). Tasks are
executed one after another as defined by the list or-
der. Aperiodic events and background tasks receive
processing time after all the “highest priority” tasks
in the list have finished.

EAAGLES is a foreground/background system, but
instead of managing a jump-list (or a list of functions
to process), scheduling is interwoven into the object
hierarchy. It is specifically designed to take advan-
tage of low-cost dual processor PCs which allow the
creation of a time-critical foreground thread. Because
multiple processors are available, reliable execution of
a time-critical thread is assured with general purpose
operating systems such as Windows and Linux.

It should be emphasized that EAAGLES is a cycle or
frame-based system, not a discrete-event simulator.
This approach satisfies the requirements for which
it is designed; namely, support for models of vary-
ing levels of fidelity including higher level “physics-
based” models, digital signal processing models and
the ability to meet real-time performance require-
ments. Model state can be captured with state ma-
chines and state transitions can use the message pass-
ing mechanisms provided by the framework.

AN OBJECT-ORIENTED REAL-TIME
FRAMEWORK

EAAGLES is an object-oriented C++ simulation
framework. C++ was chosen since:

• Most real-time systems are developed in C for
performance reasons (Laplante, 2004). Object-

oriented languages tend to be viewed with
skepticism as overall system performance of-
ten outweighs flexibility. But for the modeling
and simulation domain, the advantages afforded
by an object-oriented language outweighs this
slight performance penalty.

• C++ is portable and compilers exist on vir-
tually every platform. This allows developers
to build EAAGLES-based applications on any
of the major popular operating systems (Win-
dows, Linux, IRIX, Solaris, etc).

• C++ is flexible.

• It is desirable to define memory management
so it does not interfere with the overall perfor-
mance of the application. Therefore, the use
of the New/Delete operators is preferable to
garbage collection.

It is beyond the scope of this paper to cover each and
every class defined in the framework, but a few key
classes deserve attention in order to gain insight into
the structure of the framework.

Object : The Object class is the C++ system ob-
ject for the EAAGLES framework. Unlike other ob-
ject oriented languages (for example Java or Ruby),
the C++ language does not provide a system object.
C++ also does not provide native garbage collection.
While lacking these two features could be viewed as a
negative when comparing the native features of var-
ious languages, it is a positive when the application
domain consists of applications that need to meet
real-time requirements.

C++ provides the flexibility to define how these
mechanisms work for different application domains.
For example, if the developer is writing an application
in which “control” over potentially time-consuming
memory management operations is of little concern,
the framework provides smart pointers to automat-
ically manage the creation and deletion of objects.
If, on the other hand, the application has time con-
straints to meet (i.e. a real-time system), the “uncon-
trolled” creation and destruction of objects will lead
to performance problems. One of Objects capabilities
is to provide a simple reference counting system for
the memory management of all framework objects.
Object provides access to this system so that a de-
veloper can manually control and tune performance-
oriented applications, if they arise; for example, the
processing, in real-time, of modeled radio frequency
(RF) emission packets or infrared radiation (IR) ge-
ometry information.

2006 Paper No. 2628 Page 3 of 10



Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2006

The other subtle but important aspect to providing
a system object appears in the form of typechecking.
The presence of a system object, and the derivation
of all classes from it, enables the dynamic casting of
objects. It also avoids the pitfalls associated with un-
typed functions and classes. The EAAGLES coding
standard explicitly prohibits the use of void pointers
for this very reason.

Component : In object-oriented programming, a
container class is a class of objects that contain other
objects. The EAAGLES component class is that and
much more. Component is a container for other com-
ponents. Component also defines a basic messaging
system that is used throughout the framework.

From the outset, the EAAGLES framework is de-
signed to facilitate the creation of simulation applica-
tions that execute in real-time and/or interact with
a human participant. Applications with time con-
straints and latency/response deadlines typically sep-
arate time-critical tasks and non-time-critical tasks;
for example, the execution of an aerodynamic model
at a specific frequency as opposed to writing data to
a hard disk, or printing a document.

This separation is facilitated by two methods in the
component class. When designing a model in the
framework, code that needs to execute in a time-
critical manner (usually mathematical calculations)
is placed in an overridden virtual updateTC (update
time-critical) method. Code that can be run in a
non-time-critical manner is placed in the overridden
virtual updateData method.

This organization of code has a number of advan-
tages:

• Since time-critical code is clearly separated
from background code, applications can be de-
signed to meet performance requirements.

• All the code (time-critical and background) as-
sociated with a model is logically within the
same class.

Stepping back, one can view an instance of a sim-
ulation application as nothing more than a tree of
Components as in Figure 1. A call to the top (or
root) of the tree’s updateTC method, will automat-
ically execute every subcomponent’s updateTC. In
other words, every component will execute the code
of its children. This process continues until the en-
tire tree has been processed. The same process takes
place for the background code.

Figure 1: Component Tree

The EAAGLES coding standard spells out basic rules
to follow when writing code in updateTC (example:
no blocking I/O calls). These rules parallel many of
the rules used when designing real-time systems.

SIMULATION ARCHITECTURE

A developer using the EAAGLES framework as a ba-
sis for a simulation typically builds an application by
either using existing classes (or models) or extends
them to add new functionality. Then the developer
writes the mainline (main()) for the application.

The mainline usually has the following structure:

• Read an input file that describes the
class/object hierarchy and associated at-
tributes. EAAGLES provides a parser (written
with Flex and Bison) that can read a simple
context-free scheme-like input language.

• Setup the threads as desired. For applica-
tions without real-time requirements (e.g., a
constructive-only application that processes a
series of batch runs) a single thread is all that
is needed. For a virtual simulation with time-
critical code, a time critical (or high priority)
thread should be created.

• Start the simulation by calling updateTC and
updateData as required. If it is a virtual sim-
ulation or a simulation where real-time per-
formance is important, the time-critical thread
will call the updateTC method of the root node.

Full control of the mainline is in the hands of the de-
veloper for maximum flexibility. EAAGLES does not
even provide a main() function! Furthermore, appli-
cation mainlines tend to be short and sweet. Most of
the work is in the design and extension of new classes.

Simulation applications are typically organized like
the structure as shown in Figure 2. Thinking in terms
of a tree of components, the class Station resides at

2006 Paper No. 2628 Page 4 of 10



Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2006

Figure 2: Structure of Simulations

the top, or the root node. Every other component is
a subcomponent of Station.

Station connects models to views (or graphical dis-
plays) and controls. As mentioned earlier, the
EAAGLES framework embraces the Model-View-
Controller (MVC) software design pattern. Station
also owns an instance of the Simulation object which
manages a list of players (entities), keeps track of
simulation time, which includes the cycle, frame and
phase that is currently being processed.

Being a frame-based system (not a discrete-event
simulator), delta time is passed as an argument to
updateTC so proper calculations involving time can
be performed. Having models rely on delta time for
calculation means the frequency of the entire system
can change without having to change each and every
model (so long as Nyquist rates are met). Additional
time related information is recorded in terms of cycles
(16 frames or sometimes called a major frame) and
phases. Phases sequence the flow of data throughout
a model. Four phases are currently defined:

• Dynamics – update player or system dynamics
including aerodynamic, propulsion, and sensor
positions (e.g., antennas, IR seekers).

• Transmit – R/F emissions, which may contain
datalink messages, are sent during this phase.
The parameters for the R/F range equation,
which include transmitter power, antenna pat-
tern, gains and losses, are computed.

• Receive – Incoming emissions are processed and
filtered, and the detection reports or datalink
messages are queued for processing.

• Process – Used to process datalink messages,
sensor detection reports and tracks, and to
update state machines, on-board computers,
shoot lists, guidance computers, autopilots or
any other player or system decision logic.

A Player is a subclass of component that adds dy-
namics and other unique behaviors. Some compo-
nents that can be “attached” include signatures, an-
tennas, sensors and stores. Derived air and ground
players are included within the framework.

An abstract interoperability network interface is de-
fined so specific protocols can be incorporated, such
as DIS, for interacting with other distributed simu-
lation applications. This network interface automat-
ically creates new players in the player list. As far
as the simulation is concerned, these players are like

2006 Paper No. 2628 Page 5 of 10



Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2006

any other.

GRAPHICS ARCHITECTURE

The framework defines several graphic toolkits for the
development of operator/vehicle interface displays.
The graphic toolkits are based on OpenGL for all
primitive drawing, thus making the framework com-
patible with virtually any platform.

The foundation for graphics drawing is contained in
the basicGL package. It contains classes for drawing
graphic objects such as bitmaps, input/output fields,
fonts, polygons, readouts, textures, and others.

The graphics architecture has key fundamental re-
lationships between the Graphic, Page and Display
classes (see Figure 3).

Object

Component

Graphic

Page

Display

GlutDisplay FoxDisplay

Figure 3: Graphics Class Hierarchy

The Graphic class encapsulates attributes associated
with a graphic such as color, line width, flash rate (for
a graphic that flashes), coordinate transformations,
vertices and texture coordinates, select names and
scissor box information. Since Graphic is a compo-
nent, it can contain other graphics. Page is a “page”
of graphics that can facilitate the creation of Multi-
Function Displays (MFD) where specific page tran-
sition events need to be defined. The Display class
defines all the resources available for drawing such as
fonts, the color table and both the physical and logi-
cal dimensions of the display viewport. Finally, open
source GUI toolkits (such as Glut, Fox and FLTK)
are included in EAAGLES through their respective
display classes.

EAAGLES graphic classes ease the development of
operator/vehicle displays and leverage open source
GUI toolkits, but they are not intended to replace vi-
sual scenegraph displays (such as heads up displays).
The overarching philosophy of EAAGLES is to avoid
reinventing the graphics “wheel”.

Higher level toolkits that use this structure include
the instrument library which includes dials, buttons,
gauges, meters, pointers, and countless other fully
functional instruments, along with simple maps. The
moving map library is another such library.

All of the graphical toolkits are independent of the
simulation modeling environment. Models don’t have
any knowledge of graphics and graphics have no
knowledge of models. The code that connects the
two resides within the application and is typically as-
sociated with the Station class.

Through an ownship pointer in the Station class, the
controls and displays of any player can be switched
at anytime. Switching from player to player is useful
for observing simulation interactions from different
perspectives.

All of the graphics classes are derived from Graphic
which is derived from Component. Being a compo-
nent, all time-critical code can be written into the
updateTC method and background processing can be
written into the updateData method. Sometimes, in
real-time system development, it is desirable to set
graphic drawing to an even lower priority than other
background processing. Therefore, another method
within the Graphic class is defined that serves as a
placeholder to do actual OpenGL graphics drawing.

Object

IODevice

Joystick USB

Figure 4: Device Class Hierarchy

A sample application included in an EAAGLES dis-
tribution illustrates basic graphics by drawing a
“worm” that moves around the screen and “bounces”
off the walls. Code for this example is organized as
follows. All mathematical calculations for the posi-
tion, speed and direction of the worm are performed
in updateTC. All the work to setup what to draw
is done in updateData. The actual drawing of the

2006 Paper No. 2628 Page 6 of 10



Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2006

Figure 5: Generic Heads Down Display

graphic is performed by Graphic’s draw function.

Organizing code this way enables the application de-
veloper to determine how to execute the code and to
define threads to meet requirements. For this exam-
ple, a thread is set up to execute time-critical math-
ematical calculations associated with the worm in
“real-time”, and in a non-time-critical manner the op-
erating system (or Glut in this case) draws the worm
during idle times.

DEVICE I/O ARCHITECTURE

The EAAGLES framework abstracts I/O devices so
each hardware interface appears to the application
developer as nothing more than a device with a num-
ber of analog (axis) and digital (button) values as

shown in Figure 4. This deviceIO package has inter-
face code for several platforms that support joysticks,
USB devices, BG System serial boxes and Keithley
PCI digital acquisition cards.

Once the device is initialized, a call to the virtual re-
ceive method, defined in the IODevice class, obtains
the latest values from the device. Information about
button transitions can also be determined as well as
the definition of deadbands for analog inputs.

The Station class defines how axes and buttons are
“connected” to the models and views of the simula-
tion application.

2006 Paper No. 2628 Page 7 of 10



Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2006

Figure 6: MQ-9 Ground Control Station

FIGHTER COCKPIT

One of the first EAAGLES-based applications de-
veloped at the SIMAF facility was a generic fighter
cockpit with a generic heads down display. The
heads-down display was developed using the graph-
ics toolkit as a foundation (see Figure 5). Window
management is controlled by Glut which is a Display
that contains other Graphic objects and Displays as
highlighted in the figure. The Displays have multiple
pages of graphics. This work effectively jump started
the creation of the instrument library which contin-
ues to mature and expand in scope as well as across
application domains.

To the casual observer, the fighter application might
appear to be nothing more than a pretty cockpit, but
it is actually much more. The application driving the
cockpit is an entire simulation ready to be connected
into a distributed virtual simulation via DIS or HLA.
The cockpit itself is set up through the Station class
where the heads-down display and controls are asso-
ciated with one of the players in the simulation player
list via ownship pointer. In other words, the fighter

cockpit is really a simulation entity that is being flown
by a human operator. Since the controls and displays
are logically separate from the player model, switch-
ing and controlling different players during a run can
be as simple as moving the ownship pointer.

This application is used in almost every distributed
simulation activity SIMAF participates in or spon-
sors. It is also used by a number of facilities through-
out the different services.

MQ-9 GROUND CONTROL STATION

Compared to the fighter cockpit, the Predator MQ-9
Ground Control Station (GCS) in Figure 6 appears
as a completely different simulation application al-
though it is also using the EAAGLES framework. It
is a good example of leveraging different frameworks
and toolkits to their fullest potential to build an ap-
plication.

For example, the real GCS controls a Predator with
two sets of control sticks. One set controls or flies the
Predator directly, and the other controls the sensor

2006 Paper No. 2628 Page 8 of 10



Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2006

Figure 7: Group Command Post

ball attached to the UAV. Four displays are presented
to the operators: a tracker display in which the op-
erator defines and uploads routes for the Predator to
follow; a visual of what the sensor ball is looking at;
and two lower displays with multiple pages of textual
status information.

The ground control station is simulated with a
few EAAGLES-based applications and the Fox GUI
toolkit which is a windows based application with
menus and dialog boxes used to build the tracker ap-
plication. EAAGLES-based OpenGL graphics draws
the tracker map for planning routes.

SubrScene, an Image Generation System (IGS), gen-
erates a visual scene of what the sensor ball is view-
ing and is controlled by another EAAGLES-based
application. All control sticks and inputs use the

EAAGLES DeviceIO library.

SubrScene is freely distributed among the govern-
ment community. The application is designed to pro-
vide a central interface to a clustered real-time ren-
dering system for virtual emersion. It supports stan-
dard API’s such as the Common Image Generator
Interface (CIGI) from Boeing and COTS modeling
formats for databases and simulation reuse. Support
for modular capabilities, such as plug-ins for both in-
terfaces at the central server and rendering stages,
increases unique capabilities.

This application is routinely used by SIMAF in the
Air Forces Virtual Flag event conducted several times
each year.

2006 Paper No. 2628 Page 9 of 10



Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2006

GROUP COMMAND POST

The Group Command Post (GCP) is a key com-
ponent of an overall Integrated Air Defense System
(IADS). The GCP receives tracks formed from early
warning radar posts and filter centers under its con-
trol and develops a sector air picture. It determines
which tracks are hostile and assigns the appropriate
weapons system to counter the threat directly, by as-
signing the threat to a surface to air missile, anti-
aircraft artillery, airborne interceptor or indirectly as-
signing the threat to a weapons post responsible for
assigning the appropriate weapon system (see Fig-
ure 7).

This application, along with two other EAAGLES-
based applications (Early Warning Radar Post and
SAM site), forms the core of the IADS infrastructure.
This infrastructure is used in a number of distributed
simulation events including Airborne Electronic At-
tack (AEA) which examines the impacts of various
electronic warfare techniques upon both an enemy’s
integrated air defense system and blue force capabil-
ities.

FINAL THOUGHTS

The EAAGLES framework is designed for the simu-
lation application developer; it is not an application
itself. It can be thought of as a simulation design that
encourages a certain structure (shown in Figure 2) for
a simulation.

The framework embraces the object-oriented
paradigm and therefore system abstractions while
interweaving design concepts from real-time systems
to achieve what we feel is an ideal structure in which
to build simulation applications. By partitioning the
time-critical code as the framework expects, imme-
diate use of models containing the code in virtual
simulation becomes possible.

The framework is routinely compiled with Microsoft
Visual Studio for the Windows environment and
GCC for Linux. Applications perform best when ex-
ecuted on dual-core or dual-CPU systems because of
the priority based threading in these systems. Win-
dows and Linux are both designed for general pur-
pose processing, not real-time processing, thus, one
cpu can be dedicated to the operating system ker-
nel which reduces the possibility of interfering with a
time-critical task.

EAAGLES is government-owned and not proprietary.
It is managed by the SIMAF facility located at
WPAFB, OH.

In order to encourage the use of the EAAGLES
framework throughout the modeling and simulation
community, a nearly fully featured version of the
framework has been released into the public domain
under the name OpenEaagles. It can be freely down-
loaded from www.OpenEaagles.org.

ACKNOWLEDGEMENTS

The success of the EAAGLES framework is the di-
rect result of the cooperative efforts of several con-
tractors including L-3 Communications, SAIC, Gen-
eral Dynamics and Booz Allen Hamilton. Each con-
tractor, or more importantly, each person working on
“EAAGLES-related” tasks has improved EAAGLES
either through direct framework support or using
EAAGLES to build new and interesting simulation
applications. Their contribution is gratefully ac-
knowledged.

REFERENCES

Deutsch, L. Peter, Design reuse and frameworks
in the Smalltalk-80 system. Software Reusability,
Volumne II: Applications and Experience, pages
57-71. Addison-Wesley.

Gamma, Erich, et al (1995). Design Patterns, El-
ements of Reusable Object-Oriented Software,
Addison-Wesley.

Johnson, Ralph, et al. (1988). Designing reusable
classes. Journal of Object-Oriented Programming,
1(2):22-35.

Laplante, Phillip A. (2004). Real-Time Systems De-
sign and Analysis, Wiley-Interscience.

Lui, Jane W.S. (2000). Real-Time Systems, Prentice-
Hall.

Roberts, Don, et al. Evolving Frameworks, A Pat-
tern Language for Developing Object-Oriented
Frameworks, University of Illinois, http://st-
www.cs.uiuc.edu/users/droberts/evolve.html.

Singhal, Sandeep, et al. (1999). Networked Vir-
tual Environments, Design and Implementation,
Addison-Wesley.

2006 Paper No. 2628 Page 10 of 10


