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ABSTRACT 
 
Texture mapping has traditionally played a key role in real-time 3D computer graphics, where it is used as the 
primary means for adding realism to the scene. Programmable Graphics Processor Units (GPUs) allow techniques 
which utilize textures as a generic look-up resource, thereby allowing textures to represent non-visual information 
about the database area, such as spectral data at multiple wave bands, thermal data, normal displacement maps for 
improved terrain shading, digital elevation maps for the terrain shape, or material-encoded maps for parametric 
approaches to providing dense organic scene content.  
 
For large area visual simulations, the total amount of raster information for a database typically far exceeds 
available computer and video memory. Therefore, the image generator subsystem faces a substantial data 
management problem where it has to provide and combine heterogeneous resources (textures containing various 
data formats) to achieve the desired image quality and real-time performance characteristics. The data management 
(streaming) aspect of large-area coverage is equally important. The approach should be inherently efficient to 
address the challenges of modern combat training, where sometimes only a limited bandwidth is available for on-
demand database streaming. 
 
The paper presents a novel approach, called Virtual Texture, that addresses the challenges of utilizing huge amounts 
of raster data on the programmable graphics pipeline. The Virtual Texture formulation satisfies the key 
requirements of managing the data at deterministic real-time frame rates, while at the same time behaving as if it 
were a regular texture available on any texturing unit. The latter aspect of the formulation makes it possible to 
utilize multiple Virtual Textures in the context of any GPU-based technique or a specific vendor extension (such as 
SGI's detail texture), thereby significantly expanding its application domain. The paper includes examples of 
techniques where Virtual Texture has been used successfully to address simulation demands. 
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INTRODUCTION 

 
Texture mapping has traditionally played a key role in 
real-time 3D computer graphics, where it is used as the 
primary means for adding realism to the scene. 
Techniques and approaches that utilize texture mapping 
evolve with innovations in 3D graphics hardware. The 
fixed OpenGL rendering pipeline is being replaced by 
the programmable pipeline using vertex and fragment 
shaders. The programmable graphics pipeline 
revolutionized the world of real-time 3D graphics by 
introducing unprecedented flexibility in utilization of 
graphics resources. Programmable Graphics Processor 
Units (GPUs) allow techniques which utilize textures as 
a generic look-up resource, thereby allowing textures to 
represent non-visual information about the database 
area, such as spectral data at multiple wave bands, 
thermal data, normal displacement maps for improved 
terrain shading, digital elevation maps for the terrain 
shape, or material-encoded maps for parametric 
approaches to providing dense organic scene content. 
 
Many of today’s advanced rendering techniques require 
multiple channels of raster data. These techniques can 
be applied through shaders and multi-texture stages on 
models and small terrain areas using traditional 
modeling tools. However, when the area of simulation 
becomes large, the raster resources must be managed to 
take maximum advantage of hardware resources to 
achieve the best quality and performance combination 
appropriate for the scenario. 
 
Motivation 
 
Texture mapping has always been a very demanding 
resource requiring significant amounts of main 
computer memory (RAM) and video (texture) memory. 
Simulations that involve visualization of large database 
areas, such as flight simulators, are especially 
challenging in this respect. For large area visual 
simulations, the total amount of raster information for a 
database typically far exceeds available computer and 
video memory.  For instance, a typical database design 
for a high to medium altitude range flight simulator 
might have a coverage of 900 by 700 kilometers of 
geo-specific satellite imagery at 0.8 meters per pixel.  

The corresponding texture dimensions are on the order 
of 1125000 x 875000 pixels. At 3 bytes per pixel, 
covering the entire area with high resolution imagery 
would require nearly 3 terabytes of data. Further, 
advanced rendering techniques could require far more 
than 3 bytes per pixel of data. There is no graphics 
hardware that can satisfy such exorbitant memory 
requirements. Therefore, the image generator 
subsystem faces a substantial data management 
problem where it has to provide and combine 
heterogeneous resources (textures containing various 
data formats) to achieve the desired image quality and 
real-time performance characteristics. The data 
management (streaming) aspect of large-area coverage 
is equally important. The approach should be inherently 
efficient and scalable to address the challenges of 
modern combat training, where sometimes only a 
limited bandwidth is available for on-demand database 
streaming. 
 
The data paging is essentially a two-stage process that 
involves paging from disk to RAM first, and moving 
the data from RAM to video memory second. Recent 
advances in the development of faster AGP and PCI 
Express transfer buses make commodity PC hardware 
capable of the desired data throughput. As a result, 
producing compelling image quality and a highly 
dynamic scene content at real-time frame rates using 
huge textures is a reality, providing that there is a 
software solution that offers an efficient run-time 
management of the image resources. 
 

PREVIOUS WORK 
 
Techniques for dealing with huge textures range from 
subdividing the texture into smaller tiles that can be 
directly supported by the graphics hardware to offering 
specialized low-level graphics hardware and high-level 
system software such as clip-mapping (Tanner, Migdal, 
and Jones, 1998). Both ends of the solution spectrum 
have advantages and limitations. The texture tiling 
approach is cost-effective because it can be 
implemented on commodity graphics hardware. The 
approach inherently provides good paging granularity 
and deterministic image quality. However, it also 
presents significant challenges. First, the tiling 
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approach requires that geometric primitives must not 
cross the texture tile boundaries when using the fixed 
OpenGL pipeline. With a typical maximum hardware-
supported texture size of 4096 x 4096 texels, the 
limitation translates into stringent geometry tessellation 
requirements that add an extra level of complexity to 
the database design. Second, the tiling approach 
complicates the Level Of Detail (LOD) management 
both at the geometry and the texture levels, where it can 
produce visually distracting popping artifacts. Third, 
the approach tends to be sub-optimal from the run-time 
state management perspective, where rendering a single 
frame may require a significant number of texture 
binds, introducing a considerable run-time performance 
penalty. Finally, the approach requires that the texture 
tiles are assigned to the geometric primitives at the 
database design level, therefore implicitly making the 
overall run-time texture budget dependent on the 
database design and the LOD management scheme. 
This aspect of the tiling solution makes the texture 
budget planning and performance tuning particularly 
complicated. It also makes it impossible to add new 
techniques such as bump mapping onto an existing 
terrain without regenerating the database. 
 
The clip-mapping approach (Tanner, Migdal, and 
Jones, 1998) has been de facto the preferred solution 
for large area database visualizations on Silicon 
Graphics (SGI) workstations. It produces high quality 
images in real-time from very large textures using 
relatively little texture memory. The approach greatly 
relaxes the geometry tessellation limitation of the tiling 
approach. From the end-user perspective, the major 
disadvantage of clip-mapping is that it is only available 
on a selected set of SGI workstations. The inability to 
utilize this approach on commodity PC hardware makes 
it inflexible and cost-prohibitive. Clip-mapping has 
other downsides as well. Fundamental limitations of the 
hardware can manifest themselves under certain 
conditions as distracting visual artifacts such as the 
“jello” and “wobble” effects. These effects appear as 
tears in the imagery or temporal image shifting due to 
numerical precision issues and clipping of large 
polygons. Additionally, clip-mapping can not be 
combined with other texture extensions (such as SGI 
detail texture) or modern shader-based texturing 
techniques, thereby making this solution less attractive 
from the image quality perspective by today’s 
standards.  
 
The Virtual Texture (VT) approach presented in this 
paper falls in between the tiling texture and clip-

mapping approaches. Virtual Texture started as a 
research project to provide the customers the ability to 
migrate their clip-map databases to the PC platform 
with a minimal amount of database modifications. 
Therefore, the Virtual Texture and clip-mapping 
formulations share many fundamentals. Clip-mapping 
is patented technology of SGI (Migdal, et al., 1995). 
Virtual Texture’s emulation of clip-mapping behavior 
on the PC platform is patented technology of 
MultiGen-Paradigm (Ephanov, 2000). It should be 
noted that the patented implementation is limited to the 
fixed OpenGL pipeline only with a single texture per 
level of resolution. The ideas in this paper present 
continuing innovation based on previous work to take 
full advantage of the programmable nature of modern 
graphics hardware. 
 

THE VIRTUAL TEXTURE FORMULATION 
 

The main objective of Virtual Texture is to manage 
large amounts of raster data while providing data to the 
GPU as a set of textures. 
 
The Design Requirements 
 
1. Virtual Texture must act as though it were a 

regular texture as much as possible. From the 
database modeling perspective, one should be able 
to apply VT onto geometric primitives, where 
texture coordinates of the vertexes should be 
assigned the same way as if mapping a regular, 
albeit huge, texture. Therefore, the texture 
coordinates are assumed to be within the [0,1] 
range for the entire area covered by the texture, 
usually the entire database. 

2. It must be possible to use Virtual Texture in 
combination with advanced rendering techniques 
often utilizing vertex and fragment shaders. 

3. It must be possible to combine multiple Virtual 
Textures for rendering in a single pass, therefore 
making Virtual Texture multi-texture friendly. A 
variety of rendering techniques use multi-texturing 
effectively for improving the overall image quality. 
For instance, an advanced shading technique such 
as DOT3 bump-mapping can be extended to work 
with two Virtual Textures representing a color map 
and a normal displacement map respectively. 

4. At a minimum, the implementation must only 
require capabilities that are available in OpenGL 
1.2. This requirement makes Virtual Texture cross-
platform and cost-effective. 
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5. The implementation must meet high-performance 
real-time requirements, such as a stable frame rate 
of 60Hz or above, single-pass terrain rendering, 
and a data throughput that is capable of sustaining 
fast observer motion at Mach 1 or higher. 
Minimizing the number of texture applies per 
frame and throttling of sub-loading are required. 

6. The Virtual Texture formulation must be flexible 
to allow for data to be stored or streamed from 
many different formats and image file sizes. All of 
the Virtual Texture concepts discussed in this 
paper are independent of how the raster 
information is stored on disk. 

 
Levels of Virtual Texture Resolution 
 
We begin this section with an obvious realization that if 
the texture is huge, we can’t utilize all the image data 
for rendering at once – at least not at real-time frame 
rates. This is beyond the memory and the throughput 
capacities of modern hardware. At the same time, we 
don’t need to display all the imagery at once because 
we typically see only a limited portion of the total 
database area. Additionally, the display technology 
offers resolutions that are either on a par or smaller 
than the maximum hardware supported texture size. 
Therefore, in reality, we need to define and visualize a 
high resolution inset of the entire Virtual Texture. The 
high resolution inset is a dynamic subset of the image 
data, whose content changes during run-time depending 
on the application's visualization needs. 
 
The inset is represented by an array of levels of Virtual 
Texture resolution (we will also refer to them as Virtual 
Texture levels or just levels). At runtime, the imagery 
within each level is defined by the following factors: 
 
1. The resolution of the image data that the level is 

composed of. By convention, level 0 is considered 
to have the highest resolution, which is consistent 
with traditional texture mapping. Each subsequent 
level represents image data at half the resolution. 

2. The location of the paging center.  The paging 
center is the center of the current area of interest. It 
can be coincident with the observer or positioned 
at an arbitrary location in the scene. The paging 
center can be set individually for each level of 
resolution to reduce paging dependency among the 
levels to facilitate management of sparse datasets. 

3. The level configuration which consists of a square 
n x n array of level tiles. A level tile is basically a 
texture, although, in the current implementation, 

the texture is double-buffered for the reasons that 
we will discuss later. The dimension n can be 
chosen individually for each level based on the 
database design and the image quality 
requirements. Tiles that comprise a level are of 
equal square dimension. The tile dimension can be 
set individually for each level. Such multi-tile 
formulation allows for significant configuration 
flexibility, where the user can trade off memory 
and texture budgets for image quality.  

 
Based on the level definition presented above, let us 
discuss what we should expect visually. For simplicity, 
let us assume that all levels are identical in terms of the 
tile configuration and share the same paging center 
location. Visually, the levels of resolution should create 
a set of concentric square enclosures of the image 
resolutions. The most inner enclosure should present 
the imagery at the highest resolution, while each next 
level drops the resolution by half. The concept of levels 
of resolution is demonstrated on Figure 1, where the 
levels of resolution are color-coded on the right image 
for better illustration. 
 

 
 

Figure 1.  Levels of Resolution of Virtual Texture 
 
The choice to down sample each level by a factor of 2 
is motivated by the idea of texture mip-mapping, where 
a texture together with its mip-map levels can be 
represented as a resolution pyramid (Neider, Davis, and 
Woo, 2005). In the mip-map formulation, starting with 
the highest resolution, each lower level represents the 
image using half as many texels in each direction. 
Texture filtering algorithms utilize mip-maps to 
minimize visually distracting texture aliasing artifacts. 
From this perspective, Virtual Texture can be 
represented as a gigantic inverted pyramid, where the 
base of the pyramid is the image data at the highest 
resolution, while each next mip-map level represents 
the image data at half the resolution. Notice also that 
we don't specify how the image data is stored on disk. 
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The Virtual Texture formulation is decoupled from the 
specifics of data storage assuming that there is an 
algorithm to retrieve a given area of resolution. In other 
words, there is no direct mapping between image files 
on disk and VT level tiles. 
 
Figure 2 presents a schematic view of Virtual Texture. 
The top left image represents the entire Virtual Texture 
mip-map pyramid. Each green line is a level of the mip-
map pyramid viewed “edge-on.”  The image at top right 
is a visualization of a single mip-map level as viewed 
from the “top-down.”  The level of the mip-map 
pyramid is now a green square. Also shown are the 
paging center and the high-resolution inset. The image 
at the bottom left corner shows the high-resolution inset 
which is configured as a 2x2 array of level tiles. 
Finally, the bottom right image shows the four level 
tiles as textures with their own mip-map pyramids. 
 

 
 

Figure 2.  A Schematic View of Virtual Texture 
 
EXAMPLES OF VIRTUAL TEXTURE 
TECHNIQUES 
 
As it was stated in the previous section, the primary 
objective of Virtual Texture is to manage large amounts 
of raster data while providing the data to the GPU as a 
regular texture or a set of textures. Such an approach 
makes it possible to utilize Virtual Texture with the 
majority of GPU-based rendering techniques that 
already work with regular textures. The ability of 
Virtual Texture to manage extremely large raster data 
sets significantly expands the application domain of the 
GPU techniques in the context of large area databases. 
In this section, we present examples of GPU techniques 
and their benefits when applied to large area databases. 

 

Basic Color Imagery 
 
The most basic application of Virtual Texture is to 
apply geo-specific (i.e. satellite) imagery to the terrain. 
This application provides functionality that is similar to 
the clip-mapping approach (Tanner, Migdal, and Jones, 
1998). In this context, Virtual Texture is used directly 
as a color map for texturing. It should be noted that 
applying extremely large high resolution raster to a 
relatively small geographical area also falls into this 
category. It is the amount of raster data that requires 
Virtual Texture, not the spatial dimensions of the area 
per se. 
 
Dynamic Terrain Bump Lighting 
 
Another popular application of texturing is simulation 
of per-pixel lighting using a bump or normal map 
(Kilgard, 2000). The technique significantly improves 
image quality by making the terrain shading look more 
natural and realistic. The classic variant of the bump 
mapping technique requires two textures – a color map 
and a bump map. The bump map provides local normal 
variation on the surface of the object in “tangent 
space.” Tangent space is defined by a set of vectors 
which make up a basis for each face of the object. This 
set of vectors is typically pre-computed and stored in a 
texture coordinate for each vertex of the object. The 
terrain, being a static object, presents a special simpler 
case, where the world (scene) space can be used as the 
tangent space for each vertex, thereby eliminating the 
need for otherwise complex tangent space computation. 
Rather than a bump map, which perturbs local normals, 
a “normal map” which encodes the surface normals in 
world-space directly can be used. 
 
Both the color and normal maps are very large raster 
data sets. Therefore, application of bump-mapping to 
the terrain requires two Virtual Textures. Interestingly 
enough, the two VTs do not need to represent data at 
the same resolution. The normal displacement map is 
typically provided at a much lower resolution than the 
color map while still producing acceptable image 
quality. The normal map can be derived by the database 
generation tools from the available digital elevation 
data and enhanced using fractal-based techniques. 
 
It should also be noted that time of day generally 
advances very slowly in simulations.  It is possible to 
compute terrain lighting given information such as a 
color map and normal map during the loading of 
Virtual Texture levels so that lighting is computed at 
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load time rather than on the GPU.  The advantages of 
loading the normal map into the GPU are dynamic, 
continuous time of day without having to re-compute 
all of the loaded Virtual Texture, and the ability to 
include the effects of local light sources such as 
headlights and searchlights with high quality lighting 
on the illuminated terrain. 
 
Detail Texture 
 
Virtual texture can also be combined with raster data 
that is not “virtual” in nature. The term “detail texture” 
typically applies to a variety of techniques that strive to 
improve image quality in the areas where high-
resolution imagery is unavailable by adding an artificial 
noise pattern - the “detail”.  Regardless of the 
implementation details, detail texture approaches are in 
principle compatible with Virtual Texture due to its 
formulation. A Virtual Texture essentially behaves as a 
single texture to the user, leaving other texture units 
available for advanced rendering techniques. 
 
The implementation of detail texture varies depending 
on the approach and the graphics hardware. The 
extension (GL_DETAIL_TEXTURE_2D_SGIS) is 
used on platforms where it is supported. A multi-
texture based approach is used to simulate similar 
functionality on other platforms. A more sophisticated 
approach, called “hyper texture,” is also possible in this 
context that utilizes a set of detail textures and 
combines them progressively with mip-map levels of 
the base texture to simulate the desired effect 
(MultiGen-Paradigm, 2006). Additionally, texture 
blending can be used effectively combine multiple 
detail textures producing a naturally looking pattern 
(Nuydens, 2002). 
 
Sensor Simulation 
 
Night vision goggles, infrared cameras, various types of 
radar, and many other devices require data outside the 
range of the visible spectrum for a proper simulation.  
Reflectance or emittance in a particular waveband, 
thermal information, and radar backscattering 
properties may be required depending on the type of 
device simulated. A Virtual Texture is typically built 
for each type of sensor being simulated. 
 
The material make-up of every pixel in the color 
Virtual Texture is often used to derive properties for 
sensor simulation. There are many difficulties inherit in 
material classification of geo-specific imagery, whether 

performing classification with a single material per-
pixel or multiple materials and mixes per-pixel 
(Davidson, 2006). Further, material rasters are indexed 
formats by their very nature, meaning that they cannot 
be filtered as continuous data. Rather than building a 
material Virtual Texture, which requires filtering the 
materials to fill in all levels, the materials data can be 
converted to in-band data that is analog in nature for a 
particular sensor. This results in better filtering, access 
to additional source data besides just materials, more 
accurate simulation, better image quality, and 
consistency across image levels. 
 
For infrared simulation, converting materials to static 
radiance as sensed by an infrared camera is the simplest 
form of sensor simulation. It results in a static time of 
day scene. When using static radiance, simulating a 
different time of day would require building an entirely 
separate Virtual Texture for each time of day simulated. 
Alternatively, thermal data and properties such as 
material reflectance and/or emittance in the waveband 
of the sensor can be encoded into a Virtual Texture to 
allow for dynamic time of day for both emitted and 
reflected energy. MultiGen-Paradigm’s proprietary I24 
sensor texture format contains indexed thermal data 
which texture filters, mip-maps, and compresses. 
Virtual Texture feeds this raster data to the GPU which 
computes at-aperture radiance for the sensor. 
 
Modern GPUs operate with floating-point precision at 
extremely high frame-rates, making the PC an ideal 
platform for large-area sensor simulation. Virtual 
Texture allows for geo-specific simulation of large area 
datasets in any wavelength. Further, the GPU makes 
continuous time of day possible at extremely high 
frame rates, allowing these techniques to meet real-
world training requirements using only a single GPU. 
 
Dynamic Terrain using Elevation Rasters 
 
Elevation data is readily available, and is often used in 
constructing a polygonal representation of the terrain.  
This high quality terrain elevation data could instead be 
converted into a Virtual Texture and the GPU used to 
modify the positions a static terrain skin to match the 
elevation data. While the details of these techniques can 
be found in other papers (Losasso and Hoppe, 2004), 
the Virtual Texture implementation makes management 
of the elevation data efficient and configurable. 
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Horizon Mapping for Terrain Self-Shadowing 
 
In addition to normal maps and elevation maps, horizon 
maps can be used to compute shadowing of the terrain 
from the sun or moon. A horizon map stores angles that 
can be used to determine whether a point on the terrain 
surface is in shadow for a particular incident azimuthal 
light direction (Max, 1988). Two solar elevation angles, 
one in the East azimuthal direction and one to the West, 
are sufficient to compute solar terrain shadowing at 
run-time in the GPU. The angles stored in the horizon 
map represent the east and west “horizons” for each 
surface point on the terrain. 
 
As with bump mapping, this data can be interpreted at 
load-time to create a static lighting texture for the 
terrain, or lighting and shadowing can be computed 
dynamically on the GPU.  
 
Illumination Maps for Night Simulation 
 
An unlimited number of city lights and light pools can 
be “baked-in” to a texture for use at night. Raster-based 
approaches for light pools allow for pre-computed 
shadowing, colored light sources, and large numbers of 
individual light pools scattered along roadways, and are 
far more efficient than geometry-based lighting of a 
night scene. Geo-specific night scene illumination can 
be efficiently implemented with a Virtual Texture. 
 
Challenges in Using Color Textures for Other Data 
 
These examples of Virtual Texture techniques show 
that there are many types of raster data that can be 
made available to the GPU. Unfortunately, each 
individual texture is limited to the 4 color components 
– red, green, blue, and alpha (RGBA). Virtual texture 
raster datasets with the same coverage and resolution 
can be combined into a single texture for faster lookup, 
as long as 4 or fewer components are required. 
Otherwise, additional texture stages must be used. 
More data requires more video memory consumption 
and possibly more texture look-ups per fragment which 
can impact performance. 
 
Because terrain is often viewed at oblique angles 
towards the horizon, mip-mapping is almost always 
required for Virtual Texture. Further, filtering of some 
type is required to build a Virtual Texture dataset at all. 
Mip-mapping and texture filtering can be problematic 
for non-color rasters such as indexed materials and 
normal maps. One solution, as mentioned in the section 

on sensor techniques, is to convert from an indexed 
format into an analog format. Materials data is often 
converted to some analog data relevant to the sensor 
simulation. However, even when using analog data in 
the red, green, blue, and alpha channels, care must be 
taken in the filtering settings and compression 
characteristics chosen. For example, hardware 
supported DDS compression can be problematic for 
non-color rasters because the compression algorithm 
makes assumptions, such as putting emphasis on the 
green channel, that simplify color compression which 
may not be appropriate for other types of data (MSDN, 
2006).  There are also hardware supported compression 
techniques specifically formulated for normal map 
compression (ATI, 2003). Unfortunately, compression 
techniques used for color or normals may still not be 
appropriate for other types of raster data supplied by 
Virtual Texture to the GPU. 
 

THE INTERNAL ALGORITHMS 
 
In this section, we examine Virtual Texture algorithms. 
We also discuss limitations of the fixed OpenGL 
pipeline, ways to resolve them using the programmable 
pipeline, and possible image quality issues produced by 
Virtual Texture. 

 
The Texture Coordinate Transformation Algorithm 
 
The texture coordinate transformation algorithm is at 
the core of the Virtual Texture mathematical engine. 
The primary objective of the algorithm is to guarantee 
that texels from a given level of resolution are applied 
correctly to underlying geometry objects producing 
consistent visual results across the levels.  From now 
on, we define a geometry object as a set of cohesive 
geometric primitives, such as triangle strips or quads, 
that is used as a building block for construction of the 
database hierarchy. The algorithm works entirely in the 
texture coordinate space of the database. The choice of 
the texture coordinate space decouples the Virtual 
Texture formulation from the world space (i.e. 
Cartesian XYZ).  
 
The texture coordinate transformation algorithm 
computes a texture coordinate transformation that is 
unique for each level tile (and, therefore, for each 
texture object representing the tile). The transformation 
is a combination of scaling and translation. Therefore, 
it is a linear transformation that can be applied via a 
texture matrix. The latter makes it possible to 
implement Virtual Texture within the constraints of the 
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fixed OpenGL pipeline (no shaders), although with 
certain limitations that we will discuss later. 
 
The texture transformation represents a conversion 
between two texture spaces. The first texture space is 
the database texture coordinate space. The (u,v) texture 
coordinates of  geometric primitives are given in this 
space. The coordinates could be used (hypothetically) 
to sample into Virtual Texture at the highest level of 
resolution (the top of the pyramid on Figure 2, Diagram 
1). The second texture space is associated with the level 
tile texture (Figure 2, Diagram 4). We assign the capital 
letters (U,V) to this space. The derivation is identical 
for both texture coordinates, therefore it is presented 
only for the u coordinate. We model the transformation 
as linear with the scaling coefficient scale and the 
translation term trans as follows: 
 

transuscaleU += *  (1) 

 
The unknown coefficients scale and trans are computed 
by solving a system of linear equations that we derive 
from equation 1 by substituting two pairs of known 
matching values for the texture coordinate as follows: 
 

transuscale
transuscale

lc

ctr

+=
+=

*0
*5.0

 
 

(2) 

 
where, the uctr value is a position of the level tile center. 
The ulc value is a position of the lower left corner of the 
tile that is computed as: 
 

vt
level

tilectrlc uu dim/2*dim )1( −−=  (3) 

 
The dimtile variable is the level tile dimension, level is 
the level number that the tile represents, and dimvt is the 
Virtual Texture dimension. The textures are assumed to 
be powers of two, therefore we can express their 
dimensions via the corresponding exponents: 
 

)1(2 vtleveltile
ctrlc uu −−+−=  (4) 

 
Solving Equation 2 for the unknowns, we obtain the 
texture coordinate transformation: 
 

)*25.0(*2

)*25.0(*2
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)()(

ctr
tilelevelvttilelevelvt

ctr
tilelevelvttilelevelvt

vvV

uuU
−−−−

−−−−

−+=

−+=  (5) 

 

Equation 5 can be used directly to form texture 
coordinate transformation matrix for a  tile given its 
level number level, location of the tile center (uctr,,vctr), 
the tile texture dimension exponent tile, and the Virtual 
Texture dimension exponent vt. 
 
Applying Level Tile Textures to Geometries 
 
In this section, we discuss an algorithm that is the 
foundation for the Virtual Texture rendering flow. The 
algorithm determines which level tiles to apply to a 
geometry object. The selection logic is defined by 
restrictions imposed by the following two factors: 1) 
programmability of the graphics pipeline and 2) run-
time performance considerations. These two factors 
also have a tremendous influence on the final image 
quality produced by Virtual Texture. First, we consider 
a variation of the algorithm that can be used with the 
fixed OpenGL pipeline. Next, we extend the algorithm 
to take advantage of the pipeline programmability via 
vertex and fragment shaders. 
 
The Level Tile Selection Algorithm 
The main objective of the level tile selection algorithm 
is to assign tile textures to a geometry object for 
rendering. The output of the algorithm effectively 
defines the visual result of applying Virtual Texture to 
the underlying geometry objects that represent the 
database. The input to the selection algorithm is a 
texture coordinate bounding box that is defined for 
each geometry in the database texture coordinate space. 
The box is aligned with the texture coordinate axes. 
The level tile selection algorithm utilizes the axis 
aligned bounding boxes (AABB) for efficient 
resolution of level tiles as described below. 
 
First, we define AABB in texture coordinate space for 
each level of resolution of Virtual Texture. The box is a 
union of the corresponding boxes of the level tiles. For 
each tile, the center of the box is located at the current 
tile center, while its extents are defined by the Virtual 
Texture dimension in texels dimvt, the level tile 
dimension dimlevel and the level number level as 
follows: 
 

vt
level

levelctr

vt
level

levelctr

uu

uu

dim/)2*dim*5.0(

dim/)2*dim*5.0(

max

min

+=

−=
 

 
(6) 

 
Notice that Virtual Texture levels and tiles introduce a 
hierarchy of axis aligned bounding boxes in texture 
coordinate space. The hierarchy is also used to improve 
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the run-time efficiency of the level tile selection 
algorithm by culling level's AABB against geometry's 
AABB as described below. 
For each geometry object, the algorithm iterates over 
the Virtual Texture levels, starting with the level of 
highest resolution. For each level, the algorithm 
compares texture coordinate bounding boxes of the 
geometry object and the level to cull out levels that do 
not overlap with the geometry. The algorithm works 
differently from this point on, depending on whether 
the rendering is done using the fixed OpenGL pipeline 
or shaders. 
 
In the case of the fixed OpenGL pipeline, the algorithm 
searches for a level with a bounding box that 
completely covers the geometry box. Once such a level 
is found, the iteration proceeds over the level tiles, 
searching for a tile that completely covers the geometry 
bounding box. If such tile is found, the search stops, the 
algorithm assigns the tile texture and the corresponding 
texture matrix (see equation 5) to the geometry object 
for rendering. Otherwise, the algorithm continues the 
iteration to the next lower-resolution level in search of 
a level tile that provides complete coverage of the 
geometry object. Notice that Virtual Texture always 
includes a level that covers the entire database with a 
single tile (texture), although at a very low resolution. 
Therefore, every geometry object is always guaranteed 
to be assigned a texture and a texture matrix. 
 
Limitations of the Fixed OpenGL Pipeline 
The fixed OpenGL pipeline presents significant 
limitations in the context of Virtual Texture rendering. 
The most important limitation is that a tile texture has 
to cover the underlying geometry object completely in 
the texture coordinate space to be applied to it. This is 
primarily due to OpenGL's handling of texture 
coordinate wrapping. Standard OpenGL pipeline offers 
several texture wrapping modes. The GL_REPEAT and 
GL_MIRRORED_REPEAT_ARB are not acceptable 
because they repeat texels outside the [0,1] range. The 
non-wrapping modes, such as GL_CLAMP, 
GL_CLAMP_TO_EDGE and 
GL_CLAMP_TO_BORDER end up smearing the 
bordering texels or border color, therefore producing 
unacceptable results as well. We need a mode where 
sampling into a texture stops once the extrapolated 
texture coordinate goes beyond the [0,1] range (it is 
assumed that the texture transformation as described in 
section 3.1 has already been applied). Unfortunately, 
this result is very difficult to achieve efficiently with 
the fixed OpenGL pipeline. There is no multi-texture 

mode to cut-in a high-resolution inset over a base 
texture. As a result, Virtual Texture can not be 
implemented as a continuously moving set of levels of 
resolution that utilizes a toroidal texture mapping 
scheme introduced by clip-mapping (Tanner, Migdal, 
and Jones, 1998). A tile texture can only be applied to 
the geometry object when it covers the object 
completely, which is not the case for the majority of 
paging center positions if the center moves 
continuously. One solution to work around the 
limitation is to make the Virtual Texture paging center 
hop from geometry to geometry, therefore increasing 
the chances of geometry coverage by level tiles.  
 
Positioning of the Virtual Texture paging center plays a 
key role in achieving the desired image quality. Figure 
3 illustrates how the center positioning strategy is 
primarily driven by the limitations of the pipeline. 
 

 
Figure 3. Limitations of the Fixed Function Pipeline 

in Texture Coordinate Space 
 
Diagram (a) represents a case where the level tile 
texture coordinate bounding box does not cover the 
geometry box completely. The tile texture can not be 
applied in this case. Diagram (b) demonstrates that 
aligning the tile center with the geometry makes the 
texture application possible, therefore emphasizing the 
importance of the center positioning. Diagram (c) 
represents a case where a level of resolution is 
configured as a 2x2 array of tiles. The four texture tiles 
combined completely cover the geometry bounding 
box. However, each tile individually does not. 
Therefore, none of the tiles can be applied to the 
geometry. A lower resolution level tile which 
completely covers the geometry would have to be 
chosen in this context. 
 
Limitations of the fixed OpenGL pipeline visually 
manifest themselves as noticeable transitions between 
the levels of resolution that follow the database 
tessellation because they take place at the geometry 
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borders. A transition from higher to lower level of 
Virtual Texture resolution when crossing the geometry 
border can often jump more than one level of 
resolution. Texels on one side of the geometry border 
will appear blurrier because they represent a lower 
level of resolution. 
 
Applying Level Tile Textures using Shaders 
Shaders and additional multi-texture stages can be used 
to improve border conditions between Virtual Texture 
levels because the programmable pipeline gives us the 
ability to combine multiple level tiles on a geometry 
object in a single rendering pass. We can achieve 
superior image quality, while significantly relaxing the 
geometry tessellation requirements. The basic idea is to 
combine multiple tile textures using a fragment shader, 
where a tile is chosen for rendering if it overlaps the 
geometry object in the texture coordinate space. The 
advantage is that geometry does not need to be 
tessellated, or broken into separate objects to apply 
high resolution Virtual Texture levels. The 
disadvantage is that more multi-texture stages are 
required. The shader combines multiple tile textures for 
rendering based on the interpolated texture coordinate 
for each texture stage. Starting with the stage that 
contains the highest resolution, the shader samples into 
the texture while masking the result based on the 
sampling results for the previous stages as follows: 
texture stages for which the coordinates fall outside the 
[0,1] range are masked out – this is the desired texture 
clamping behavior that was missing in the fixed 
OpenGL pipeline. At the same time, the shader masks 
lower resolution textures from being applied if and only 
if a higher resolution texture has already been sampled 
successfully for the fragment. 
 
The shader case introduces more variation into the 
level-tile selection algorithm. The key difference is that 
the algorithm is allowed to associate more than one tile 
texture with the geometry object. The maximum 
number of available texture stages is specified by the 
user within the hardware limitations. The key 
requirement for the selection algorithm is to guarantee 
that in the end the geometry object is completely 
covered (in texture coordinate space) by a set of 
selected tile textures. 
 
Limitations of Applying Level Tile Textures using 
Shaders 
The shader-based implementation is subject to a 
limitation by the number of available texture stages (it 
is assumed that the rendering is to be done in a single 

pass for performance reasons). This number is 
hardware-dependent, with eight texturing units being a 
typical number at the time of this writing. Consider 
Diagram (c) on Figure 3 again, where the geometry 
object requires four texture stages for rendering. This is 
a typical situation for a multi-tile Virtual Texture 
configuration. As shown, we need four texture stages to 
render the geometry in a single pass. The number is 
going to double (or even triple) if we choose to 
improve the image quality with an advanced rendering 
technique that requires multiple textures for passing the 
additional data.  
 
The run-time rendering performance is also a concern. 
The majority of work is done by the fragment shader. 
Therefore, the overall rendering performance is 
dependent on the complexity and efficiency of the 
shader code, where the complexity increases with the 
number of utilized texture stages. From this 
perspective, database designs and Virtual Texture 
center positioning strategies that facilitate application 
of fewer texture stages on the fragment shader should 
be preferred because they produce better run-time 
performance. 
 
Finally, geometry tessellation presents a rendering 
performance concern from the perspective of moving 
the primitives to the pipeline. Many researchers believe 
that the total number of rendered polygons is less of a 
performance issue on modern hardware platforms 
(Losasso and Hoppe, 2004), making many terrain 
design approaches that strive to minimize the total 
number of polygons somewhat obsolete. Vertex buffer 
objects (VBO) offer a very efficient means for 
providing the vertex data to the pipeline. Proper 
batching of the primitives becomes the key to fast data 
transfers, where smaller batch sizes are typically less 
efficient. However, the tessellation requirements 
imposed by Virtual Texture oppose batches of large 
sizes, especially at the high level of resolution. 
Therefore, one needs to find a compromise between the 
database design and the vertex transfer approach that 
would allow for the optimal performance to image 
quality ratio. 
 
Double Buffering 
 
Each level tile is associated with two texture objects – 
one for data update and one for visualization. The two 
textures swap when the data update is complete. The 
actual image data that is represented by the textures 
depends on the level number and on the current 
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location of the paging center. The data is very dynamic 
- it has to be updated as the center moves. The level tile 
textures come with their own mip-map levels to 
facilitate texture filtering. But, unlike regular textures, 
the mip-map levels are not computed at run-time by 
down sampling the top level. Instead, they are copied 
directly from the corresponding areas of lower 
resolution from the Virtual Texture dataset. This is 
necessary to guarantee cross-level image correlation. It 
is also cheaper computationally at run-time because the 
down-sampling algorithm is replaced with a memory 
copy. 
 
The process of updating a tile texture includes two 
stages. The first stage updates the mip-map buffers with 
the new data by paging it from disk to RAM. The 
second stage, also referred to as texture sub-loading, 
moves the new data to texture memory. The first stage 
can be done asynchronously in a separate thread, 
whereas the second stage needs to be done in the 
context of the drawing thread because it requires the 
OpenGL draw context. Double-buffering of textures 
increases the overall texture budget, which is an 
important run-time performance consideration. 
 
Texture Sub-loading 
 
Texture sub-loading is a process of moving the image 
data from RAM into the texture (video) memory. 
Texture sub-loading is a time consuming process that 
needs to be controlled to guarantee the frame rate 
stability. A robust implementation of the texture sub-
loading controller is absolutely essential for high-
performance applications that utilize Virtual Texture. 
The actual control law depends on many factors, 
including the image format, the system bus throughput, 
the graphics driver implementation, etc. One of the key 
benefits of compressed texture formats is sub-loading 
performance. 
 
Numerical Precision Issues 
 
Numerical precision issues typically manifest 
themselves as distracting visual artifacts, such as 
imagery “shifts”. The graphics pipeline operates using 
32-bit floating point precision numbers (the float data 
type in C/C++) for both texture coordinates and texture 
matrices. A simple computation shows that it is easy to 
run out of floating point precision when applying a 
large-scale Virtual Texture. The C/C++ run-time library 
defines the number of decimal digits of precision 
(typically 6) and the  “floating point epsilon” value, 

which is the smallest number such that one plus epsilon 
is not equal to one (typically on the order of 
1.192092896-07F). These constants provide the 
guidelines for the degree of resolution that one can 
expect from Virtual Texture. In the Virtual Texture 
formulation, texture coordinates span the [0,1] range in 
each direction. Given the numerical limitation of the 
float type, one can only assign texture coordinates with 
a minimal difference between any two coordinates of 
1/220. In reality, a texture coordinate step size much 
larger than epsilon is required. Therefore, the database 
can not be tessellated in the texture coordinate space 
beyond the floating point limitation. Possible solutions 
to this limitation are to reduce the Virtual Texture size 
or to introduce a texture coordinate localization 
scheme, where a stack of double-precision texture 
matrices can be used to compensate for floating point 
deficiencies. 
 
Another numerical issue is related to the translation 
term of the texture transformation matrix. The term is 
derived from equation 7 as follows: 
 

)*25.0( )(
ctr

tilelevelvt untranslatio −−−=  (7) 

 
where, uctr is the location of the paging center in the 
database texture coordinate space, level is the level 
number, tile is the level tile dimension exponent, and vt 
is the Virtual Texture dimension exponent. Since levels 
of lower resolution are associated with higher level 
numbers in the Virtual Texture formulation, the overall 
scaling factor that multiplies the paging center uctr gets 
smaller with lower resolution, exposing the floating 
point limitations. This issue produces a visual “shift” in 
the lower-resolution imagery when the paging center 
moves. A possible solution to this problem is to 
introduce an imaginary grid in texture coordinate space 
and clamp the paging center to it (recall that each level 
of resolution can be centered individually). The grid 
points should be computed such that the lowest decimal 
digits are equal to one over a power of two, where the 
exponent value can be chosen empirically or derived 
from the database specification. Equation 7 will 
produce less numerical error when the center is 
clamped to such a grid. 
 
State Sorting for Optimal Rendering Performance 
 
As described in previous sections, the level tile 
selection algorithm associates tile textures with the 
geometry objects. The rendering performance can be 
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optimized if the geometry objects are sorted by the tile 
textures upon completion of the selection algorithm. 
The additional sorting pass minimizes the total number 
of texture applies (binds) that is required for rendering 
the database. In fact, the entire database may end up 
being rendered with as few texture binds as the number 
of distinct level tiles that have been chosen for 
rendering. The number of binds is typically low, even 
in the presence of shaders that require multiple texture 
binds per geometry. The ability to minimize the total 
number of texture binds brings significant run-time 
performance benefits, making Virtual Texture a very 
attractive solution from this perspective. 
 

CONCLUSIONS 
 
Virtual Texture is a novel approach to texturing that 
allows for rendering of large database areas with a 
texture of exceedingly large dimensions, such as 
visualization of large-scale geographical areas with 
geo-specific satellite imagery. The primary difficulty 
with such visualization is that the amount of image data 
that is used by the visualization by far exceeds 
available computer memory and video resources. The 
key benefit of Virtual Texture is that it allows for 
efficient visualization with the imagery at real-time 
frame rates on a commodity PC platform.  
 
Scalability is another feature of this approach, where 
the user can trade off computer resources for improved 
image quality. An additional benefit of Virtual Texture 
is ease of integration with modern visualization 
techniques, such as multi-texturing, vertex and 
fragment shaders, and vendor-specific texturing 
extensions such as detail texture. This feature allows 
for achieving superior image quality by integrating geo-
specific imagery with other resources such as normal 
displacement maps for improved terrain shading, 
multiple representations for different sensor spectral 
bands, thermal data for infrared simulation, and detail 
texture for enhancing image quality in the areas where 
high-resolution satellite imagery is unavailable. 
 
 
 
 
 
 
 
 
 
 

REFERENCES  
 
ATI. (2003). Normal Map Compression. Retrieved June 

16, 2006 from 
http://www.ati.com/developer/NormalMapCompressi
on.pdf

Davidson, S. (2006). Material Classification Pragmatics: 
Creating and Evaluating Geo-Specific Material 
Assignments. Paper Submittal for I/ITSEC 2006. 

Ephanov, A. (2000). United States Patent 6,924,814. 
Issued August 2, 2005. 

Kilgard, M. (2000). A Practical and Robust Bump-
Mapping Technique for Today's GPUs. Proceedings 
of Game Developer’s Conference 2000, Advanced 
OpenGL Game Development. 

Losasso F., & Hoppe H. (2004). Geometry clipmaps: 
Terrain rendering using nested regular grids. 
SIGGRAPH ’04 Proceedings, pages 769-776. 

Max, N. (1988). Horizon Mapping: Shadows for Bump-
Mapped Surfaces. The Visual Computer, Volume 4, 
pages 109–117. 

Migdal , et al. (1995). United States Patent 5,760,783. 
Issued June 2, 1998. 

MSDN Article. (2006). Compressed Texture Resources. 
Retrieved June 16, 2006 from 
http://msdn.microsoft.com/library/default.asp?url=/li
brary/en-us/directx9_c/Compressed_Texture_Resour
ces.asp  

MultiGen-Paradigm. (2006). HyperTexture - a Virtual 
Texture Technique. Vega Prime Programmer's 
Guide. 

Neider J., Davis T., & Woo M. (2005). OpenGL 
Programming Guide (5th Edition). Addison-Wesley. 

Nuydens, T. (2002). Terrain Texturing. Retrieved June 
22, 2006 from 
http://www.delphi3d.net/articles/viewarticle.php?arti
cle=terraintex.htm

Tanner, C., Migdal, C., & Jones, M. (1998). The 
Clipmap: A Virtual Mipmap. Computer Graphics, 
SIGGRAPH ‘98 Proceedings, pages 151-158. 

 

2006 Paper No. 2509 Page 12 of 12 

http://www.ati.com/developer/NormalMapCompression.pdf
http://www.ati.com/developer/NormalMapCompression.pdf
http://msdn.microsoft.com/library/default.asp?url=/library/en%1Eus/directx9_c/Compressed_Texture_Resources.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en%1Eus/directx9_c/Compressed_Texture_Resources.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en%1Eus/directx9_c/Compressed_Texture_Resources.asp
http://www.delphi3d.net/articles/viewarticle.php?article=terraintex.htm
http://www.delphi3d.net/articles/viewarticle.php?article=terraintex.htm

	ABSTRACT
	ABOUT THE AUTHORS
	INTRODUCTION
	Motivation
	PREVIOUS WORK

	THE VIRTUAL TEXTURE FORMULATION
	EXAMPLES OF VIRTUAL TEXTURE TECHNIQUES
	THE INTERNAL ALGORITHMS
	REFERENCES 

