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ABSTRACT

Markerless augmented reality (MAR) aims to integrate 3D virtual objects into the real environment in real-time,
enhancing the user’s perception and interaction. It differs from marker based augmented reality (AR) systems
basically by the method used to place virtual objects in the real world. In MAR, the real environment may be used as
a marker that can be tracked in order to position virtual objects. Generally, the techniques used are based on
computer vision, image processing, and computer graphics, and a major issue related to the field is robust, yet
precise real-time object tracking and registration. Several AR solutions using general purpose devices have been
developed. Such processing is done by software, making it difficult to obtain real-time results without compromising
resolution and frame rate, and requiring the use of high clock frequencies that consequently lead to higher costs and
power consumption. This paper introduces MARCam, an FPGA based solution that allows the development of
embedded MAR applications. This framework allows the development of compact hardware with wearable
capabilities for applications requiring user mobility through unknown environments and real-time dedicated
processing. One of the most promising applications of this technology is guidance in training systems. MARCam can
utilize a Structure from Motion (SfM) based technique. Instead of relying on previously obtained information about
the real scene, SfM based techniques estimate the camera displacement without a priori knowledge of the
environment. These methods are also able to retrieve the structure of the scene in real-time, with various levels of
detail. Due to this, it is possible to reconstruct a totally unknown environment on the fly. MARCam’s architecture is
divided into many circuit modules, each one responsible for a specific task. This way, one can quickly arrange an
assembly of modules and have in short time a fully-working, dedicated MAR system.
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INTRODUCTION

Markerless Augmented Reality (MAR) superimposes
virtual information — 2D or 3D, textual or pictorial —
onto real world scenes. Nowadays, Augmented Reality
(AR) applications are used in different fields, such as
entertainment, medicine, manufacturing and repair, and
education. The technical challenges lie in determining,
in real-time, what should be shown where, and how.
The latter problem is especially important when the
visual appeal of the result is crucial. Then substantial
effort must go into seamlessly fitting the information
into the scene, both geometrically and photometrically
(occlusions, shadowing, mutual reflections, chromatic
adaptation to scene illumination, and so on). Even
under simplified conditions these problems are not
trivial. The system must recognize where it is, which
information is to be superimposed, and where. Beyond
that, it should present realistic interaction between
virtual and real elements.

In this paper we deal with the two first issues, that
mean what to place and where to place it, with the goal
of achieving acceptable processing performance, user
autonomy, and system mobility. The concept of
MARCam, which is introduced in this paper, is a smart
camera built upon the System-on-Chip (SoC)
technology. It comprises a dedicated hardware
containing an entire MAR pipeline implemented as a
set of hardware components (cores). The use of
dedicated hardware allows overall better performance
compared to software implementations, and with the
potential of exploiting real parallelism of concurrent
tasks. These systems also offer the advantages of low
power consumption while still handling high resolution
images.

Our present prototype uses a Field Programmable Gate
Array (FPGA) for image acquisition, image processing
and scene display, in order to develop embedded AR
applications. Current results in some cases show a
performance gain ~30,000 times faster than comparable
functions implemented in software alone. After
performing some successful validation case studies, we
have started to implement MAR components.
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This paper is organized as follows. The section
“Background” describes some basic concepts regarding
to MAR and SoC technologies. The section “Related
Work” presents current major research in this topic.
The section “MARCam” introduces our MAR camera
prototype, and the “Results” section offers detailed
information regarding results already obtained and
ongoing implementations. The section “Potential
Application Scenario” draws a scenario using
MARCam for guidance and training. Finally, some
concluding remarks are discussed in section
“Conclusions and Future Directions”.

BACKGROUND

This section describes the basic concepts involved in
the two main topics comprising this work: Markerless
Augmented Reality and System-on-Chip. Special
attention is given to Structure from Motion (SfM)
based MAR techniques, as they are the most adequate
approach for MARCam purposes.

Markerless Augmented Reality

AR systems integrate virtual objects into a 3D real
environment in real-time, enhancing the user’s
perception of, and interaction with, the real world
(Bimber & Raskar, 2005). Its basic difference from
MAR systems is the method used to place virtual
objects in the real world. The Markerless approach is
not based on the use of traditional artificial markers.
Such markers are placed in the real world to support
position and orientation tracking by the system. In
MAR any part of the real environment is used as a
marker that can be tracked in order to position and
orient virtual objects. Therefore, there are no ambient
intrusive markers that are not really part of the
environment. MAR counts on robust trackers to
accomplish this (Comport, Marchand, Pressigout, &
Chaumette, 2006). Another advantage is the possibility
of extracting from the environment characteristic
information that may later be used by the MAR system.
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Nonetheless, tracking and registration techniques are
more complex in MAR systems. Another disadvantage
emerges in online MAR since it presents more
restrictions.

Techniques developed for MAR can be classified in
two major types: Model based and SfM based
(Figure 1). With model based techniques, knowledge
about the real world is obtained before tracking occurs
and is stored in a 3D model that is used for estimating
camera pose. In SfM based approaches, camera
movement throughout the frames is estimated without
any previous knowledge about the scene, but is
acquired during tracking.

Online
monocular
MAR

Model
based

Edge Optical Texture Real-time
based flow based based SfM

Point
sampling

Template
matching

Interest
point
based

Explicit
edge
detection

Figure 1. Online Monocular MAR Taxonomy

SfM is a classic technique used in computer vision to
perform 3D reconstruction (Pollefeys, 1999). Its
traditional implementation follows a suggested
pipeline, and is not concerned with real-time
constraints. SfM produces great results relative to the
final mesh generated by the entire process, but some
algorithms present in its pipeline require a lot of
processing time to finish their work, and are thus
unsuitable for real-time applications. Usually, the SfM
pipeline is composed of the following phases: feature
tracking, camera pose hypothesis generation, pose
evaluation and refinement, self-calibration and 3D
reconstruction.

Basically, in order for SfM to support real-time

constraints, some of these phases have to be skipped or
replaced by other algorithms that still maintain the
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robustness of this technique. An overview of the real-
time SfM method is depicted in Figure 2. In Nistér’s
implementation of real-time SfM, he introduced some
modifications to the pipeline relative to camera pose
hypothesis generation, evaluation and refinement,
creating a brand new solution based on the classic
Random Sample Consensus (RANSAC) refinement
algorithm (Nistér, 2005). He used this new algorithm
for acquiring a sufficiently good pose estimate that
could be fed into a bundle adjustment procedure, such
as the Levenberg-Marquadt one (Triggs, McLauchlan,
Hartley, & Fitzgibbon, 2000), in order to generate a
precise resulting pose. This algorithm works similar to
original RANSAC, but in a preemptive way, stopping
evaluation of pose hypothesis that are not promising.
Since Nistér’s approach works with a calibrated
camera, the self-calibration step is not performed and
camera pose hypothesis generation is done with the
five-point (Nistér, 2004) and three-point (Haralick,
Lee, Ottenberg, & Nolle, 1994) methods. These
methods consist in solving a linear equation,
considering the number of degrees of freedom given by
the metric reconstruction. Therefore, to compute the
camera translation and orientation, only five or three
pairs of correspondent points from two consecutive
frames are used.
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Figure 2. Real-Time SfM Overview

Real-time SfM

These modifications to the original SfM pipeline
removed some bottlenecks and speeded up the entire
process. This minimizes the delay in reconstructing a
rigid scene, getting closer to real-time 3D
reconstruction. Since the real-time constraint is
supported by SfM, it has been used in MAR systems
(Lourakis & Argyros, 2005). Real-time SfM can offer
more information about the entire scene, and may
provide data to improve the MAR system. Features like
occlusion of virtual objects by real ones and physical-
based interaction between them can be exploited.
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System-on-Chip

In the area of embedded systems there is a novel
technology that aims to satisfy the desire of every
hardware  engineer:  reduced  cost-per-function,
increased system performance, longer battery life,
higher-end features in lower-cost systems, smaller form
factors to enable designs with lower temperatures,
easier design and manufacturing, and increased
reliability. System-on-Chip, or simply SoC is a
reasonable attempt at all of these goals. The main idea
is that it integrates a complete system, created as a set
of components (intellectual properties, or IP cores, as
they are known), or sub-systems, on a single piece of
silicon. In the past, a user had to utilize many devices
for obtaining the desired result. Currently, the goal is to
reach the same, or an even better result, with the use of
a single device.

As requisites, SoC technology presents three basic
demands. The first one is a common process for
handling analog, digital and radio frequency signals, so
that various systems can communicate with each other.
The second requisite is that there must be a simple
interface for connecting the assembled components,
following common busing techniques. At last, there is a
need for end-equipment systems expertise, since
application domain knowledge is applied directly to the
development environment, for generating the SoCs.

RELATED WORK

As far as we know, there is no flexible solution
considering the use of a hybrid hardware and software
platform to develop marker based AR applications,
neither a complete hardware based one. Indeed, our
research did not find any AR embedded system that
exploits the Markerless approach. Most existing AR
solutions are still not accessible for the general
audience, because they are still in research phase and/or
dedicated to a specific application domain (Umlauf,
Piringer, Reitmayr, & Schmalstieg, 2002), (Wagner,
Pintaric, Ledermann, &  Schmalstieg, 2005),
(Matsushita et al., 2003). For instance, ID CAM
(Matsushita et al., 2003) is an ID recognition system
with an optical beacon and a fast image sensor with
sufficient space resolution and robustness for long-
distance recognition. The ID CAM contains an optical
lens, a fast CMOS (Complementary Metal-Oxide—
Semiconductor) image sensor, a controlling FPGA, and
an USB interface to output scene images and the IDs to
a computer.
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In (Toledo, Martinez, Garrigos, & Ferrandez, 2005), a
fully FPGA based AR application is developed for
visual impaired individuals affected by tunnel vision. A
cellular neural network extracts the contour information
and superimposes it on the patient’s view. This work,
however, performs very simple image processing
operations when compared to our developed platform.

Regarding MAR, there are already some important
contributions related to interest point based techniques
(Vacchetti, Lepetit, & Fua, 2004) and tracking of
corners and edges (Fung & Mann, 2005) implemented
for the Graphics Processing Unit (GPU). In (Sinha,
Frahm, Pollefeys, & Genc, 2006), there is an
implementation of Scale Invariant Feature Transform
(SIFT) and Kanade Lucas Tomasi (KLT) feature
selection algorithms for GPU.

AR has been used for training and guidance purposes.
One example is the Primordial Soldier, by Primordial
(2007). This system uses Global Positioning System
(GPS) and Geographical Information System (GIS)
technologies for soldier tracking and battlefield
georeferencing, and AR based interfaces that guide
soldiers during rescue missions and assist them during
training how to act at the battlefield against the enemy.

MARCam contribution relies on the use of a
completely hardware based infrastructure for the
development of MAR systems targeting different
application domains, in which training and guidance
are some of the most promissing ones.

MARCAM

This section introduces MARCam, giving detailed
information regarding its architecture.

System Overview

MARCam is a platform that comprises a dedicated
hardware containing an entire AR  pipeline
implemented as a set of components. Figure 3 shows
the development environment used in the project,
where an image sensor (lower right corner) was
connected to an FPGA-based development board.

MARCam overview is illustrated in Figure 4. It
exploits the use of FPGA in order to develop AR
applications, covering three distinct steps: image
acquisition, image processing and scene exhibition.
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Figure 3. MARCam Development Environment

Each implemented function is encapsulated in a
component that defines all the inputs and outputs
needed by the algorithms. The component-oriented
approach adopted brings the opportunity to choose
from a components library only the necessary modules
required by the AR application project, which can be
connected together to build a complete system.
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Figure 4. MARCam Overview
Architecture

A typical AR system should run at least at 15 frames
per second (fps) with image resolution of
320x240 pixels. MARCam is designed to fulfill these
requirements.

The proposed architecture consists of an image sensor
that acquires images from the environment, a VGA
monitor that displays the enhanced visualization, and
an FPGA as processor, controller and storage unit. The
architecture design is shown in Figure 5.
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Figure 5. MARCam Architecture Block Diagram

The Video-IN block converts analog video input to a
digital RGB format. The Omnivison’s CMOS circuit
OV7620 is a single-chip video/imaging camera
designed to provide a high level of functionality in a
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single package. This device incorporates a 640x480
image array operating at up to 30 fps. The process unit
is an Altera Stratix II FPGA with 48,352 Adaptative
Look-Up Tables - ALUTSs (equivalent to 60,440 Logic
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Elements - LEs), 2,544,192 bits of RAM memory, 36
DSP blocks and 144 multipliers. The Video-OUT block
converts the digital RGB format to analog video output
for VGA monitors. The VGA interface is a Triple
Video D/A converter 3x8 bits at 180 megapixels per
second.

Since the FPGA internal memory blocks impose a
severe storage limitation, the input resolution of
320x240 was chosen and later converted to a 640x480
video output. This limitation is due to temporary
prototype issues we have while accessing external
memory; at the moment MARCam uses only internal
memory.

The basic infrastructure of our architecture is
represented by the following cores. Their use is
mandatory in every application.

e J2C Image Sensor Control: this block uses the 12C
protocol to control all required camera functions,
including: exposure control, gamma, gain, white
balance, color matrix, color saturation, hue control,
and windowing, among others.

e Video Decoder Interface: receives image sensor
signals and controls the storage of acquired images
in the color memory. The image sensor’s output is
basically composed by three electric signals:
vertical, horizontal and pixels synchronism. They
indicate, respectively, when a frame and a line
finish, and when a pixel is available at the bus.

e Color Memory: stores a 320x240 real world image
in RGB666 format. Stratix II devices have three
sizes of embedded RAM blocks. This color
memory uses all of the 2 M-RAM blocks (64K x
18) to print the first 200 lines of the frame, and
uses also 50 M4K blocks (12.8K x 18) to print the
last 40 lines of the frame. This totals 58% of the
FPGA’s embedded RAM blocks.

®  Middle Memory: intermediary memories needed to
process AR algorithms. The number of middle
memories and the word length depends on the
algorithm used.

e AR Memory: stores pixels resulting from AR
algorithms.

® AR Algorithm Pipeline: implements AR tasks. This
module corresponds to the user application and it
is developed according to the desired functionality.

®  Real/Virtual Selector: based on AR Memory
pixels, this core functions like a multiplexer and
decides which value will be sent to the Video-OUT
block.
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e Video Encoder Interface: sends digital RGB
signals (real world image or virtual objects pixels)
and VGA control signals (vertical or horizontal
synchronism, for example) to the Video-OUT
block. At this stage, our system’s output is VGA,
so that the board can be connected to both a Head
Mounted Display (HMD), or a common video
monitor. At a second stage, we plan to include an
embedded Liquid Crystal Display (LCD).

Implementation flexibility provided by a hardware
description language, such as Very High Speed
Integrated Circuits Hardware Description Language
(VHDL), makes scalability possible every time it is
necessary to duplicate a component in order to improve
processing performance.

RESULTS

Since MARCam intends to be a framework for enabling
the development of embedded AR systems, it must
provide a set of modules representing the functions
commonly used by these applications. After specifying
the framework architecture, we divided the
development of its modules in three basic steps: 1)
software implementation, 2) hardware translation, and
3) hardware optimizations. At first, the functionality is
implemented in software and some tests are performed
to verify its correctness. The following process consists
in transforming the software source code to a hardware
description language, like VHDL, using a machine state
approach. Lastly, some optimizations regarding
hardware specific characteristics are performed, in
order to take advantage of the proximity to the
hardware, like real parallelism, for example (Keating &
Bricaud, 2002).

Implemented Components

For the initial development of the MARCam
infrastructure, a number of hardware components used
for marker-based AR applications were developed,
since they are less complex than MAR ones. They were
useful for ensuring the viability of the proposed
embedded AR development platform. In addition, the
same infrastructure can be exploited by hardware based
MAR applications.

Several image processing components with different
purposes were implemented in this infrastructure.
These components perform typical image processing
functions and they are intended to be used for designing
AR applications. Currently we have implemented
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components with the following functionalities:
binarization, gray scaling, labeling, mean filtering, edge
detection, generic convolution, centroid estimation,
square detection and 3D object wireframe renderization
(named Hardwire).

V]

Figure 6. Implemented Components: (a)
Binarization; (b) Gray Scaling; (c) Labeling; (d)
Mean Filtering; (e) Edge Detection; (f) Centroid

Estimation; (g) QuadDetector; (h) Hardwire

Most image processing algorithms applied in AR do
not handle color images. As a result, the original image
has to be converted to a more suitable format, such as
gray scale or binary (Fiala, 2004). Figure 6 (a) shows
the binarization results with the white color
representing the real world scene and black
corresponding to pixels above the threshold. Hence,
when a white pixel is found in memory, the real world
scene pixel is rendered on the screen. Figure 6 (b)
illustrates the gray scaling results.

Another implemented function is the labeling
algorithm. Binary image labeling refers to the act of
assigning a unique value to pixels belonging to the
same connected region (Gonzalez & Woods, 1992).
This algorithm is often exploited in marker based AR
applications in order to segment marker regions for
latter recognition (Fiala, 2004). Figure 6 (c) displays
the result of this process, in which the numbers
represent the same connected regions.
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Another implemented function is the mean filter. This
replaces each pixel value in an image by the mean
value of its neighbors, including itself (Gonzalez &
Woods, 1992). It is often used to reduce noise in
images, eliminating pixel values that are
unrepresentative of their surroundings. Figure 6 (d)
illustrates some image noise that can be removed by
this filter.

In a digital image, points that are affected by sudden
luminous intensity changes are identified by edge
detection algorithms (Gonzalez & Woods, 1992).
Usually these changes suggest points of interest in real
world captured images that can represent depth
discontinuity, surface orientation discontinuity, material
property changes, and scene illumination variations.
AR solutions widely use edge detection in tasks such as
marker tracking and feature matching (Fiala, 2004).
Figure 6 (e) shows the outcome of this process, in
which all detected borders are contoured in black.

Applying a convolution mask on an image is the
process of changing the pixel value to other values
based on the neighbors of the pixel. In order to use any
convolution kernel, we included a block where
convolution mask values can be easily changed. 3x3
convolution masks are often used in image processing.

A function that finds the center of a colored object was
also implemented. The purpose of this centroid
estimator component is finding the center of a region (x
and y coordinates) containing more pixels regarding to
a specific color (blue, in the example of Figure 6 (f)).

Actually, marker recognition is widely used by AR
applications, and most of these markers have a
quadrangle shape (Fiala, 2004). The QuadDetector
component is responsible for detecting squares in real-
time on images captured by a camera. Figure 6 (g)
illustrates the traced border (in black), together with the
detected square (in white).

Lastly, the Hardwire component renders 3D wireframe
objects. This process applies a series of coordinate
transformations (world to view and projection
transforms) and then displays these objects on screen,
as shown in Figure 6 (h), using Bresenham’s line
drawing algorithm (Foley, Van Dam, Feiner, &
Hughes, 2005). Hardwire’s purpose is to provide fast
prototyping object visualization so that the developer
can validate his/her AR system.
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Performance Analysis

The VHDL hardware description language was used for
modeling the MARCam architecture. The Quartus II
tool from Altera was used for place and route, and for
device programming. The selected target technology
was the Stratix II from Altera (EP2S60F1020C4). This
device has 719 GPIO (General-Purpose I/O) pins and
MARCam uses only 57 pins (8%) for video input and
output.

In order to evaluate the prototype performance in
hardware, an equivalent implementation for each
algorithm was developed in software, using the C
programming language. Therefore, analysis could be
done by comparing each algorithm’s performance gain
on embedded hardware versus general purpose
processors.

The entire evaluation process used a unique image to
test all modules, in order to keep processing time
precise (for example, edge detection time varies if the
input image changes). A tool was developed for
converting PNG images to a VHDL module that could
be used as the input image on hardware tests. If the
input image is not changed, the hardware module
always performs its task in a fixed time. Because of
that, the hardware processing time acquisition was
realized by running a single test.

Since the software simulation runs on the top of an

operating system, there is no absolute control over the

processing time. Thus, a statistical approach is

necessary to evaluate the software tests. First, a

selection of samples from each simulation was

gathered, using equation 1, in order to find the ideal

number of samples according to the simulation

parameters. This formula is based on the confidence

level and the simulation precision desired (Jain, 1991).

100xZ xS
o]
rxXx

Where:

n | ideal number of samples

Z | value found on normal distribution table

S | standard deviation of samples

r

X

sample precision
sample average

Next, a new selection of samples was gathered, based
on the outcome obtained through the statistical method,
and then analyzed. Table 1 shows the time results got
on both, software and hardware targets.
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Table 1. HW/SW Performance Comparison

Time duration (10'65) Ratio

Software | Hardware | sw/hw
Process (2.01GHz) | (100MHz) |{(100MHz)
Binarization 721.99 768.00 18.89
Gray Scale 615.49 768.00 16.10
3x3 Filter 12,789.08 8.44130,428.57
Mean Filter 468.36 5.37| 1,751.15
Edge Detection 447.29 4.60| 1,951.06
Labeling 638.19 3.54| 3,623.64
Centroid 201.18 768.00 5.26
QuadDetector 646.56 470.23 27.63

It is important to observe the difference between
targets’ clock frequencies. The computer used on
software tests was an AMD Athlon 64 3200+, with a
2.01GHz processor and 1GB of RAM memory. The
operating system running was the Windows XP
Professional Version 2002, Service Pack 2, and the C
language development IDE was Microsoft Visual
Studio .NET 2005 Professional Edition. The clock
frequency used on the prototyping board was 100MHz.

The fourth column of Table 1 shows the ratio between
the clock counts obtained from both software and
hardware tests. Considering that the same clock
frequency is used (100MHz, for example), the worst
hardware result acquired is 5 times better than the
software’s performance (object’s centroid estimation
time). Because of the number of memory accesses
required, the 3x3 Filter module presented the highest
gain in  performance under the hardware
implementation (~30 thousand times more effective).

Case Studies

Two AR proofs of concept were implemented using the
MARCam platform, in order to evaluate its feasibility.
Due to this, an AR application prototype (the well-
known Pong game) was quickly developed without
taking too much modularization into account. The
second case study (an object recognition demo)
connects some of the existing core components to build
another application, showing that it is possible to have
a modularized model for the design of hardware based
AR systems.

The Pong game was implemented as the first case
study. The game is based on a ricocheting ball that is
prevented from colliding with the side edges of the
screen by user-controlled “paddles” near the left and
right screen edges. If a player is not able to prevent this
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collision, a point is lost and the screen edges blink in
red, announcing the collision.

Figure 7 illustrates the moment that a collision
happened.

Figure 7. Pong Game Illustrating a Collision
Detection

The object recognition application identifies blue
objects in the real environment and draws a rotating
cube over them on screen. Basically, two function
components were used to achieve this result: Centroid
Estimation and Hardwire.

Figure 8. Object Centroid Estimation and Cube
Rendering

The application pipeline works as follows: the image
captured by the camera is sent to the centroid
estimation component, where the x and y coordinates
relative to the object position are determined. This
information is then sent to the Hardwire component,
and the wireframe cube is rendered at the supplied
position over the real world image. The result of this

2007 Paper No. 7257 Page 9 of 12

process, shown in Figure 8, is then presented to the
user.

Ongoing Components

There are two additional MAR modules currently under
development: a SfM module and a model based one.
Both are concerned to the first development stage: the
software implementation (as mentioned in section
Results).

The chosen model-based technique is an edge-based
one. The main purpose of the edge-based module,
which is based on the RAPiD’s algorithm (Lepetit &
Fua, 2006), is providing a Markerless tracker capable
of determining the camera pose based on the
correspondence between a projected object CAD model
and its real image. The algorithm samples a small
amount (about 10%) of object visible edge points and
tries to find their matching positions in the input image.
Figure 9 illustrates the matching of the samples. The
green edges refer to the real image and the red ones to
the object CAD model.

Figure 9. Edge Based Tracking Point Matching
Example

Next, it assumes that the camera pose differs only by a
small translation and a small rotation from the
predicted position in 3D. The projection of the object
onto the image plane is linearised and the camera pose
correction is found using standard linear algebra
techniques. All these calculations are performed using
OpenCV library (Bradski & Pisarevsky, 2000).

Based on the test results using the modules
implemented, we have assured the feasibility of the
edge-based tracker module. This module requires a
relatively small amount of memory for CAD model
storage and basically a sequence of matrix
multiplications. Once the software version is fully
implemented, its hardware counterpart can be
developed without significant effort.
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The implementation of the SfM based technique is
currently focusing on the first step in the SfM pipeline:
feature matching. Feature matching can be divided into
two subtasks: feature selection and feature tracking.
Feature selection is the extraction of interest points
from the real scene. Feature tracking is the following of
interest points positions in subsequent video frames.
Feature selection is accomplished using the Good
Features to Track algorithm (Shi & Tomasi, 1994),
while feature tracking is done using the Kanade Lucas
optical flow estimator (Lucas & Kanade, 1981).

The analysis of existing implementations of the
algorithms mentioned above shows that the amount of
memory needed for implementing them in hardware is
available at MARCam infrastructure. Furthermore, the
involved image processing tasks can be developed
using only plain mathematical functions, such as
eigenvalues and gradients.

POTENTIAL APPLICATION SCENARIO

MARCam may be prototyped as a compact, lightweight
and autonomous camera dedicated to processing
marker based and Markerless AR mobile applications.
Therefore, it may be adequately used for user AR based
training and guidance in wide range environments,
principally outdoor. Next we present an example that
illustrates the use of MARCam technology in the
context of a battlefield training application.

The main idea is of a soldier in a battlefield interacting
with an unknown environment and making decisions
dinamically. During training the soldier has to deal with
virtual enemies positioned in the environment
according to the reconstructed world through real-time
SfM technique. Since SfM retrieves users’ position,
he/she does not require a GPS to track his/her position,
neither the environment needs to be georeferenced
previously. There is only a requirement for a tracker
responsible for gathering the weapon’s position and
orientation, such as a 3D pointing device. In addition
we can have a reconstruction of the environment that
allows the application to deal with real-virtual object
interactions.

Figure 10 illustrates a scenario where a user shoots a
virtual enemy (highlighted in red) positioned randomly
in the scene. The system is able to know if he/she hit
the target. It is important to mention that the system is
able to detect collisions between the virtual bullet and
real obstacles. In case he/she misses, the AR interface
shows an orange mark indicating the position where the
virtual bullet hit, allowing further user error situations
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verification. Based on these marks it is possible to
perceive the hit/miss rate on the user interface. It is also
possible to place virtual obstacles registered with the
real world, which behave similar to real ones. Cyan
color indicates some of the recognized edges of
environment objects.

Figure 10. Battlefield Training Scenario

In order to fulfill the presented scenario requirements,
MARCam allows user mobility through the battlefield.
Besides that, aiming soldier’s freedom of movement,
the platform has to be compact and lightweight. Due to
MARCam’s specific processing nature, it consumes
low power, allowing soldier autonomy necessary when
he/she is immersed in an outdoor environment. Finally,
a complex scenario such as the one described here
demands a high processing load, justifying the use of a
hardware-based  solution. This factor supports
applications that target an efficient execution
performance and an adequate visualization frame rate.

CONCLUSIONS AND FUTURE DIRECTIONS

This paper presented a novel platform for developing
hardware based AR systems. The infrastructure showed
to be adequate for building AR applications targeted to
low level implementations. It was also shown that it is
possible to use efficiently a component oriented design
model in the development of an embedded AR project.
The performance results obtained when using the
platform are promising, since they were far better than
the ones obtained with software based implementations.

Regarding MAR, the two techniques chosen to be
implemented present different levels of complexity.
Actually, we already verified feasibility of
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implementing both algorithms, since they require a
relatively small amount of resources.

As future work, power consumption evaluation should
be done, comparing the hardware consumption with the
ones obtained from desktop, notebook and PDA
applications. The existing modules will be refined and
the currently ongoing components will be concluded.
After that, case studies will be performed regarding
embedded MAR applied to a specific knowledge
domain, such as training and guidance.

In order to smooth the progress of the development of
such applications, an authoring tool for hardware based
AR applications might be considered, where the user
would be able to choose and link the needed
components using a GUI (Graphical User Interface).
An infrastructure for accessing external memory from
the FPGA is also under definition, hence increasing the
amount of system memory, instead of relying on
restricted internal one. New image capture and scene
exhibition components are planned, interfacing with
elements such as USB camera, GPU and LCD display.
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