Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2006

Virtual Texture: A Large Area Raster Resource for the GPU

Anton Ephanov, Chris Coleman
MultiGen-Paradigm
Richardson, TX
anton.ephanov@multigen.com, chris.coleman@multigen.com

ABSTRACT

Texture mapping has traditionally played a key role in real-time 3D computer graphics, where it is used as the
primary means for adding realism to the scene. Programmable Graphics Processor Units (GPUs) allow techniques
which utilize textures as a generic look-up resource, thereby allowing textures to represent non-visual information
about the database area, such as spectral data at multiple wave bands, thermal data, normal displacement maps for
improved terrain shading, digital elevation maps for the terrain shape, or material-encoded maps for parametric
approaches to providing dense organic scene content.

For large area visual simulations, the total amount of raster information for a database typically far exceeds
available computer and video memory. Therefore, the image generator subsystem faces a substantial data
management problem where it has to provide and combine heterogeneous resources (textures containing various
data formats) to achieve the desired image quality and real-time performance characteristics. The data management
(streaming) aspect of large-area coverage is equally important. The approach should be inherently efficient to
address the challenges of modern combat training, where sometimes only a limited bandwidth is available for on-
demand database streaming.

The paper presents a novel approach, called Virtual Texture, that addresses the challenges of utilizing huge amounts
of raster data on the programmable graphics pipeline. The Virtual Texture formulation satisfies the key
requirements of managing the data at deterministic real-time frame rates, while at the same time behaving as if it
were a regular texture available on any texturing unit. The latter aspect of the formulation makes it possible to
utilize multiple Virtual Textures in the context of any GPU-based technique or a specific vendor extension (such as
SGI's detail texture), thereby significantly expanding its application domain. The paper includes examples of
techniques where Virtual Texture has been used successfully to address simulation demands.

ABOUT THE AUTHORS

Anton Ephanov received B.S. and M.S. degrees in Mathematics and Mechanics from Moscow State University
(Moscow, Russia) and a Ph.D. degree in Mechanical Engineering specializing in Robotics from Southern Methodist
University (Dallas, TX). He is currently the Principal Architect for the Vega Prime run-time product at MultiGen-
Paradigm.

Chris Coleman graduated summa cum laude with a B.S. in Computer Science from Texas A&M University
(College Station, TX) and is currently working towards a M.S. in Visualization Sciences also from Texas A&M
University (College Station, TX). He is currently a Senior Software Engineer working on the Sensor Prime run-time
and database products at MultiGen-Paradigm.

2006 Paper No. 2509 Page 1 of 12

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2006

Virtual Texture: A Large Area Raster Resource for the GPU

Anton Ephanov, Chris Coleman
MultiGen-Paradigm
Richardson, TX
anton.ephanov@multigen.com, chris.coleman@multigen.com

INTRODUCTION

Texture mapping has traditionally played a key role in
real-time 3D computer graphics, where it is used as the
primary means for adding realism to the scene.
Techniques and approaches that utilize texture mapping
evolve with innovations in 3D graphics hardware. The
fixed OpenGL rendering pipeline is being replaced by
the programmable pipeline using vertex and fragment
shaders. The programmable graphics pipeline
revolutionized the world of real-time 3D graphics by
introducing unprecedented flexibility in utilization of
graphics resources. Programmable Graphics Processor
Units (GPUs) allow techniques which utilize textures as
a generic look-up resource, thereby allowing textures to
represent non-visual information about the database
area, such as spectral data at multiple wave bands,
thermal data, normal displacement maps for improved
terrain shading, digital elevation maps for the terrain
shape, or material-encoded maps for parametric
approaches to providing dense organic scene content.

Many of today’s advanced rendering techniques require
multiple channels of raster data. These techniques can
be applied through shaders and multi-texture stages on
models and small terrain areas using traditional
modeling tools. However, when the area of simulation
becomes large, the raster resources must be managed to
take maximum advantage of hardware resources to
achieve the best quality and performance combination
appropriate for the scenario.

Motivation

Texture mapping has always been a very demanding
resource requiring significant amounts of main
computer memory (RAM) and video (texture) memory.
Simulations that involve visualization of large database
areas, such as flight simulators, are especially
challenging in this respect. For large area visual
simulations, the total amount of raster information for a
database typically far exceeds available computer and
video memory. For instance, a typical database design
for a high to medium altitude range flight simulator
might have a coverage of 900 by 700 kilometers of
geo-specific satellite imagery at 0.8 meters per pixel.

2006 Paper No. 2509 Page 2 of 12

The corresponding texture dimensions are on the order
of 1125000 x 875000 pixels. At 3 bytes per pixel,
covering the entire area with high resolution imagery
would require nearly 3 terabytes of data. Further,
advanced rendering techniques could require far more
than 3 bytes per pixel of data. There is no graphics
hardware that can satisfy such exorbitant memory
requirements. Therefore, the image generator
subsystem faces a substantial data management
problem where it has to provide and combine
heterogeneous resources (textures containing various
data formats) to achieve the desired image quality and
real-time performance characteristics. The data
management (streaming) aspect of large-area coverage
is equally important. The approach should be inherently
efficient and scalable to address the challenges of
modern combat training, where sometimes only a
limited bandwidth is available for on-demand database
streaming.

The data paging is essentially a two-stage process that
involves paging from disk to RAM first, and moving
the data from RAM to video memory second. Recent
advances in the development of faster AGP and PCI
Express transfer buses make commodity PC hardware
capable of the desired data throughput. As a result,
producing compelling image quality and a highly
dynamic scene content at real-time frame rates using
huge textures is a reality, providing that there is a
software solution that offers an efficient run-time
management of the image resources.

PREVIOUS WORK

Techniques for dealing with huge textures range from
subdividing the texture into smaller tiles that can be
directly supported by the graphics hardware to offering
specialized low-level graphics hardware and high-level
system software such as clip-mapping (Tanner, Migdal,
and Jones, 1998). Both ends of the solution spectrum
have advantages and limitations. The texture tiling
approach is cost-effective because it can be
implemented on commodity graphics hardware. The
approach inherently provides good paging granularity
and deterministic image quality. However, it also
presents significant challenges. First, the tiling

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2006

approach requires that geometric primitives must not
cross the texture tile boundaries when using the fixed
OpenGL pipeline. With a typical maximum hardware-
supported texture size of 4096 x 4096 texels, the
limitation translates into stringent geometry tessellation
requirements that add an extra level of complexity to
the database design. Second, the tiling approach
complicates the Level Of Detail (LOD) management
both at the geometry and the texture levels, where it can
produce visually distracting popping artifacts. Third,
the approach tends to be sub-optimal from the run-time
state management perspective, where rendering a single
frame may require a significant number of texture
binds, introducing a considerable run-time performance
penalty. Finally, the approach requires that the texture
tiles are assigned to the geometric primitives at the
database design level, therefore implicitly making the
overall run-time texture budget dependent on the
database design and the LOD management scheme.
This aspect of the tiling solution makes the texture
budget planning and performance tuning particularly
complicated. It also makes it impossible to add new
techniques such as bump mapping onto an existing
terrain without regenerating the database.

The clip-mapping approach (Tanner, Migdal, and
Jones, 1998) has been de facto the preferred solution
for large area database visualizations on Silicon
Graphics (SGI) workstations. It produces high quality
images in real-time from very large textures using
relatively little texture memory. The approach greatly
relaxes the geometry tessellation limitation of the tiling
approach. From the end-user perspective, the major
disadvantage of clip-mapping is that it is only available
on a selected set of SGI workstations. The inability to
utilize this approach on commodity PC hardware makes
it inflexible and cost-prohibitive. Clip-mapping has
other downsides as well. Fundamental limitations of the
hardware can manifest themselves under certain
conditions as distracting visual artifacts such as the
“jello” and “wobble” effects. These effects appear as
tears in the imagery or temporal image shifting due to
numerical precision issues and clipping of large
polygons. Additionally, clip-mapping can not be
combined with other texture extensions (such as SGI
detail texture) or modern shader-based texturing
techniques, thereby making this solution less attractive
from the image quality perspective by today’s
standards.

The Virtual Texture (VT) approach presented in this
paper falls in between the tiling texture and clip-

2006 Paper No. 2509 Page 3 of 12

mapping approaches. Virtual Texture started as a
research project to provide the customers the ability to
migrate their clip-map databases to the PC platform
with a minimal amount of database modifications.
Therefore, the Virtual Texture and clip-mapping
formulations share many fundamentals. Clip-mapping
is patented technology of SGI (Migdal, et al., 1995).
Virtual Texture’s emulation of clip-mapping behavior
on the PC platform is patented technology of
MultiGen-Paradigm (Ephanov, 2000). It should be
noted that the patented implementation is limited to the
fixed OpenGL pipeline only with a single texture per
level of resolution. The ideas in this paper present
continuing innovation based on previous work to take
full advantage of the programmable nature of modern
graphics hardware.

THE VIRTUAL TEXTURE FORMULATION

The main objective of Virtual Texture is to manage
large amounts of raster data while providing data to the
GPU as a set of textures.

The Design Requirements

1. Virtual Texture must act as though it were a
regular texture as much as possible. From the
database modeling perspective, one should be able
to apply VT onto geometric primitives, where
texture coordinates of the vertexes should be
assigned the same way as if mapping a regular,
albeit huge, texture. Therefore, the texture
coordinates are assumed to be within the [0,1]
range for the entire area covered by the texture,
usually the entire database.

2. It must be possible to use Virtual Texture in
combination with advanced rendering techniques
often utilizing vertex and fragment shaders.

3. It must be possible to combine multiple Virtual
Textures for rendering in a single pass, therefore
making Virtual Texture multi-texture friendly. A
variety of rendering techniques use multi-texturing
effectively for improving the overall image quality.
For instance, an advanced shading technique such
as DOT3 bump-mapping can be extended to work
with two Virtual Textures representing a color map
and a normal displacement map respectively.

4. At a minimum, the implementation must only
require capabilities that are available in OpenGL
1.2. This requirement makes Virtual Texture cross-
platform and cost-effective.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2006

5. The implementation must meet high-performance
real-time requirements, such as a stable frame rate
of 60Hz or above, single-pass terrain rendering,
and a data throughput that is capable of sustaining
fast observer motion at Mach 1 or higher.
Minimizing the number of texture applies per
frame and throttling of sub-loading are required.

6. The Virtual Texture formulation must be flexible
to allow for data to be stored or streamed from
many different formats and image file sizes. All of
the Virtual Texture concepts discussed in this
paper are independent of how the raster
information is stored on disk.

Levels of Virtual Texture Resolution

We begin this section with an obvious realization that if
the texture is huge, we can’t utilize all the image data
for rendering at once — at least not at real-time frame
rates. This is beyond the memory and the throughput
capacities of modern hardware. At the same time, we
don’t need to display all the imagery at once because
we typically see only a limited portion of the total
database area. Additionally, the display technology
offers resolutions that are either on a par or smaller
than the maximum hardware supported texture size.
Therefore, in reality, we need to define and visualize a
high resolution inset of the entire Virtual Texture. The
high resolution inset is a dynamic subset of the image
data, whose content changes during run-time depending
on the application's visualization needs.

The inset is represented by an array of levels of Virtual
Texture resolution (we will also refer to them as Virtual
Texture levels or just levels). At runtime, the imagery
within each level is defined by the following factors:

1. The resolution of the image data that the level is
composed of. By convention, level 0 is considered
to have the highest resolution, which is consistent
with traditional texture mapping. Each subsequent
level represents image data at half the resolution.

2. The location of the paging center. The paging
center is the center of the current area of interest. It
can be coincident with the observer or positioned
at an arbitrary location in the scene. The paging
center can be set individually for each level of
resolution to reduce paging dependency among the
levels to facilitate management of sparse datasets.

3. The level configuration which consists of a square
n x n array of level tiles. A level tile is basically a
texture, although, in the current implementation,

2006 Paper No. 2509 Page 4 of 12

the texture is double-buffered for the reasons that
we will discuss later. The dimension n can be
chosen individually for each level based on the
database design and the image quality
requirements. Tiles that comprise a level are of
equal square dimension. The tile dimension can be
set individually for each level. Such multi-tile
formulation allows for significant configuration
flexibility, where the user can trade off memory
and texture budgets for image quality.

Based on the level definition presented above, let us
discuss what we should expect visually. For simplicity,
let us assume that all levels are identical in terms of the
tile configuration and share the same paging center
location. Visually, the levels of resolution should create
a set of concentric square enclosures of the image
resolutions. The most inner enclosure should present
the imagery at the highest resolution, while each next
level drops the resolution by half. The concept of levels
of resolution is demonstrated on Figure 1, where the
levels of resolution are color-coded on the right image
for better illustration.

Figure 1. Levels of Resolution of Virtual Texture

The choice to down sample each level by a factor of 2
is motivated by the idea of texture mip-mapping, where
a texture together with its mip-map levels can be
represented as a resolution pyramid (Neider, Davis, and
Woo, 2005). In the mip-map formulation, starting with
the highest resolution, each lower level represents the
image using half as many texels in each direction.
Texture filtering algorithms utilize mip-maps to
minimize visually distracting texture aliasing artifacts.
From this perspective, Virtual Texture can be
represented as a gigantic inverted pyramid, where the
base of the pyramid is the image data at the highest
resolution, while each next mip-map level represents
the image data at half the resolution. Notice also that
we don't specify how the image data is stored on disk.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2006

The Virtual Texture formulation is decoupled from the
specifics of data storage assuming that there is an
algorithm to retrieve a given area of resolution. In other
words, there is no direct mapping between image files
on disk and VT level tiles.

Figure 2 presents a schematic view of Virtual Texture.
The top left image represents the entire Virtual Texture
mip-map pyramid. Each green line is a level of the mip-
map pyramid viewed “edge-on.” The image at top right
is a visualization of a single mip-map level as viewed
from the “top-down.” The level of the mip-map
pyramid is now a green square. Also shown are the
paging center and the high-resolution inset. The image
at the bottom left corner shows the high-resolution inset
which is configured as a 2x2 array of level tiles.
Finally, the bottom right image shows the four level
tiles as textures with their own mip-map pyramids.

1) Wirtual Texture and its
mipmap levels on disk

21 A Nirtual Texture
mipmap level

High-resolution inset,
%T lewel of resolution

Level Paging
center

4) Level Tiles with

37 Wirtual Texture

: mipmaps
Lewvel of resalution Rmap

b

- Level Ties = —

(@ 252 array = -
. of tiles is ——— ——

A shiown) _— —_—
—3 —3
= =

Figure 2. A Schematic View of Virtual Texture

EXAMPLES OF VIRTUAL TEXTURE
TECHNIQUES

As it was stated in the previous section, the primary
objective of Virtual Texture is to manage large amounts
of raster data while providing the data to the GPU as a
regular texture or a set of textures. Such an approach
makes it possible to utilize Virtual Texture with the
majority of GPU-based rendering techniques that
already work with regular textures. The ability of
Virtual Texture to manage extremely large raster data
sets significantly expands the application domain of the
GPU techniques in the context of large area databases.
In this section, we present examples of GPU techniques
and their benefits when applied to large area databases.

2006 Paper No. 2509 Page 5 of 12

Basic Color Imagery

The most basic application of Virtual Texture is to
apply geo-specific (i.e. satellite) imagery to the terrain.
This application provides functionality that is similar to
the clip-mapping approach (Tanner, Migdal, and Jones,
1998). In this context, Virtual Texture is used directly
as a color map for texturing. It should be noted that
applying extremely large high resolution raster to a
relatively small geographical area also falls into this
category. It is the amount of raster data that requires
Virtual Texture, not the spatial dimensions of the area
per se.

Dynamic Terrain Bump Lighting

Another popular application of texturing is simulation
of per-pixel lighting using a bump or normal map
(Kilgard, 2000). The technique significantly improves
image quality by making the terrain shading look more
natural and realistic. The classic variant of the bump
mapping technique requires two textures — a color map
and a bump map. The bump map provides local normal
variation on the surface of the object in “tangent
space.” Tangent space is defined by a set of vectors
which make up a basis for each face of the object. This
set of vectors is typically pre-computed and stored in a
texture coordinate for each vertex of the object. The
terrain, being a static object, presents a special simpler
case, where the world (scene) space can be used as the
tangent space for each vertex, thereby eliminating the
need for otherwise complex tangent space computation.
Rather than a bump map, which perturbs local normals,
a “normal map” which encodes the surface normals in
world-space directly can be used.

Both the color and normal maps are very large raster
data sets. Therefore, application of bump-mapping to
the terrain requires two Virtual Textures. Interestingly
enough, the two VTs do not need to represent data at
the same resolution. The normal displacement map is
typically provided at a much lower resolution than the
color map while still producing acceptable image
quality. The normal map can be derived by the database
generation tools from the available digital elevation
data and enhanced using fractal-based techniques.

It should also be noted that time of day generally
advances very slowly in simulations. It is possible to
compute terrain lighting given information such as a
color map and normal map during the loading of
Virtual Texture levels so that lighting is computed at

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2006

load time rather than on the GPU. The advantages of
loading the normal map into the GPU are dynamic,
continuous time of day without having to re-compute
all of the loaded Virtual Texture, and the ability to
include the effects of local light sources such as
headlights and searchlights with high quality lighting
on the illuminated terrain.

Detail Texture

Virtual texture can also be combined with raster data
that is not “virtual” in nature. The term “detail texture”
typically applies to a variety of techniques that strive to
improve image quality in the areas where high-
resolution imagery is unavailable by adding an artificial
noise pattern - the “detail”. Regardless of the
implementation details, detail texture approaches are in
principle compatible with Virtual Texture due to its
formulation. A Virtual Texture essentially behaves as a
single texture to the user, leaving other texture units
available for advanced rendering techniques.

The implementation of detail texture varies depending
on the approach and the graphics hardware. The
extension (GL_DETAIL_TEXTURE_2D_SGIS) s
used on platforms where it is supported. A multi-
texture based approach is used to simulate similar
functionality on other platforms. A more sophisticated
approach, called “hyper texture,” is also possible in this
context that utilizes a set of detail textures and
combines them progressively with mip-map levels of
the base texture to simulate the desired effect
(MultiGen-Paradigm, 2006). Additionally, texture
blending can be used effectively combine multiple
detail textures producing a naturally looking pattern
(Nuydens, 2002).

Sensor Simulation

Night vision goggles, infrared cameras, various types of
radar, and many other devices require data outside the
range of the visible spectrum for a proper simulation.
Reflectance or emittance in a particular waveband,
thermal information, and radar backscattering
properties may be required depending on the type of
device simulated. A Virtual Texture is typically built
for each type of sensor being simulated.

The material make-up of every pixel in the color
Virtual Texture is often used to derive properties for
sensor simulation. There are many difficulties inherit in
material classification of geo-specific imagery, whether

2006 Paper No. 2509 Page 6 of 12

performing classification with a single material per-
pixel or multiple materials and mixes per-pixel
(Davidson, 2006). Further, material rasters are indexed
formats by their very nature, meaning that they cannot
be filtered as continuous data. Rather than building a
material Virtual Texture, which requires filtering the
materials to fill in all levels, the materials data can be
converted to in-band data that is analog in nature for a
particular sensor. This results in better filtering, access
to additional source data besides just materials, more
accurate simulation, better image quality, and
consistency across image levels.

For infrared simulation, converting materials to static
radiance as sensed by an infrared camera is the simplest
form of sensor simulation. It results in a static time of
day scene. When using static radiance, simulating a
different time of day would require building an entirely
separate Virtual Texture for each time of day simulated.
Alternatively, thermal data and properties such as
material reflectance and/or emittance in the waveband
of the sensor can be encoded into a Virtual Texture to
allow for dynamic time of day for both emitted and
reflected energy. MultiGen-Paradigm’s proprietary 124
sensor texture format contains indexed thermal data
which texture filters, mip-maps, and compresses.
Virtual Texture feeds this raster data to the GPU which
computes at-aperture radiance for the sensor.

Modern GPUs operate with floating-point precision at
extremely high frame-rates, making the PC an ideal
platform for large-area sensor simulation. Virtual
Texture allows for geo-specific simulation of large area
datasets in any wavelength. Further, the GPU makes
continuous time of day possible at extremely high
frame rates, allowing these techniques to meet real-
world training requirements using only a single GPU.

Dynamic Terrain using Elevation Rasters

Elevation data is readily available, and is often used in
constructing a polygonal representation of the terrain.
This high quality terrain elevation data could instead be
converted into a Virtual Texture and the GPU used to
modify the positions a static terrain skin to match the
elevation data. While the details of these techniques can
be found in other papers (Losasso and Hoppe, 2004),
the Virtual Texture implementation makes management
of the elevation data efficient and configurable.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2006

Horizon Mapping for Terrain Self-Shadowing

In addition to normal maps and elevation maps, horizon
maps can be used to compute shadowing of the terrain
from the sun or moon. A horizon map stores angles that
can be used to determine whether a point on the terrain
surface is in shadow for a particular incident azimuthal
light direction (Max, 1988). Two solar elevation angles,
one in the East azimuthal direction and one to the West,
are sufficient to compute solar terrain shadowing at
run-time in the GPU. The angles stored in the horizon
map represent the east and west “horizons” for each
surface point on the terrain.

As with bump mapping, this data can be interpreted at
load-time to create a static lighting texture for the
terrain, or lighting and shadowing can be computed
dynamically on the GPU.

Illumination Maps for Night Simulation

An unlimited number of city lights and light pools can
be “baked-in” to a texture for use at night. Raster-based
approaches for light pools allow for pre-computed
shadowing, colored light sources, and large numbers of
individual light pools scattered along roadways, and are
far more efficient than geometry-based lighting of a
night scene. Geo-specific night scene illumination can
be efficiently implemented with a Virtual Texture.

Challenges in Using Color Textures for Other Data

These examples of Virtual Texture techniques show
that there are many types of raster data that can be
made available to the GPU. Unfortunately, each
individual texture is limited to the 4 color components
— red, green, blue, and alpha (RGBA). Virtual texture
raster datasets with the same coverage and resolution
can be combined into a single texture for faster lookup,
as long as 4 or fewer components are required.
Otherwise, additional texture stages must be used.
More data requires more video memory consumption
and possibly more texture look-ups per fragment which
can impact performance.

Because terrain is often viewed at oblique angles
towards the horizon, mip-mapping is almost always
required for Virtual Texture. Further, filtering of some
type is required to build a Virtual Texture dataset at all.
Mip-mapping and texture filtering can be problematic
for non-color rasters such as indexed materials and
normal maps. One solution, as mentioned in the section

2006 Paper No. 2509 Page 7 of 12

on sensor techniques, is to convert from an indexed
format into an analog format. Materials data is often
converted to some analog data relevant to the sensor
simulation. However, even when using analog data in
the red, green, blue, and alpha channels, care must be
taken in the filtering settings and compression
characteristics chosen. For example, hardware
supported DDS compression can be problematic for
non-color rasters because the compression algorithm
makes assumptions, such as putting emphasis on the
green channel, that simplify color compression which
may not be appropriate for other types of data (MSDN,
2006). There are also hardware supported compression
techniques specifically formulated for normal map
compression (ATI, 2003). Unfortunately, compression
techniques used for color or normals may still not be
appropriate for other types of raster data supplied by
Virtual Texture to the GPU.

THE INTERNAL ALGORITHMS

In this section, we examine Virtual Texture algorithms.
We also discuss limitations of the fixed OpenGL
pipeline, ways to resolve them using the programmable
pipeline, and possible image quality issues produced by
Virtual Texture.

The Texture Coordinate Transformation Algorithm

The texture coordinate transformation algorithm is at
the core of the Virtual Texture mathematical engine.
The primary objective of the algorithm is to guarantee
that texels from a given level of resolution are applied
correctly to underlying geometry objects producing
consistent visual results across the levels. From now
on, we define a geometry object as a set of cohesive
geometric primitives, such as triangle strips or quads,
that is used as a building block for construction of the
database hierarchy. The algorithm works entirely in the
texture coordinate space of the database. The choice of
the texture coordinate space decouples the Virtual
Texture formulation from the world space (i.e.
Cartesian XY2Z).

The texture coordinate transformation algorithm
computes a texture coordinate transformation that is
unique for each level tile (and, therefore, for each
texture object representing the tile). The transformation
is a combination of scaling and translation. Therefore,
it is a linear transformation that can be applied via a
texture matrix. The latter makes it possible to
implement Virtual Texture within the constraints of the

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2006

fixed OpenGL pipeline (no shaders), although with
certain limitations that we will discuss later.

The texture transformation represents a conversion
between two texture spaces. The first texture space is
the database texture coordinate space. The (u,v) texture
coordinates of geometric primitives are given in this
space. The coordinates could be used (hypothetically)
to sample into Virtual Texture at the highest level of
resolution (the top of the pyramid on Figure 2, Diagram
1). The second texture space is associated with the level
tile texture (Figure 2, Diagram 4). We assign the capital
letters (U,V) to this space. The derivation is identical
for both texture coordinates, therefore it is presented
only for the u coordinate. We model the transformation
as linear with the scaling coefficient scale and the
translation term trans as follows:

U = scale*u +trans (1)

The unknown coefficients scale and trans are computed
by solving a system of linear equations that we derive
from equation 1 by substituting two pairs of known
matching values for the texture coordinate as follows:

0.5 =scale*u,, +trans

2
0 =scale*u,, +trans

where, the ug, value is a position of the level tile center.
The uy, value is a position of the lower left corner of the
tile that is computed as:
uIc = uctr - dir‘ntile*2(Ievel_l) /dlmvt (3)
The dimye variable is the level tile dimension, level is
the level number that the tile represents, and dim,, is the
Virtual Texture dimension. The textures are assumed to
be powers of two, therefore we can express their

dimensions via the corresponding exponents:

ul =u . 2(tile+level—1—vt) (4)

C C

Solving Equation 2 for the unknowns, we obtain the
texture coordinate transformation:

_ o (vt—level-tile) (vt—level-tile)
u=2 *U+(0.5-2 *Uy)

_ o (vt—level-tile) (vt—level—tile)
V=2V ey 4 (0.5 -2y)

®)

2006 Paper No. 2509 Page 8 of 12

Equation 5 can be used directly to form texture
coordinate transformation matrix for a tile given its
level number level, location of the tile center (Ucy,,Ver),
the tile texture dimension exponent tile, and the Virtual
Texture dimension exponent vt.

Applying Level Tile Textures to Geometries

In this section, we discuss an algorithm that is the
foundation for the Virtual Texture rendering flow. The
algorithm determines which level tiles to apply to a
geometry object. The selection logic is defined by
restrictions imposed by the following two factors: 1)
programmability of the graphics pipeline and 2) run-
time performance considerations. These two factors
also have a tremendous influence on the final image
quality produced by Virtual Texture. First, we consider
a variation of the algorithm that can be used with the
fixed OpenGL pipeline. Next, we extend the algorithm
to take advantage of the pipeline programmability via
vertex and fragment shaders.

The Level Tile Selection Algorithm

The main objective of the level tile selection algorithm
is to assign tile textures to a geometry object for
rendering. The output of the algorithm effectively
defines the visual result of applying Virtual Texture to
the underlying geometry objects that represent the
database. The input to the selection algorithm is a
texture coordinate bounding box that is defined for
each geometry in the database texture coordinate space.
The box is aligned with the texture coordinate axes.
The level tile selection algorithm utilizes the axis
aligned bounding boxes (AABB) for efficient
resolution of level tiles as described below.

First, we define AABB in texture coordinate space for
each level of resolution of Virtual Texture. The box is a
union of the corresponding boxes of the level tiles. For
each tile, the center of the box is located at the current
tile center, while its extents are defined by the Virtual
Texture dimension in texels dimy, the level tile
dimension dimy, and the level number level as
follows:

umin = (uctr _O'S*dimlevel*ZIEVEI)/dimvt (6)
umax = (uctr +0'5*dimlevel*2Ievel)/dimvt

Notice that Virtual Texture levels and tiles introduce a
hierarchy of axis aligned bounding boxes in texture

coordinate space. The hierarchy is also used to improve

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2006

the run-time efficiency of the level tile selection
algorithm by culling level's AABB against geometry's
AABB as described below.

For each geometry object, the algorithm iterates over
the Virtual Texture levels, starting with the level of
highest resolution. For each level, the algorithm
compares texture coordinate bounding boxes of the
geometry object and the level to cull out levels that do
not overlap with the geometry. The algorithm works
differently from this point on, depending on whether
the rendering is done using the fixed OpenGL pipeline
or shaders.

In the case of the fixed OpenGL pipeline, the algorithm
searches for a level with a bounding box that
completely covers the geometry box. Once such a level
is found, the iteration proceeds over the level tiles,
searching for a tile that completely covers the geometry
bounding box. If such tile is found, the search stops, the
algorithm assigns the tile texture and the corresponding
texture matrix (see equation 5) to the geometry object
for rendering. Otherwise, the algorithm continues the
iteration to the next lower-resolution level in search of
a level tile that provides complete coverage of the
geometry object. Notice that Virtual Texture always
includes a level that covers the entire database with a
single tile (texture), although at a very low resolution.
Therefore, every geometry object is always guaranteed
to be assigned a texture and a texture matrix.

Limitations of the Fixed OpenGL Pipeline

The fixed OpenGL pipeline presents significant
limitations in the context of Virtual Texture rendering.
The most important limitation is that a tile texture has
to cover the underlying geometry object completely in
the texture coordinate space to be applied to it. This is
primarily due to OpenGL's handling of texture
coordinate wrapping. Standard OpenGL pipeline offers
several texture wrapping modes. The GL_REPEAT and
GL_MIRRORED_REPEAT_ARB are not acceptable
because they repeat texels outside the [0,1] range. The
non-wrapping modes, such as GL_CLAMP,
GL_CLAMP_TO_EDGE and
GL_CLAMP_TO_BORDER end up smearing the
bordering texels or border color, therefore producing
unacceptable results as well. We need a mode where
sampling into a texture stops once the extrapolated
texture coordinate goes beyond the [0,1] range (it is
assumed that the texture transformation as described in
section 3.1 has already been applied). Unfortunately,
this result is very difficult to achieve efficiently with
the fixed OpenGL pipeline. There is no multi-texture

2006 Paper No. 2509 Page 9 of 12

mode to cut-in a high-resolution inset over a base
texture. As a result, Virtual Texture can not be
implemented as a continuously moving set of levels of
resolution that utilizes a toroidal texture mapping
scheme introduced by clip-mapping (Tanner, Migdal,
and Jones, 1998). A tile texture can only be applied to
the geometry object when it covers the object
completely, which is not the case for the majority of
paging center positions if the center moves
continuously. One solution to work around the
limitation is to make the Virtual Texture paging center
hop from geometry to geometry, therefore increasing
the chances of geometry coverage by level tiles.

Positioning of the Virtual Texture paging center plays a
key role in achieving the desired image quality. Figure
3 illustrates how the center positioning strategy is
primarily driven by the limitations of the pipeline.

I - [evel tile texture coordinate bounding box

1 - geometry object texture coordinate bounding box

W W

a U o U u

c) Mone of the 4
textures can be
applied

Figure 3. Limitations of the Fixed Function Pipeline
in Texture Coordinate Space

a) Texture can not be
applied

b} Texture can be
applied

Diagram (a) represents a case where the level tile
texture coordinate bounding box does not cover the
geometry box completely. The tile texture can not be
applied in this case. Diagram (b) demonstrates that
aligning the tile center with the geometry makes the
texture application possible, therefore emphasizing the
importance of the center positioning. Diagram (c)
represents a case where a level of resolution is
configured as a 2x2 array of tiles. The four texture tiles
combined completely cover the geometry bounding
box. However, each tile individually does not.
Therefore, none of the tiles can be applied to the
geometry. A lower resolution level tile which
completely covers the geometry would have to be
chosen in this context.

Limitations of the fixed OpenGL pipeline visually
manifest themselves as noticeable transitions between
the levels of resolution that follow the database
tessellation because they take place at the geometry

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2006

borders. A transition from higher to lower level of
Virtual Texture resolution when crossing the geometry
border can often jump more than one level of
resolution. Texels on one side of the geometry border
will appear blurrier because they represent a lower
level of resolution.

Applying Level Tile Textures using Shaders

Shaders and additional multi-texture stages can be used
to improve border conditions between Virtual Texture
levels because the programmable pipeline gives us the
ability to combine multiple level tiles on a geometry
object in a single rendering pass. We can achieve
superior image quality, while significantly relaxing the
geometry tessellation requirements. The basic idea is to
combine multiple tile textures using a fragment shader,
where a tile is chosen for rendering if it overlaps the
geometry object in the texture coordinate space. The
advantage is that geometry does not need to be
tessellated, or broken into separate objects to apply
high resolution Virtual Texture levels. The
disadvantage is that more multi-texture stages are
required. The shader combines multiple tile textures for
rendering based on the interpolated texture coordinate
for each texture stage. Starting with the stage that
contains the highest resolution, the shader samples into
the texture while masking the result based on the
sampling results for the previous stages as follows:
texture stages for which the coordinates fall outside the
[0,1] range are masked out — this is the desired texture
clamping behavior that was missing in the fixed
OpenGL pipeline. At the same time, the shader masks
lower resolution textures from being applied if and only
if a higher resolution texture has already been sampled
successfully for the fragment.

The shader case introduces more variation into the
level-tile selection algorithm. The key difference is that
the algorithm is allowed to associate more than one tile
texture with the geometry object. The maximum
number of available texture stages is specified by the
user within the hardware limitations. The key
requirement for the selection algorithm is to guarantee
that in the end the geometry object is completely
covered (in texture coordinate space) by a set of
selected tile textures.

Limitations of Applying Level Tile Textures using
Shaders

The shader-based implementation is subject to a
limitation by the number of available texture stages (it
is assumed that the rendering is to be done in a single

2006 Paper No. 2509 Page 10 of 12

pass for performance reasons). This number is
hardware-dependent, with eight texturing units being a
typical number at the time of this writing. Consider
Diagram (c) on Figure 3 again, where the geometry
object requires four texture stages for rendering. This is
a typical situation for a multi-tile Virtual Texture
configuration. As shown, we need four texture stages to
render the geometry in a single pass. The number is
going to double (or even triple) if we choose to
improve the image quality with an advanced rendering
technique that requires multiple textures for passing the
additional data.

The run-time rendering performance is also a concern.
The majority of work is done by the fragment shader.
Therefore, the overall rendering performance is
dependent on the complexity and efficiency of the
shader code, where the complexity increases with the
number of utilized texture stages. From this
perspective, database designs and Virtual Texture
center positioning strategies that facilitate application
of fewer texture stages on the fragment shader should
be preferred because they produce better run-time
performance.

Finally, geometry tessellation presents a rendering
performance concern from the perspective of moving
the primitives to the pipeline. Many researchers believe
that the total number of rendered polygons is less of a
performance issue on modern hardware platforms
(Losasso and Hoppe, 2004), making many terrain
design approaches that strive to minimize the total
number of polygons somewhat obsolete. Vertex buffer
objects (VBO) offer a very efficient means for
providing the vertex data to the pipeline. Proper
batching of the primitives becomes the key to fast data
transfers, where smaller batch sizes are typically less
efficient. However, the tessellation requirements
imposed by Virtual Texture oppose batches of large
sizes, especially at the high level of resolution.
Therefore, one needs to find a compromise between the
database design and the vertex transfer approach that
would allow for the optimal performance to image
quality ratio.

Double Buffering

Each level tile is associated with two texture objects —
one for data update and one for visualization. The two
textures swap when the data update is complete. The
actual image data that is represented by the textures
depends on the level number and on the current

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2006

location of the paging center. The data is very dynamic
- it has to be updated as the center moves. The level tile
textures come with their own mip-map levels to
facilitate texture filtering. But, unlike regular textures,
the mip-map levels are not computed at run-time by
down sampling the top level. Instead, they are copied
directly from the corresponding areas of lower
resolution from the Virtual Texture dataset. This is
necessary to guarantee cross-level image correlation. It
is also cheaper computationally at run-time because the
down-sampling algorithm is replaced with a memory

copy.

The process of updating a tile texture includes two
stages. The first stage updates the mip-map buffers with
the new data by paging it from disk to RAM. The
second stage, also referred to as texture sub-loading,
moves the new data to texture memory. The first stage
can be done asynchronously in a separate thread,
whereas the second stage needs to be done in the
context of the drawing thread because it requires the
OpenGL draw context. Double-buffering of textures
increases the overall texture budget, which is an
important run-time performance consideration.

Texture Sub-loading

Texture sub-loading is a process of moving the image
data from RAM into the texture (video) memory.
Texture sub-loading is a time consuming process that
needs to be controlled to guarantee the frame rate
stability. A robust implementation of the texture sub-
loading controller is absolutely essential for high-
performance applications that utilize Virtual Texture.
The actual control law depends on many factors,
including the image format, the system bus throughput,
the graphics driver implementation, etc. One of the key
benefits of compressed texture formats is sub-loading
performance.

Numerical Precision Issues

Numerical precision issues typically manifest
themselves as distracting visual artifacts, such as
imagery “shifts”. The graphics pipeline operates using
32-bit floating point precision numbers (the float data
type in C/C++) for both texture coordinates and texture
matrices. A simple computation shows that it is easy to
run out of floating point precision when applying a
large-scale Virtual Texture. The C/C++ run-time library
defines the number of decimal digits of precision
(typically 6) and the “floating point epsilon” value,

2006 Paper No. 2509 Page 11 of 12

which is the smallest number such that one plus epsilon
is not equal to one (typically on the order of
1.192092896-07F). These constants provide the
guidelines for the degree of resolution that one can
expect from Virtual Texture. In the Virtual Texture
formulation, texture coordinates span the [0,1] range in
each direction. Given the numerical limitation of the
float type, one can only assign texture coordinates with
a minimal difference between any two coordinates of
1/2%°. In reality, a texture coordinate step size much
larger than epsilon is required. Therefore, the database
can not be tessellated in the texture coordinate space
beyond the floating point limitation. Possible solutions
to this limitation are to reduce the Virtual Texture size
or to introduce a texture coordinate localization
scheme, where a stack of double-precision texture
matrices can be used to compensate for floating point
deficiencies.

Another numerical issue is related to the translation
term of the texture transformation matrix. The term is
derived from equation 7 as follows:

translation = (0.5 — 2Vt xy 1y (7)

where, Uy is the location of the paging center in the
database texture coordinate space, level is the level
number, tile is the level tile dimension exponent, and vt
is the Virtual Texture dimension exponent. Since levels
of lower resolution are associated with higher level
numbers in the Virtual Texture formulation, the overall
scaling factor that multiplies the paging center ug, gets
smaller with lower resolution, exposing the floating
point limitations. This issue produces a visual “shift” in
the lower-resolution imagery when the paging center
moves. A possible solution to this problem is to
introduce an imaginary grid in texture coordinate space
and clamp the paging center to it (recall that each level
of resolution can be centered individually). The grid
points should be computed such that the lowest decimal
digits are equal to one over a power of two, where the
exponent value can be chosen empirically or derived
from the database specification. Equation 7 will
produce less numerical error when the center is
clamped to such a grid.

State Sorting for Optimal Rendering Performance
As described in previous sections, the level tile

selection algorithm associates tile textures with the
geometry objects. The rendering performance can be

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2006

optimized if the geometry objects are sorted by the tile
textures upon completion of the selection algorithm.
The additional sorting pass minimizes the total number
of texture applies (binds) that is required for rendering
the database. In fact, the entire database may end up
being rendered with as few texture binds as the number
of distinct level tiles that have been chosen for
rendering. The number of binds is typically low, even
in the presence of shaders that require multiple texture
binds per geometry. The ability to minimize the total
number of texture binds brings significant run-time
performance benefits, making Virtual Texture a very
attractive solution from this perspective.

CONCLUSIONS

Virtual Texture is a novel approach to texturing that
allows for rendering of large database areas with a
texture of exceedingly large dimensions, such as
visualization of large-scale geographical areas with
geo-specific satellite imagery. The primary difficulty
with such visualization is that the amount of image data
that is used by the visualization by far exceeds
available computer memory and video resources. The
key benefit of Virtual Texture is that it allows for
efficient visualization with the imagery at real-time
frame rates on a commodity PC platform.

Scalability is another feature of this approach, where
the user can trade off computer resources for improved
image quality. An additional benefit of Virtual Texture
is ease of integration with modern visualization
techniques, such as multi-texturing, vertex and
fragment shaders, and vendor-specific texturing
extensions such as detail texture. This feature allows
for achieving superior image quality by integrating geo-
specific imagery with other resources such as normal
displacement maps for improved terrain shading,
multiple representations for different sensor spectral
bands, thermal data for infrared simulation, and detail
texture for enhancing image quality in the areas where
high-resolution satellite imagery is unavailable.

2006 Paper No. 2509 Page 12 of 12

REFERENCES

ATI. (2003). Normal Map Compression. Retrieved June
16, 2006 from
http://www.ati.com/developer/NormalMapCompressi
on.pdf

Davidson, S. (2006). Material Classification Pragmatics:
Creating and Evaluating Geo-Specific Material
Assignments. Paper Submittal for I/ITSEC 2006.

Ephanov, A. (2000). United States Patent 6,924,814,
Issued August 2, 2005.

Kilgard, M. (2000). A Practical and Robust Bump-
Mapping Technique for Today's GPUs. Proceedings
of Game Developer’s Conference 2000, Advanced
OpenGL Game Development.

Losasso F., & Hoppe H. (2004). Geometry clipmaps:
Terrain rendering using nested regular grids.
SIGGRAPH ’04 Proceedings, pages 769-776.

Max, N. (1988). Horizon Mapping: Shadows for Bump-
Mapped Surfaces. The Visual Computer, Volume 4,
pages 109-117.

Migdal , et al. (1995). United States Patent 5,760,783.
Issued June 2, 1998.

MSDN Article. (2006). Compressed Texture Resources.
Retrieved June 16, 2006 from
http://msdn.microsoft.com/library/default.asp?url=/li
brary/en-us/directx9_c/Compressed Texture Resour
ces.asp

MultiGen-Paradigm. (2006). HyperTexture - a Virtual
Texture Technique. Vega Prime Programmer's
Guide.

Neider J., Davis T., & Woo M. (2005). OpenGL
Programming Guide (5" Edition). Addison-Wesley.

Nuydens, T. (2002). Terrain Texturing. Retrieved June
22, 2006 from
http://www.delphi3d.net/articles/viewarticle.php?arti
cle=terraintex.htm

Tanner, C., Migdal, C., & Jones, M. (1998). The
Clipmap: A Virtual Mipmap. Computer Graphics,
SIGGRAPH “98 Proceedings, pages 151-158.

http://www.ati.com/developer/NormalMapCompression.pdf
http://www.ati.com/developer/NormalMapCompression.pdf
http://msdn.microsoft.com/library/default.asp?url=/library/en%1Eus/directx9_c/Compressed_Texture_Resources.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en%1Eus/directx9_c/Compressed_Texture_Resources.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en%1Eus/directx9_c/Compressed_Texture_Resources.asp
http://www.delphi3d.net/articles/viewarticle.php?article=terraintex.htm
http://www.delphi3d.net/articles/viewarticle.php?article=terraintex.htm

	ABSTRACT
	ABOUT THE AUTHORS
	INTRODUCTION
	Motivation
	PREVIOUS WORK

	THE VIRTUAL TEXTURE FORMULATION
	EXAMPLES OF VIRTUAL TEXTURE TECHNIQUES
	THE INTERNAL ALGORITHMS
	REFERENCES

