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ABSTRACT 

 

Markerless augmented reality (MAR) aims to integrate 3D virtual objects into the real environment in real-time, 

enhancing the user’s perception and interaction. It differs from marker based augmented reality (AR) systems 

basically by the method used to place virtual objects in the real world. In MAR, the real environment may be used as 

a marker that can be tracked in order to position virtual objects. Generally, the techniques used are based on 

computer vision, image processing, and computer graphics, and a major issue related to the field is robust, yet 

precise real-time object tracking and registration. Several AR solutions using general purpose devices have been 

developed. Such processing is done by software, making it difficult to obtain real-time results without compromising 

resolution and frame rate, and requiring the use of high clock frequencies that consequently lead to higher costs and 

power consumption. This paper introduces MARCam, an FPGA based solution that allows the development of 

embedded MAR applications. This framework allows the development of compact hardware with wearable 

capabilities for applications requiring user mobility through unknown environments and real-time dedicated 

processing. One of the most promising applications of this technology is guidance in training systems. MARCam can 

utilize a Structure from Motion (SfM) based technique. Instead of relying on previously obtained information about 

the real scene, SfM based techniques estimate the camera displacement without a priori knowledge of the 

environment. These methods are also able to retrieve the structure of the scene in real-time, with various levels of 

detail. Due to this, it is possible to reconstruct a totally unknown environment on the fly. MARCam’s architecture is 

divided into many circuit modules, each one responsible for a specific task. This way, one can quickly arrange an 

assembly of modules and have in short time a fully-working, dedicated MAR system. 
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INTRODUCTION 

 

Markerless Augmented Reality (MAR) superimposes 

virtual information – 2D or 3D, textual or pictorial – 

onto real world scenes. Nowadays, Augmented Reality 

(AR) applications are used in different fields, such as 

entertainment, medicine, manufacturing and repair, and 

education. The technical challenges lie in determining, 

in real-time, what should be shown where, and how. 

The latter problem is especially important when the 

visual appeal of the result is crucial. Then substantial 

effort must go into seamlessly fitting the information 

into the scene, both geometrically and photometrically 

(occlusions, shadowing, mutual reflections, chromatic 

adaptation to scene illumination, and so on). Even 

under simplified conditions these problems are not 

trivial. The system must recognize where it is, which 

information is to be superimposed, and where. Beyond 

that, it should present realistic interaction between 

virtual and real elements. 

 

In this paper we deal with the two first issues, that 

mean what to place and where to place it, with the goal 

of achieving acceptable processing performance, user 

autonomy, and system mobility. The concept of 

MARCam, which is introduced in this paper, is a smart 

camera built upon the System-on-Chip (SoC) 

technology. It comprises a dedicated hardware 

containing an entire MAR pipeline implemented as a 

set of hardware components (cores). The use of 

dedicated hardware allows overall better performance 

compared to software implementations, and with the 

potential of exploiting real parallelism of concurrent 

tasks. These systems also offer the advantages of low 

power consumption while still handling high resolution 

images. 

 

Our present prototype uses a Field Programmable Gate 

Array (FPGA) for image acquisition, image processing 

and scene display, in order to develop embedded AR 

applications. Current results in some cases show a 

performance gain ~30,000 times faster than comparable 

functions implemented in software alone. After 

performing some successful validation case studies, we 

have started to implement MAR components. 

This paper is organized as follows. The section 

“Background” describes some basic concepts regarding 

to MAR and SoC technologies. The section “Related 

Work” presents current major research in this topic. 

The section “MARCam” introduces our MAR camera 

prototype, and the “Results” section offers detailed 

information regarding results already obtained and 

ongoing implementations. The section “Potential 

Application Scenario” draws a scenario using 

MARCam for guidance and training. Finally, some 

concluding remarks are discussed in section 

“Conclusions and Future Directions”. 

 

 

BACKGROUND 

 

This section describes the basic concepts involved in 

the two main topics comprising this work: Markerless 

Augmented Reality and System-on-Chip. Special 

attention is given to Structure from Motion (SfM) 

based MAR techniques, as they are the most adequate 

approach for MARCam purposes. 

 

Markerless Augmented Reality 

 

AR systems integrate virtual objects into a 3D real 

environment in real-time, enhancing the user’s 

perception of, and interaction with, the real world 

(Bimber & Raskar, 2005). Its basic difference from 

MAR systems is the method used to place virtual 

objects in the real world. The Markerless approach is 

not based on the use of traditional artificial markers. 

Such markers are placed in the real world to support 

position and orientation tracking by the system. In 

MAR any part of the real environment is used as a 

marker that can be tracked in order to position and 

orient virtual objects. Therefore, there are no ambient 

intrusive markers that are not really part of the 

environment. MAR counts on robust trackers to 

accomplish this (Comport, Marchand, Pressigout, & 

Chaumette, 2006). Another advantage is the possibility 

of extracting from the environment characteristic 

information that may later be used by the MAR system. 
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Nonetheless, tracking and registration techniques are 

more complex in MAR systems. Another disadvantage 

emerges in online MAR since it presents more 

restrictions. 

 

Techniques developed for MAR can be classified in 

two major types: Model based and SfM based 

(Figure 1). With model based techniques, knowledge 

about the real world is obtained before tracking occurs 

and is stored in a 3D model that is used for estimating 

camera pose. In SfM based approaches, camera 

movement throughout the frames is estimated without 

any previous knowledge about the scene, but is 

acquired during tracking. 

 

 
 

Figure 1.  Online Monocular MAR Taxonomy 

 

SfM is a classic technique used in computer vision to 

perform 3D reconstruction (Pollefeys, 1999). Its 

traditional implementation follows a suggested 

pipeline, and is not concerned with real-time 

constraints. SfM produces great results relative to the 

final mesh generated by the entire process, but some 

algorithms present in its pipeline require a lot of 

processing time to finish their work, and are thus 

unsuitable for real-time applications. Usually, the SfM 

pipeline is composed of the following phases: feature 

tracking, camera pose hypothesis generation, pose 

evaluation and refinement, self-calibration and 3D 

reconstruction. 

 

Basically, in order for SfM to support real-time 

constraints, some of these phases have to be skipped or 

replaced by other algorithms that still maintain the 

robustness of this technique. An overview of the real-

time SfM method is depicted in Figure 2. In Nistér’s 

implementation of real-time SfM, he introduced some 

modifications to the pipeline relative to camera pose 

hypothesis generation, evaluation and refinement, 

creating a brand new solution based on the classic 

Random Sample Consensus (RANSAC) refinement 

algorithm (Nistér, 2005). He used this new algorithm 

for acquiring a sufficiently good pose estimate that 

could be fed into a bundle adjustment procedure, such 

as the Levenberg-Marquadt one (Triggs, McLauchlan, 

Hartley, & Fitzgibbon, 2000), in order to generate a 

precise resulting pose. This algorithm works similar to 

original RANSAC, but in a preemptive way, stopping 

evaluation of pose hypothesis that are not promising. 

Since Nistér’s approach works with a calibrated 

camera, the self-calibration step is not performed and 

camera pose hypothesis generation is done with the 

five-point (Nistér, 2004) and three-point (Haralick, 

Lee, Ottenberg, & Nölle, 1994) methods. These 

methods consist in solving a linear equation, 

considering the number of degrees of freedom given by 

the metric reconstruction. Therefore, to compute the 

camera translation and orientation, only five or three 

pairs of correspondent points from two consecutive 

frames are used. 

 

 
 

Figure 2.  Real-Time SfM Overview 

 

These modifications to the original SfM pipeline 

removed some bottlenecks and speeded up the entire 

process. This minimizes the delay in reconstructing a 

rigid scene, getting closer to real-time 3D 

reconstruction. Since the real-time constraint is 

supported by SfM, it has been used in MAR systems 

(Lourakis & Argyros, 2005). Real-time SfM can offer 

more information about the entire scene, and may 

provide data to improve the MAR system. Features like 

occlusion of virtual objects by real ones and physical-

based interaction between them can be exploited. 
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System-on-Chip 

 

In the area of embedded systems there is a novel 

technology that aims to satisfy the desire of every 

hardware engineer: reduced cost-per-function, 

increased system performance, longer battery life, 

higher-end features in lower-cost systems, smaller form 

factors to enable designs with lower temperatures, 

easier design and manufacturing, and increased 

reliability. System-on-Chip, or simply SoC is a 

reasonable attempt at all of these goals. The main idea 

is that it integrates a complete system, created as a set 

of components (intellectual properties, or IP cores, as 

they are known), or sub-systems, on a single piece of 

silicon. In the past, a user had to utilize many devices 

for obtaining the desired result. Currently, the goal is to 

reach the same, or an even better result, with the use of 

a single device. 

 

As requisites, SoC technology presents three basic 

demands. The first one is a common process for 

handling analog, digital and radio frequency signals, so 

that various systems can communicate with each other. 

The second requisite is that there must be a simple 

interface for connecting the assembled components, 

following common busing techniques. At last, there is a 

need for end-equipment systems expertise, since 

application domain knowledge is applied directly to the 

development environment, for generating the SoCs. 

 

 

RELATED WORK 

 

As far as we know, there is no flexible solution 

considering the use of a hybrid hardware and software 

platform to develop marker based AR applications, 

neither a complete hardware based one. Indeed, our 

research did not find any AR embedded system that 

exploits the Markerless approach. Most existing AR 

solutions are still not accessible for the general 

audience, because they are still in research phase and/or 

dedicated to a specific application domain (Umlauf, 

Piringer, Reitmayr, & Schmalstieg, 2002), (Wagner, 

Pintaric, Ledermann, & Schmalstieg, 2005), 

(Matsushita et al., 2003). For instance, ID CAM 

(Matsushita et al., 2003) is an ID recognition system 

with an optical beacon and a fast image sensor with 

sufficient space resolution and robustness for long-

distance recognition. The ID CAM contains an optical 

lens, a fast CMOS (Complementary Metal–Oxide–

Semiconductor) image sensor, a controlling FPGA, and 

an USB interface to output scene images and the IDs to 

a computer. 

 

In (Toledo, Martinez, Garrigos, & Ferrandez, 2005), a 

fully FPGA based AR application is developed for 

visual impaired individuals affected by tunnel vision. A 

cellular neural network extracts the contour information 

and superimposes it on the patient’s view. This work, 

however, performs very simple image processing 

operations when compared to our developed platform. 

 

Regarding MAR, there are already some important 

contributions related to interest point based techniques 

(Vacchetti, Lepetit, & Fua, 2004) and tracking of 

corners and edges (Fung & Mann, 2005) implemented 

for the Graphics Processing Unit (GPU). In (Sinha, 

Frahm, Pollefeys, & Genc, 2006), there is an 

implementation of Scale Invariant Feature Transform 

(SIFT) and Kanade Lucas Tomasi (KLT) feature 

selection algorithms for GPU. 

 

AR has been used for training and guidance purposes. 

One example is the Primordial Soldier, by Primordial 

(2007). This system uses Global Positioning System 

(GPS) and Geographical Information System (GIS) 

technologies for soldier tracking and battlefield 

georeferencing, and AR based interfaces that guide 

soldiers during rescue missions and assist them during 

training how to act at the battlefield against the enemy. 

 

MARCam contribution relies on the use of a 

completely hardware based infrastructure for the 

development of MAR systems targeting different 

application domains, in which training and guidance 

are some of the most promissing ones. 

 

 

MARCAM 

 

This section introduces MARCam, giving detailed 

information regarding its architecture. 

 

System Overview 

 

MARCam is a platform that comprises a dedicated 

hardware containing an entire AR pipeline 

implemented as a set of components. Figure 3 shows 

the development environment used in the project, 

where an image sensor (lower right corner) was 

connected to an FPGA-based development board. 

 

MARCam overview is illustrated in Figure 4. It 

exploits the use of FPGA in order to develop AR 

applications, covering three distinct steps: image 

acquisition, image processing and scene exhibition. 
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Figure 3.  MARCam Development Environment 

 

Each implemented function is encapsulated in a 

component that defines all the inputs and outputs 

needed by the algorithms. The component-oriented 

approach adopted brings the opportunity to choose 

from a components library only the necessary modules 

required by the AR application project, which can be 

connected together to build a complete system. 

 
 

Figure 4.  MARCam Overview 

 

Architecture 

 

A typical AR system should run at least at 15 frames 

per second (fps) with image resolution of 

240320x pixels. MARCam is designed to fulfill these 

requirements. 

 

The proposed architecture consists of an image sensor 

that acquires images from the environment, a VGA 

monitor that displays the enhanced visualization, and 

an FPGA as processor, controller and storage unit. The 

architecture design is shown in Figure 5. 
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Figure 5.  MARCam Architecture Block Diagram 

 

The Video-IN block converts analog video input to a 

digital RGB format. The Omnivison’s CMOS circuit 

OV7620 is a single-chip video/imaging camera 

designed to provide a high level of functionality in a 

single package. This device incorporates a 480640x  

image array operating at up to 30 fps. The process unit 

is an Altera Stratix II FPGA with 48,352 Adaptative 

Look-Up Tables - ALUTs (equivalent to 60,440 Logic 
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Elements - LEs), 2,544,192 bits of RAM memory, 36 

DSP blocks and 144 multipliers. The Video-OUT block 

converts the digital RGB format to analog video output 

for VGA monitors. The VGA interface is a Triple 

Video D/A converter 83x  bits at 180 megapixels per 

second. 

 

Since the FPGA internal memory blocks impose a 

severe storage limitation, the input resolution of 

240320x  was chosen and later converted to a 480640x  

video output. This limitation is due to temporary 

prototype issues we have while accessing external 

memory; at the moment MARCam uses only internal 

memory. 

 

The basic infrastructure of our architecture is 

represented by the following cores. Their use is 

mandatory in every application. 

• I2C Image Sensor Control: this block uses the I2C 

protocol to control all required camera functions, 

including: exposure control, gamma, gain, white 

balance, color matrix, color saturation, hue control, 

and windowing, among others. 

• Video Decoder Interface: receives image sensor 

signals and controls the storage of acquired images 

in the color memory. The image sensor’s output is 

basically composed by three electric signals: 

vertical, horizontal and pixels synchronism. They 

indicate, respectively, when a frame and a line 

finish, and when a pixel is available at the bus. 

• Color Memory: stores a 240320x  real world image 

in RGB666 format. Stratix II devices have three 

sizes of embedded RAM blocks. This color 

memory uses all of the 2 M-RAM blocks (64K x 

18) to print the first 200 lines of the frame, and 

uses also 50 M4K blocks (12.8K x 18) to print the 

last 40 lines of the frame. This totals 58% of the 

FPGA’s embedded RAM blocks. 

• Middle Memory: intermediary memories needed to 

process AR algorithms. The number of middle 

memories and the word length depends on the 

algorithm used. 

• AR Memory: stores pixels resulting from AR 

algorithms. 

• AR Algorithm Pipeline: implements AR tasks. This 

module corresponds to the user application and it 

is developed according to the desired functionality. 

• Real/Virtual Selector: based on AR Memory 

pixels, this core functions like a multiplexer and 

decides which value will be sent to the Video-OUT 

block. 

• Video Encoder Interface: sends digital RGB 

signals (real world image or virtual objects pixels) 

and VGA control signals (vertical or horizontal 

synchronism, for example) to the Video-OUT 

block. At this stage, our system’s output is VGA, 

so that the board can be connected to both a Head 

Mounted Display (HMD), or a common video 

monitor. At a second stage, we plan to include an 

embedded Liquid Crystal Display (LCD). 

 

Implementation flexibility provided by a hardware 

description language, such as Very High Speed 

Integrated Circuits Hardware Description Language 

(VHDL), makes scalability possible every time it is 

necessary to duplicate a component in order to improve 

processing performance. 

 

 

RESULTS 

 

Since MARCam intends to be a framework for enabling 

the development of embedded AR systems, it must 

provide a set of modules representing the functions 

commonly used by these applications. After specifying 

the framework architecture, we divided the 

development of its modules in three basic steps: 1) 

software implementation, 2) hardware translation, and 

3) hardware optimizations. At first, the functionality is 

implemented in software and some tests are performed 

to verify its correctness. The following process consists 

in transforming the software source code to a hardware 

description language, like VHDL, using a machine state 

approach. Lastly, some optimizations regarding 

hardware specific characteristics are performed, in 

order to take advantage of the proximity to the 

hardware, like real parallelism, for example (Keating & 

Bricaud, 2002). 

 

Implemented Components 

 

For the initial development of the MARCam 

infrastructure, a number of hardware components used 

for marker-based AR applications were developed, 

since they are less complex than MAR ones. They were 

useful for ensuring the viability of the proposed 

embedded AR development platform. In addition, the 

same infrastructure can be exploited by hardware based 

MAR applications. 

 

Several image processing components with different 

purposes were implemented in this infrastructure. 

These components perform typical image processing 

functions and they are intended to be used for designing 

AR applications. Currently we have implemented 
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components with the following functionalities: 

binarization, gray scaling, labeling, mean filtering, edge 

detection, generic convolution, centroid estimation, 

square detection and 3D object wireframe renderization 

(named Hardwire). 

 

 
 

Figure 6.  Implemented Components: (a) 

Binarization; (b) Gray Scaling; (c) Labeling; (d) 

Mean Filtering; (e) Edge Detection; (f) Centroid 

Estimation; (g) QuadDetector; (h) Hardwire 

 

Most image processing algorithms applied in AR do 

not handle color images. As a result, the original image 

has to be converted to a more suitable format, such as 

gray scale or binary (Fiala, 2004). Figure 6 (a) shows 

the binarization results with the white color 

representing the real world scene and black 

corresponding to pixels above the threshold. Hence, 

when a white pixel is found in memory, the real world 

scene pixel is rendered on the screen. Figure 6 (b) 

illustrates the gray scaling results. 

 

Another implemented function is the labeling 

algorithm. Binary image labeling refers to the act of 

assigning a unique value to pixels belonging to the 

same connected region (Gonzalez & Woods, 1992). 

This algorithm is often exploited in marker based AR 

applications in order to segment marker regions for 

latter recognition (Fiala, 2004). Figure 6 (c) displays 

the result of this process, in which the numbers 

represent the same connected regions. 

 

Another implemented function is the mean filter. This 

replaces each pixel value in an image by the mean 

value of its neighbors, including itself (Gonzalez & 

Woods, 1992). It is often used to reduce noise in 

images, eliminating pixel values that are 

unrepresentative of their surroundings. Figure 6 (d) 

illustrates some image noise that can be removed by 

this filter. 

 

In a digital image, points that are affected by sudden 

luminous intensity changes are identified by edge 

detection algorithms (Gonzalez & Woods, 1992). 

Usually these changes suggest points of interest in real 

world captured images that can represent depth 

discontinuity, surface orientation discontinuity, material 

property changes, and scene illumination variations. 

AR solutions widely use edge detection in tasks such as 

marker tracking and feature matching (Fiala, 2004). 

Figure 6 (e) shows the outcome of this process, in 

which all detected borders are contoured in black. 

 

Applying a convolution mask on an image is the 

process of changing the pixel value to other values 

based on the neighbors of the pixel. In order to use any 

convolution kernel, we included a block where 

convolution mask values can be easily changed. 33x  

convolution masks are often used in image processing. 

 

A function that finds the center of a colored object was 

also implemented. The purpose of this centroid 

estimator component is finding the center of a region (x 

and y coordinates) containing more pixels regarding to 

a specific color (blue, in the example of Figure 6 (f)). 

 

Actually, marker recognition is widely used by AR 

applications, and most of these markers have a 

quadrangle shape (Fiala, 2004). The QuadDetector 

component is responsible for detecting squares in real-

time on images captured by a camera. Figure 6 (g) 

illustrates the traced border (in black), together with the 

detected square (in white). 

 

Lastly, the Hardwire component renders 3D wireframe 

objects. This process applies a series of coordinate 

transformations (world to view and projection 

transforms) and then displays these objects on screen, 

as shown in Figure 6 (h), using Bresenham’s line 

drawing algorithm (Foley, Van Dam, Feiner, & 

Hughes, 2005). Hardwire’s purpose is to provide fast 

prototyping object visualization so that the developer 

can validate his/her AR system. 
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Performance Analysis 

 

The VHDL hardware description language was used for 

modeling the MARCam architecture. The Quartus II 

tool from Altera was used for place and route, and for 

device programming. The selected target technology 

was the Stratix II from Altera (EP2S60F1020C4). This 

device has 719 GPIO (General-Purpose I/O) pins and 

MARCam uses only 57 pins (8%) for video input and 

output. 

 

In order to evaluate the prototype performance in 

hardware, an equivalent implementation for each 

algorithm was developed in software, using the C 

programming language. Therefore, analysis could be 

done by comparing each algorithm’s performance gain 

on embedded hardware versus general purpose 

processors. 

 

The entire evaluation process used a unique image to 

test all modules, in order to keep processing time 

precise (for example, edge detection time varies if the 

input image changes). A tool was developed for 

converting PNG images to a VHDL module that could 

be used as the input image on hardware tests. If the 

input image is not changed, the hardware module 

always performs its task in a fixed time. Because of 

that, the hardware processing time acquisition was 

realized by running a single test. 

 

Since the software simulation runs on the top of an 

operating system, there is no absolute control over the 

processing time. Thus, a statistical approach is 

necessary to evaluate the software tests. First, a 

selection of samples from each simulation was 

gathered, using equation 1, in order to find the ideal 

number of samples according to the simulation 

parameters. This formula is based on the confidence 

level and the simulation precision desired (Jain, 1991). 

 
2

100









×

××
=

xr

SZ
n  (1) 

Where: 

n ideal number of samples 

Z value found on normal distribution table 

S standard deviation of samples 

r sample precision 

x sample average 

 

Next, a new selection of samples was gathered, based 

on the outcome obtained through the statistical method, 

and then analyzed. Table 1 shows the time results got 

on both, software and hardware targets. 

 

Table 1. HW/SW Performance Comparison 

 

  Time duration (10
-6

s) Ratio 

Process 

Software 

(2.01GHz) 

Hardware 

(100MHz) 

sw/hw 

(100MHz) 

Binarization 721.99 768.00 18.89 

Gray Scale 615.49 768.00 16.10 

33x  Filter 12,789.08 8.44 30,428.57 

Mean Filter 468.36 5.37 1,751.15 

Edge Detection 447.29 4.60 1,951.06 

Labeling 638.19 3.54 3,623.64 

Centroid 201.18 768.00 5.26 

QuadDetector 646.56 470.23 27.63 

 

It is important to observe the difference between 

targets’ clock frequencies. The computer used on 

software tests was an AMD Athlon 64 3200+, with a 

2.01GHz processor and 1GB of RAM memory. The 

operating system running was the Windows XP 

Professional Version 2002, Service Pack 2, and the C 

language development IDE was Microsoft Visual 

Studio .NET 2005 Professional Edition. The clock 

frequency used on the prototyping board was 100MHz. 

 

The fourth column of Table 1 shows the ratio between 

the clock counts obtained from both software and 

hardware tests. Considering that the same clock 

frequency is used (100MHz, for example), the worst 

hardware result acquired is 5 times better than the 

software’s performance (object’s centroid estimation 

time). Because of the number of memory accesses 

required, the 33x  Filter module presented the highest 

gain in performance under the hardware 

implementation (~30 thousand times more effective). 

 

Case Studies 

 

Two AR proofs of concept were implemented using the 

MARCam platform, in order to evaluate its feasibility. 

Due to this, an AR application prototype (the well-

known Pong game) was quickly developed without 

taking too much modularization into account. The 

second case study (an object recognition demo) 

connects some of the existing core components to build 

another application, showing that it is possible to have 

a modularized model for the design of hardware based 

AR systems. 

 

The Pong game was implemented as the first case 

study. The game is based on a ricocheting ball that is 

prevented from colliding with the side edges of the 

screen by user-controlled “paddles” near the left and 

right screen edges. If a player is not able to prevent this 
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collision, a point is lost and the screen edges blink in 

red, announcing the collision.  

Figure 7 illustrates the moment that a collision 

happened. 

 

 
 

Figure 7.  Pong Game Illustrating a Collision 

Detection 

 

The object recognition application identifies blue 

objects in the real environment and draws a rotating 

cube over them on screen. Basically, two function 

components were used to achieve this result: Centroid 

Estimation and Hardwire. 

 

 
 

Figure 8.  Object Centroid Estimation and Cube 

Rendering 

 

The application pipeline works as follows: the image 

captured by the camera is sent to the centroid 

estimation component, where the x and y coordinates 

relative to the object position are determined. This 

information is then sent to the Hardwire component, 

and the wireframe cube is rendered at the supplied 

position over the real world image. The result of this 

process, shown in Figure 8, is then presented to the 

user. 

 

Ongoing Components 

 

There are two additional MAR modules currently under 

development: a SfM module and a model based one. 

Both are concerned to the first development stage: the 

software implementation (as mentioned in section 

Results). 

 

The chosen model-based technique is an edge-based 

one. The main purpose of the edge-based module, 

which is based on the RAPiD’s algorithm (Lepetit & 

Fua, 2006), is providing a Markerless tracker capable 

of determining the camera pose based on the 

correspondence between a projected object CAD model 

and its real image. The algorithm samples a small 

amount (about 10%) of object visible edge points and 

tries to find their matching positions in the input image. 

Figure 9 illustrates the matching of the samples. The 

green edges refer to the real image and the red ones to 

the object CAD model. 

 

 
 

Figure 9.  Edge Based Tracking Point Matching 

Example 

 

Next, it assumes that the camera pose differs only by a 

small translation and a small rotation from the 

predicted position in 3D. The projection of the object 

onto the image plane is linearised and the camera pose 

correction is found using standard linear algebra 

techniques. All these calculations are performed using 

OpenCV library (Bradski & Pisarevsky, 2000). 

 

Based on the test results using the modules 

implemented, we have assured the feasibility of the 

edge-based tracker module. This module requires a 

relatively small amount of memory for CAD model 

storage and basically a sequence of matrix 

multiplications. Once the software version is fully 

implemented, its hardware counterpart can be 

developed without significant effort. 
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The implementation of the SfM based technique is 

currently focusing on the first step in the SfM pipeline: 

feature matching. Feature matching can be divided into 

two subtasks: feature selection and feature tracking. 

Feature selection is the extraction of interest points 

from the real scene. Feature tracking is the following of 

interest points positions in subsequent video frames. 

Feature selection is accomplished using the Good 

Features to Track algorithm (Shi & Tomasi, 1994), 

while feature tracking is done using the Kanade Lucas 

optical flow estimator (Lucas & Kanade, 1981). 

 

The analysis of existing implementations of the 

algorithms mentioned above shows that the amount of 

memory needed for implementing them in hardware is 

available at MARCam infrastructure. Furthermore, the 

involved image processing tasks can be developed 

using only plain mathematical functions, such as 

eigenvalues and gradients. 

 

 

POTENTIAL APPLICATION SCENARIO 

 

MARCam may be prototyped as a compact, lightweight 

and autonomous camera dedicated to processing 

marker based and Markerless AR mobile applications. 

Therefore, it may be adequately used for user AR based 

training and guidance in wide range environments, 

principally outdoor. Next we present an example that 

illustrates the use of MARCam technology in the 

context of a battlefield training application. 

 

The main idea is of a soldier in a battlefield interacting 

with an unknown environment and making decisions 

dinamically. During training the soldier has to deal with 

virtual enemies positioned in the environment 

according to the reconstructed world through real-time 

SfM technique. Since SfM retrieves users’ position, 

he/she does not require a GPS to track his/her position, 

neither the environment needs to be georeferenced 

previously. There is only a requirement for a tracker 

responsible for gathering the weapon’s position and 

orientation, such as a 3D pointing device. In addition 

we can have a reconstruction of the environment that 

allows the application to deal with real-virtual object 

interactions. 

 

Figure 10 illustrates a scenario where a user shoots a 

virtual enemy (highlighted in red) positioned randomly 

in the scene. The system is able to know if he/she hit 

the target. It is important to mention that the system is 

able to detect collisions between the virtual bullet and 

real obstacles. In case he/she misses, the AR interface 

shows an orange mark indicating the position where the 

virtual bullet hit, allowing further user error situations 

verification. Based on these marks it is possible to 

perceive the hit/miss rate on the user interface. It is also 

possible to place virtual obstacles registered with the 

real world, which behave similar to real ones. Cyan 

color indicates some of the recognized edges of 

environment objects. 

 

 
 

Figure 10.  Battlefield Training Scenario 

 

In order to fulfill the presented scenario requirements, 

MARCam allows user mobility through the battlefield. 

Besides that, aiming soldier’s freedom of movement, 

the platform has to be compact and lightweight. Due to 

MARCam’s specific processing nature, it consumes 

low power, allowing soldier autonomy necessary when 

he/she is immersed in an outdoor environment. Finally, 

a complex scenario such as the one described here 

demands a high processing load, justifying the use of a 

hardware-based solution. This factor supports 

applications that target an efficient execution 

performance and an adequate visualization frame rate. 

 

 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

This paper presented a novel platform for developing 

hardware based AR systems. The infrastructure showed 

to be adequate for building AR applications targeted to 

low level implementations. It was also shown that it is 

possible to use efficiently a component oriented design 

model in the development of an embedded AR project. 

The performance results obtained when using the 

platform are promising, since they were far better than 

the ones obtained with software based implementations. 

 

Regarding MAR, the two techniques chosen to be 

implemented present different levels of complexity. 

Actually, we already verified feasibility of 
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implementing both algorithms, since they require a 

relatively small amount of resources. 

 

As future work, power consumption evaluation should 

be done, comparing the hardware consumption with the 

ones obtained from desktop, notebook and PDA 

applications. The existing modules will be refined and 

the currently ongoing components will be concluded. 

After that, case studies will be performed regarding 

embedded MAR applied to a specific knowledge 

domain, such as training and guidance. 

 

In order to smooth the progress of the development of 

such applications, an authoring tool for hardware based 

AR applications might be considered, where the user 

would be able to choose and link the needed 

components using a GUI (Graphical User Interface). 

An infrastructure for accessing external memory from 

the FPGA is also under definition, hence increasing the 

amount of system memory, instead of relying on 

restricted internal one. New image capture and scene 

exhibition components are planned, interfacing with 

elements such as USB camera, GPU and LCD display. 
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