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ABSTRACT 
 
Programmable rendering on the GPU (Graphics Processing Unit) utilizing “shader” technology has become a 
recognized benefit to visual simulation, providing unprecedented realism and fidelity to synthetic environments. 
However, effective use of shaders is a technological challenge, where implementation of even a trivial vertex or 
fragment shader requires manual re-implementation of the fixed-function pipeline. Furthermore, generation of 
efficient shaders for existing data is a complicated undertaking that is compounded by the number of state 
permutations possible under a modern graphics API, such as OpenGL, and the desire to extend fixed function state 
with advanced rendering techniques. 
 
Therefore, system integrators and run-time providers face significant challenges in incorporating shader 
technology while hiding complexity and maintaining backwards compatibility with existing data. Preserving the 
massive investment in existing database and model libraries, while enhancing system capabilities, is a fundamental 
concern. Though some shader techniques are required for modeling, others are typically supplied by the run-time. 
Fundamentally, it is clearly disadvantageous to have run-time code contained in shared modeling assets. 
 
As a solution to these problems, this paper introduces a Shader Infrastructure that automates the building of vertex 
and fragment shaders by analyzing the OpenGL state machine. The Shader Infrastructure is capable of not only 
dynamic generation of highly efficient shaders for rendering any legacy data considered valid by the OpenFlightTM 
standard, but also extending the rendering pipeline via Advanced Rendering Techniques. Techniques allow for 
implementation and merging of novel GPU-based rendering approaches by injecting small snippets of shader code 
into the Shader Infrastructure. The Shader Infrastructure allows designers to customize portions of the rendering 
pipeline and to automatically combine that customization with other rendering techniques, either fixed-function or 
shader-based. Therefore, it significantly simplifies the problem of content management and reuse while taking full 
advantage of the advances in the programmable PC graphics hardware. 
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INTRODUCTION 
 
Higher level shading languages, such as Cg from 
NVIDIA, the DirectX Higher Level Shading Language 
(HLSL), and the OpenGL Shading Language (GLSL), 
are the key to unlocking the potential of modern 
graphics processing units (GPUs). These languages are 
extremely expressive and allow for everything from 
applying environment reflections on surfaces to 
processing advanced physics simulations on the GPU. 
While the breadth of computational possibilities is 
impressive, there are clear advantages to using 
programmable hardware for typical vis-sim 
applications where simulated worlds are rendered 
photo-realistically. Creative use of shaders yields 
better lighting and shadowing cues (Stamminger & 
Drettakis 2002), helps better define the shape of a 
surface through bump mapping (Fernando & Kilgard 
2003), makes realistic water simulation possible 
(Multigen-Paradigm 2006), and can include further 
details that help to immerse the viewer in a virtual 
world, or avoid artifacts present in past simulations. 
Rather than addressing general purpose computing 
using programmable graphics hardware, often called 
GPGPU, this paper will remain focused on shaders 
which render surfaces. 
 
Writing dedicated vertex and fragment shaders that 
customize the rendering of selected geometries is 
commonplace in modern graphics applications, but 
what if we need to implement a new lighting model 
that requires all geometry to use vertex and fragment 
shaders? Writing these shaders for every piece of 
geometry in a scene is a daunting task, especially if 
one is forced to handle the vast number of rendering 
state permutations possible under modern graphics 
APIs such as OpenGL. 
 

MOTIVATION 
 
The promise of shaders is the ability to perform 
rendering techniques above and beyond what the 
fixed-function pipeline can do. New lighting models, 
shadows, light maps, environment maps, layered fog 

and many more advanced rendering techniques are 
possible with shaders. Implementation of such 
techniques either bypasses or overwrites large parts of 
the default OpenGL implementation that is referred to 
as the Fixed-Function Pipeline (FFP). The Fixed-
Function Pipeline was hard-coded for efficiency in the 
previous generation of graphics hardware (and hence 
the name “fixed”). 
 
Therefore, the ability to modify and add to the FFP 
makes it necessary to first re-implement required 
portions of the FFP so that matching geometry can 
render correctly before new rendering techniques can 
be implemented. A failure to do so can result in 
undesired visual artifacts. Consider an example where 
a user adds a new light source to the scene during run-
time. Shaders for all geometries affected by the light 
need to change accordingly. If a terrain skin and a 
building layer were modeled with a shader that only 
handles a single directional light source, other GL 
lights would not render.  Figures 1 and 2 below 
illustrate the situation. 
 

 
 

Figure 1.  FFP rendering with directional light_0 
and spot light_1 
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Figure 2.  A basic shader provides no support for 
the spot light_1 so the building remains dark 

 
Not only does the shader code need to account for all 
light sources in the scene, it also must implement their 
types correctly. In our example, even the light_0 light 
will not render correctly if the light is configured as a 
spot or positional light in the run-time. This creates a 
dilemma for the run-time. On one hand, implementing 
all of the OpenGL lights in a shader is 
computationally expensive, especially if only some of 
the lights are going to be used. On the other hand, 
adding or changing a light source requires re-
generation of all affected shaders or maintaining a 
shader for each permutation of light configuration to 
account for the potential different lighting conditions 
encountered at run-time. Neither alternative is 
attractive. This introduces a content management 
challenge.  
 
Fog is another FFP feature that is often problematic to 
combine with shaders.  Mismatching fog is 
immediately obvious when the fog’s visibility range is 
small and a different fog equation is running on 
different parts of the scene. Figures 3 and 4 illustrate 
the problem.  
 
Lighting and fogging are visual effects which should 
alter virtually everything in the scene. If we applied a 
new lighting model to just a few pieces of geometry 
and used fixed-function lighting on the remainder, the 
shader-lit objects would look out of place in contrast to 
the scene’s overall fixed-function lighting. In a similar 
fashion, if we applied a new fog model to some objects 
but not all, the realism of the fog effect would suffer if 
two objects, which are very close in proximity, 
received differing amounts of fog. 
 

Nullifying visual anomalies caused by inconsistency in 
rendering state is typically non-trivial and in many 
cases the solutions tend to lower the quality of the 
newer technique for the sake of reconciling with the 
older technique. 
 

 
 

Figure 3.  Shader rendering bump-mapped terrain 
without fog, but the airfield and buildings use FFP 

with vertex linear fog 
 

 
 

Figure 4.  Shader rendering bump-mapped terrain 
matches the FFP vertex linear fog on the airfield 

and buildings 
 

PREVIOUS WORK 
 
Shading languages, such as Pixar’s RenderMan, have 
long provided mechanisms to describe transformation 
of geometry, displacement of geometry, behavior of 
light sources, effects in the atmosphere, shading of a 
surface, and sampling of an image – often as separable 
shading components (Upstill 1989). Shaders and 
shading languages have also been broken into 
“building blocks” which are assembled through “shade 
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trees.” A visual editor to link various sub-components 
of a shader through a shading network was proposed 
such that execution of a shading network would be 
similar to the execution of an interpreted language 
(Abram & Whitted, 1990). Today, tools common in 
the film industry allow for artists to use graphical tools 
to create shaders executed in another shading 
language on the CPU. 
 
These topics are gaining renewed interest in real-time 
graphics now that shading languages allow 
programmability directly to specialized hardware (the 
GPU). One advantage of breaking a shader into 
smaller pieces is that it allows more code re-use. 
Another advantage is that it abstracts the algorithm-
development part of shader programming away from 
the syntax of any particular shading language so that 
artists can construct shaders using visual editors. 
Modern GPU shading languages are in need of the 
building block approach. 
 
On the fly generation, manipulation, and 
specialization of shader programs for programmable 
graphics hardware is described in Shader 
Metaprogramming, where the Sh shading language is 
described (McCool, Qin, Popa, 2002).  This source 
explains that C++ wrappers on assembly language 
shaders can tame some of the complexity of shader 
writing. In addition, the real-time program is the only 
place where the shader is actually generated, rather 
than files containing strings on disk. The Sh shading 
language allows for modularity of shaders that 
unfortunately is not found in Cg, HLSL, or GLSL.  
 
Without modular shaders, system integrators and run-
time providers face an explosion in shader 
permutations (discussed in the next section). Many 
game companies have treated shader application as a 
content management problem to be handled by the 
modeler. A few have built tools around the idea of 
generating shaders in the run-time. Some have even 
built über-shaders for a particular game engine that 
can perform any function, utilizing dynamic branching 
and allowing some code execution that does not 
contribute to the final rendered result.  But this can 
degrade run-time performance. 
 
The “Supershader” (McGuire, 2005) is an attempt to 
improve upon traditional über-shaders. A shader that 
does everything is hand-coded with many pre-
processor conditionals (#if statements) that remove 
sections of the code at run-time when the shader is 
compiled for a particular surface or run-time 
condition. The supershader resolves some of the 

permutation problems, but is not very extensible and 
maintenance is more burdensome. 
 
Current research on “Abstract Shade Trees” 
(McGuire, Stathis, Pfister, & Krishnamurthi, 2006) 
provides a framework for shade tree construction, 
which can result in vertex and fragment shaders 
written in modern GPU shading languages. In this 
approach, links among blocks of code are simplified 
through inferred connectivity of parameters and 
conversion of types to resolve type mismatching. This 
accomplishes the goal of modularizing the modern 
real-time shading languages and is a good starting 
point for this paper’s research into constructing an 
extensible FFP from building blocks. 
 
The shader infrastructure presented in this paper 
directly re-uses the “abstract shade tree” concept of 
breaking each shader into “atoms” and “weaving” a 
complete shader, so it is important to understand a few 
concepts. In an abstract shade tree, nodes of shader 
operations called “atoms” are connected in order of 
execution until reaching the “root” of the tree which is 
the output of the shader, typically a color value. By 
treating atoms as building blocks, many portions of 
various shaders can be mixed together by dragging 
and dropping atoms into the shader and connecting 
them to describe the flow of execution. The “weaver” 
is the program which translates the abstract shade tree 
into shader code in a particular shading language, 
such as Cg or GLSL. 
 
The “Shader Infrastructure” described in this paper 
does not include a GUI for editing shade trees, but 
instead covers reconstruction of the fixed-function 
pipeline and automated merging of multiple shade 
trees. The final shader sent to the graphics pipe then, 
becomes a combination of the shading techniques 
created by an artist when modeling, and the shading 
techniques provided by the run-time. On the fly 
specialization of shader programs is accomplished by 
keeping the shader in its parametric, or “building 
block” form and weaving the shader itself during 
loading by the run-time. To facilitate this merging, an 
über-shader is effectively constructed from “atomic” 
building blocks. 

 
CHALLENGES AND REQUIREMENTS FOR 

REAL-TIME SHADER MANAGEMENT 
 
In the Motivation section, we presented only a few 
examples that demonstrate fundamental difficulties 
inherent in real-time visualization applications that 
use shaders. Further analysis of use-case scenarios 
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netted a complete set of high-level requirements and 
challenges the Shader Infrastructure must solve. We 
discuss them in the following subsections. 
 
Handling of OpenGL Rendering State 
Permutations 
 
Fixed-function pipeline rendering as implemented by 
standard OpenGL offers a huge variety of ways to 
render content, even without shaders. Industry-
standard formats, such as OpenFlightTM or Collada, 
are capable of storing all of the rendering nuances, 
while content creation tools allow modelers to take full 
advantage of the visualization options. On the 
receiving end, the run-time engine is responsible for 
loading, interpreting, and rendering the content via 
the OpenGL API. As mentioned in the previous 
section, the introduction of shaders forces developers 
to re-implement much of the FFP logic in one or more 
shaders. This requirement exposes us to the problem of 
programmatic handling of all state element 
permutations, previously done by the OpenGL driver 
and hardware. Let us take a closer look at state 
elements implemented in the FFP to fully appreciate 
the complexity of the problem.  Consider the OpenGL 
state elements that represent vertex lighting (see Table 
1).  
 
Table 1: Permutations introduced by vertex lighting 
 
Aspect of vertex lighting Number of 

permutations 
Lit or unlit 2 
glColorMaterial for each 
component of lighting material 
(ambient, diffuse, ambient and 
diffuse, none) 

4 

Light source type (directional, 
point, spot, or none) for up to 8 
hardware lights: 4*4*4*4*4*4*4*4 

65536 

Specular highlight On or OFF 2 
 
Vertex lighting alone introduces 1,048,576 
permutations. Omitted from this tally are permutations 
introduced by fog, texture coordinate transformations, 
texturing and texture blending, to mention just a few. 
Obviously, hand-coding a shader for every 
permutation appears infeasible. Additionally, 
managing a large number of shaders leads to other 
weighty questions: 
 

• How will I store and load these shaders into 
my rendering system? 

• How will my rendering system manage these 
shaders and apply them to my geometry? 

• How will I setup the parameters my shaders 
need to run correctly? 

• How do I protect my intellectual property in 
the shader code? 

 
A brute-force, über-shader approach is also going to 
fall short simply because of limitations in the number 
of allowed instructions, which in turn are due to code 
complexity and potentially unacceptable run-time 
performance characteristics caused by dynamic 
branching. This leads us to consider an approach 
capable of dynamic, yet optimal, shader code 
generation at run-time, just to handle the FFP 
permutations alone if nothing else. Therefore, the 
question is: how do I automatically generate shaders 
for any piece of geometry? 
 
At first, this question seems ridiculous. We’ve been 
taught to hand-code our shaders for highly narrow and 
specific purposes. We even tailor shaders to specific 
geometry with specific state settings. In a sense, we 
view vertex and fragment shaders as state attributes in 
the same way we view texture maps or materials, and 
for the most part, this view works well and is very 
intuitive. We write vertex and fragment shaders in text 
files and associate them with geometry just like we 
associate a texture file that contains texels. And when 
we render that geometry we simply bind those shaders 
just like we bind textures. However, as illustrated by 
the examples, treating shaders as just another state 
attribute becomes problematic if we’re using shaders 
to implement a new lighting or fog model.  
 
The naïve and most common approach to the problem 
of render-state inconsistency is hand-coding a 
collection of shaders that support only the minimum 
sub-set of features a particular rendering application 
requires. In other words, if we restrict what state 
settings can be applied by the run-time and force our 
modelers to obey a series of rules concerning lighting 
and texturing usage, we can manage a limited solution 
through hand-coding. In fact, this approach is widely 
popular in console and PC games. 
 
But if a FFP-like shader could be auto generated based 
on OpenGL state, the need for hard-coded shaders is 
removed.  Each element of OpenGL state implies a set 
of shader code.  For example, light_0 configured as a 
directional light generates one set of shader code, 
while light_0 configured as a spot light generates a 
different set. 
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Additionally, the naïve hand-coding approach is too 
restrictive for use with modern graphics APIs that 
include a wide array of potential settings. This aspect 
of content management is particularly important if you 
are already invested in the content. A developer or 
system integrator may already have a library of models 
and, even more importantly, may not have the 
capability to upgrade the content. This brings us to the 
next challenge that needs to be addressed by the 
Shader Infrastructure. 
 
The Need for Parametric Definitions of Techniques 
Applied to Models 
 
We live in a world where a variety of content creation 
and management tools, both COTS and custom, are 
used simultaneously. Industry-standard data exchange 
formats, such as OpenFlightTM or Collada, are used to 
survive in this heterogeneous world. However, each 
tool operates and renders differently. Additionally, 
modelers may be unaware of the run-time environment 
where the model is to be deployed. The run-time 
engine may or may not apply bump maps to a model, 
or cast cloud shadows onto it. Realizing that the 
rendering engine may be undefined during model 
creation leads one to the conclusion that it’s 
impractical to use complete shader code as a means of 
providing the model’s rendering definition.  
 
Additionally, the world of advanced rendering effects 
is essentially open-ended. An introduction of a 
parametric definition of a rendering technique into the 
data format makes it easier to manage the assets 
associated with both render-state and shader 
techniques. Keeping the shader in its parametric form 
allows for each advanced technique’s assets to be 
communicated appropriately with the model, but 
without requiring the complete shader attached to the 
model. For instance, a model may come with a bump 
technique attached. However, it would be up to the 
run-time engine to resolve the details, such as what 
shader code to use for the lighting computation, what 
texture stage to place the bump texture on, etc. This 
puts even more stress on the Shader Infrastructure, 
which would then need to be able to interpret 
parametric definitions of rendering techniques and 
generate shader code that makes this technique 
compatible with other pieces of the rendering puzzle. 
In certain cases, a rendering technique may even come 
with a snippet of code that represents a certain aspect 
of the simulation. For instance, consider a tree model 
that uses a vertex shader snippet to encode a tree’s 
reaction to the wind. The Shader Infrastructure should 

be capable of incorporating the snippet seamlessly into 
the synthesized shader.  
 
The shader auto-generation mechanism has other 
advantages. It could be extended not only to allow for 
new rendering techniques on a render-state for a 
model, but also for a global application of the 
technique to the whole scene.  This is the subject of the 
next section.  
 
Applying Global Rendering Techniques 
 
Certain types of advanced rendering techniques such 
as light models, shadows, light maps, and cloud 
shadows require modifications to a shader for every 
geometry and state in the scene. Figure 5 demonstrates 
a cloud shadow technique, where the shadow is visible 
both on the terrain skin and the buildings. 
 

 
 

Figure 5.  Global cloud shadow technique applied to 
all scene objects 

 
The “apply to all” requirement introduces several 
fundamental difficulties for the Shader Infrastructure.  

1. The number of permutations in the shader 
code expands even further (refer to the 
previous subsection for more details). 

2. Global effects significantly complicate state 
management for the run-time. Consider cloud 
shadows as an example. A typical 
implementation requires that a cloud shadow 
texture is available for sampling in a 
fragment shader. However, the texture was 
not initially present in a geometry and, 
furthermore, the geometry maybe already 
using multi-texturing for implementing other 
effects. As a result, the Shader Infrastructure 
needs to find a way to incorporate an 
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additional texture into an already packed 
multi-texturing state. 

3. A technique may also require additional 
vertex attributes to be generated. A projected 
texture based technique provides an example, 
where eye-linear texture coordinate 
generation needs to be enabled for it to work. 

 
In principle, global techniques require a dynamic 
approach to shader code generation primarily because 
globally applied techniques are typically application 
specific. Cloud shadows are a perfect example in this 
context, where it is never considered during the 
database design or modeling phase due to its highly 
dynamic and application specific nature. Every run-
time might have a different shader for applying cloud 
shadowing effects. 
 

THE SHADER INFRASTRUCTURE 
 
In order to tackle the problems of shader permutations, 
reproducing the fixed-function pipeline, and allowing 
for an extensible system, the Shader Infrastructure 
was born. The idea is not to manually write out 
shaders during content creation, which is tedious and 
error prone, but to dynamically create shaders at run-
time. More precisely, we want to move away from 
guessing up front what rendering state our shaders will 
need to support, and toward analyzing the rendering 
state itself in order to dynamically build supporting 
shaders. 
 
This ability to convert state into shaders is not only 
useful in handling the permutation problem, but is 
crucial for mixing older data, initially designed for the 
fixed-function pipeline, with newer shader based 
rendering techniques. If we ever hope to leverage these 
new rendering techniques, we will need a way to 
recreate the fixed-function pipeline which was the 
initial target during modeling. Only then can users 
apply new shader techniques to these old models. 
 
As a technology, the Shader Infrastructure basically 
involves the sub-division of vertex and fragment 
shaders into a series of well defined “stages” in which 
indivisible snippets of shader code called “atoms” are 
stored. When a model needs shaders, the model’s state 
is passed to the Shader Infrastructure and an algorithm 
uses the state to find atoms, which when combined, 
will construct vertex and fragment shaders suitable for 
rendering the model in question. 
 

Defining Features as “Atoms” of Shader Code 
 
In the Shader Infrastructure, a snippet of shader code 
is called an “atom.” Atoms are the indivisible building 
blocks used to build dynamic shaders and they may 
comprise several lines of code, a single line of code, or 
even a single operation within a line of code. As an 
example, see Figure 6. 
 

 
Figure 6.  A Shader Atom 

 
The primary goal of the Shader Infrastructure is 
managing all of the atoms required to implement the 
features of the fixed-function pipeline and combine 
them dynamically to create valid vertex and fragment 
shaders. For example, if a model requires lighting and 
texturing, the Shader Infrastructure will mix together 
the atoms that implement lighting and texturing and 
auto generate vertex and fragment shaders suitable for 
that model. If the next model doesn’t require lighting 
but uses multi-texture, the Shader Infrastructure will 
not bother with any lighting atoms but will use atoms 
concerned with blending two or more textures. In this 
way, any permutation possible by state settings can be 
implemented through dynamically created vertex and 
fragment shaders. 
 
Defining the “Stages” of Shader Processing 
 
Shader technology itself is actually broken into two 
units of computation: vertex shaders and fragment 
shaders. Within these two units, processing is possible 
in any order. However, it is useful to define further 
sub-units or “stages” of shader processing shown in 
Figure 7 below. The shader infrastructure supports 
nine stages of processing. The four Vertex Stages, 
“transformation,” “per-vertex lighting,” “per-vertex 
fog,” and “texture coordinate generation,” order and 
group the work done in a vertex shader, while the five 

Atom “NdotL” 
 
Snippet: 
 
float NdotL = 
 max(dot(normal, 
lightdir),0); 
 
Parameters: 
    Inputs: 
    float3 normal, lightdir; 
 
   Output:
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Fragment Stages, “texel lookup,” “per-fragment 
lighting,” “fragment combiners,” “per-fragment fog,” 
and “post processing,” order and group the work done 
in a fragment shader. These stages are useful for 
defining exactly the type of processing the vertices and 
fragments will undergo and their processing order. 
 

 
 

Figure 7.  Vertex and Fragment Shader Stages 
 
By registering atoms with a specific stage, the Shader 
Infrastructure has a way to define the type of vertex or 
fragment processing that is considered appropriate for 
each atom. More importantly, the registration of each 
atom to a stage amounts to the creation of an über-
shader of atoms, or “Meta-Shader”, which fully 
defines the feature set that the Shader Infrastructure 
supports. 
 
Defining the “Meta-Shader” 
 
Due to conflicts, such as order-of-execution or mutual-
exclusion between the atoms of a particular stage, it’s 
important not only to register an atom with the correct 
stage, but to define its relationship to at least one other 
atom within that stage. A “Meta-Shader,” which is an 
über-shader of atoms, is used for this task. For 
example, the per-vertex fog stage will contain separate 
atoms for the calculation of linear, exponential, and 
exponential squared fog, but only one of those atoms 
should be active at a time. In this case, these three 
atoms are mutually-exclusive and it’s important to 
record this relationship while building the meta-
shader. As an example of atoms that are not mutually-
exclusive but are order dependant, imagine two atoms 
within the fragment combiner stage that re-implement 

texture blending. One atom will be needed to handle 
the blending of the first texture stage while another is 
needed to handle the blending of the second texture 
stage to the result of the first. These two atoms are 
clearly not mutually-exclusive but if they are allowed 
to perform their calculations out of order the blending 
will be incorrect. 
 
Once each atom has been registered to a stage and its 
relationship to the other atoms defined via the meta-
shader, it becomes possible to analyze the rendering 
state of a model and to literally automate the weaving 
of atoms into vertex and fragment shaders. The atoms 
define functionality, the stages define global structure 
and flow, and the meta-shader resolves conflicts 
concerning the two most important relational aspects 
of atoms which are order and mutual-exclusion. 
 

CREATING NEW “TECHNIQUES” 
 
“Techniques” are simply collections of one or more 
atoms that work together to perform an identifiable 
task.  Creation of new atoms and techniques allows for 
extension beyond fixed-function pipeline rendering. 
“Advanced Rendering Techniques” (ART) are 
techniques which provide capabilities beyond the FFP. 
Techniques are new attributes for render-state that can 
be provided during modeling or run-time. Therefore, 
techniques are the method for extension of render-
state. 
 
Commonly, ART is provided by the run-time rather 
than a modeler. Cloud shadows, HDR lighting, physics 
based atmospheric effects, and many other techniques 
require that shader snippets be inserted into the 
shaders for every model in the scene. 
 
In addition, modelers should no longer be limited to 
the feature set of the FFP. Bump mapping, emissive 
light maps, and environment reflections are all ART 
that should be specified by an artist when creating a 
model. Common techniques’ atoms should have their 
snippets of shader code specified by the run-time’s 
Shader Infrastructure. Having the run-time provide 
atoms for ART eliminates the need for the artist to 
understand the technical details behind a technique. 
The Shader Infrastructure presented in this paper is 
currently a part of the commercially available Vega 
Prime run-time toolkit, which contains atoms for all of 
the above techniques. While the shader code itself is 
fairly universal and can be implemented in any run-
time, it should be noted that many techniques require 
additional data, such as a texture, texture coordinates, 

Transformation 

Per-Vertex Lighting 

Per-Vertex Fog 

Tex-Coord Generation 

Per-Fragment Lighting 

Fragment Combiners 

Per-Fragment Fog 

Post Processing 

Texel Lookup 

Vertex Stages Fragment Stages 



 
 
 

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2007 

2007 Paper No. 7097 Page 9 of 9 

or shader parameters as well. The modeling tools and 
formats need to grow to encompass this new data. 
 
The specification of the FFP render state on a 
polygonal face of a model allows the Shader 
Infrastructure to select some atoms. The model and/or 
the run-time may specify ART on the render state as 
well. When all of the atoms are collected and ordered 
through the meta-shader, a vertex and fragment shader 
can be automatically generated. Thus, the Shader 
Infrastructure can automatically generate a shader for 
the FFP render state plus additional “techniques” 
provided by either the modeler or the run-time. 
 

FUTURE WORK AND CONCLUSIONS 
 
The Shader Infrastructure allows designers to 
customize portions of the rendering pipeline and to 
automatically combine that customization with other 
rendering techniques, covering both modeling and 
run-time techniques. Reproduction of the fixed-
function pipeline can be seamlessly merged with 
advanced rendering techniques. 
 
For simulation and training, leveraging the modeling 
assets that have already been created is very important. 
Being able to load those models in new run-time 
engines that continue to take advantage of 
programmable graphics hardware is also important. 
 
Being able to extend those models through advanced 
modeling Techniques will require new standards for 
the additional data and methods. OpenFlightTM is one 
mechanism through which modeling assets are 
currently communicated. New data fields for the most 
common Techniques are currently being added to 
OpenFlightTM. 
 
Run-time supplied techniques will also continue to 
expand. To be extensible, the full list of atoms and 
techniques in the Shader Infrastructure would have to 
be exposed to the user. This would allow the user to 
define atoms and techniques that could be merged with 
existing modeling and run-time techniques. 

 
The Shader Infrastructure significantly simplifies the 
problem of content management and reuse while 
taking full advantage of the advances in 
programmable PC graphics hardware. As we move 
forward with nearly infinite possibilities for rendering 
in hardware, utilization of a shader infrastructure to 
combine multiple techniques into executable shaders 
will become increasingly important. 
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