

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2007

2007 Paper No. 7097 Page 1 of 9

Automated Shader Generation using a Shader Infrastructure

Chris Coleman, Kevin Harris, Anthony Hinton, Anton Ephanov
MultiGen-Paradigm

Richardson, TX
chris.coleman@multigen.com, kevin.harris@multigen.com, anthony.hinton@multigen.com,

anton.ephanov@multigen.com

ABSTRACT

Programmable rendering on the GPU (Graphics Processing Unit) utilizing “shader” technology has become a
recognized benefit to visual simulation, providing unprecedented realism and fidelity to synthetic environments.
However, effective use of shaders is a technological challenge, where implementation of even a trivial vertex or
fragment shader requires manual re-implementation of the fixed-function pipeline. Furthermore, generation of
efficient shaders for existing data is a complicated undertaking that is compounded by the number of state
permutations possible under a modern graphics API, such as OpenGL, and the desire to extend fixed function state
with advanced rendering techniques.

Therefore, system integrators and run-time providers face significant challenges in incorporating shader
technology while hiding complexity and maintaining backwards compatibility with existing data. Preserving the
massive investment in existing database and model libraries, while enhancing system capabilities, is a fundamental
concern. Though some shader techniques are required for modeling, others are typically supplied by the run-time.
Fundamentally, it is clearly disadvantageous to have run-time code contained in shared modeling assets.

As a solution to these problems, this paper introduces a Shader Infrastructure that automates the building of vertex
and fragment shaders by analyzing the OpenGL state machine. The Shader Infrastructure is capable of not only
dynamic generation of highly efficient shaders for rendering any legacy data considered valid by the OpenFlightTM
standard, but also extending the rendering pipeline via Advanced Rendering Techniques. Techniques allow for
implementation and merging of novel GPU-based rendering approaches by injecting small snippets of shader code
into the Shader Infrastructure. The Shader Infrastructure allows designers to customize portions of the rendering
pipeline and to automatically combine that customization with other rendering techniques, either fixed-function or
shader-based. Therefore, it significantly simplifies the problem of content management and reuse while taking full
advantage of the advances in the programmable PC graphics hardware.

ABOUT THE AUTHORS

Chris Coleman is a Senior Software Engineer at MultiGen-Paradigm. He is currently working on shader technology in both the Vega Prime run-time
product and the OpenFlightTM format. Chris received a B.S. in Computer Science and a M.S. in Visualization Sciences from Texas A&M University
(College Station, TX).

Kevin Harris is a Senior Software Engineer at MultiGen-Paradigm where he works on the Vega Prime run-time product. He has six years’
experience as a 3D graphics programmer in both the game and simulation industries. He also served in the U.S. Navy as an Operations Specialist with
an emphasis on Anti-Submarine Warfare and navigation.

Anthony Hinton is a Software Engineer at MultiGen-Paradigm where he works on the Vega Prime run-time product. He has nine years’ experience in
the software industry in the 3D graphics, cryptographic, and satellite communication fields. Anthony received a B.S. in computer science engineering
from University of Texas at Arlington (Arlington, TX).

Anton Ephanov received B.S. and M.S. degrees in Mathematics and Mechanics from Moscow State University (Moscow, Russia) and a Ph.D. degree
in Mechanical Engineering specializing in Robotics from Southern Methodist University (Dallas, TX). He is currently the Principal Architect for the
Vega Prime run-time product at MultiGen-Paradigm.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2007

2007 Paper No. 7097 Page 2 of 9

Automated Shader Generation using a Shader Infrastructure

Chris Coleman, Kevin Harris, Anthony Hinton, Anton Ephanov
MultiGen-Paradigm

Richardson, TX
chris.coleman@multigen.com, kevin.harris@multigen.com, anthony.hinton@multigen.com,

anton.ephanov@multigen.com

INTRODUCTION

Higher level shading languages, such as Cg from
NVIDIA, the DirectX Higher Level Shading Language
(HLSL), and the OpenGL Shading Language (GLSL),
are the key to unlocking the potential of modern
graphics processing units (GPUs). These languages are
extremely expressive and allow for everything from
applying environment reflections on surfaces to
processing advanced physics simulations on the GPU.
While the breadth of computational possibilities is
impressive, there are clear advantages to using
programmable hardware for typical vis-sim
applications where simulated worlds are rendered
photo-realistically. Creative use of shaders yields
better lighting and shadowing cues (Stamminger &
Drettakis 2002), helps better define the shape of a
surface through bump mapping (Fernando & Kilgard
2003), makes realistic water simulation possible
(Multigen-Paradigm 2006), and can include further
details that help to immerse the viewer in a virtual
world, or avoid artifacts present in past simulations.
Rather than addressing general purpose computing
using programmable graphics hardware, often called
GPGPU, this paper will remain focused on shaders
which render surfaces.

Writing dedicated vertex and fragment shaders that
customize the rendering of selected geometries is
commonplace in modern graphics applications, but
what if we need to implement a new lighting model
that requires all geometry to use vertex and fragment
shaders? Writing these shaders for every piece of
geometry in a scene is a daunting task, especially if
one is forced to handle the vast number of rendering
state permutations possible under modern graphics
APIs such as OpenGL.

MOTIVATION

The promise of shaders is the ability to perform
rendering techniques above and beyond what the
fixed-function pipeline can do. New lighting models,
shadows, light maps, environment maps, layered fog

and many more advanced rendering techniques are
possible with shaders. Implementation of such
techniques either bypasses or overwrites large parts of
the default OpenGL implementation that is referred to
as the Fixed-Function Pipeline (FFP). The Fixed-
Function Pipeline was hard-coded for efficiency in the
previous generation of graphics hardware (and hence
the name “fixed”).

Therefore, the ability to modify and add to the FFP
makes it necessary to first re-implement required
portions of the FFP so that matching geometry can
render correctly before new rendering techniques can
be implemented. A failure to do so can result in
undesired visual artifacts. Consider an example where
a user adds a new light source to the scene during run-
time. Shaders for all geometries affected by the light
need to change accordingly. If a terrain skin and a
building layer were modeled with a shader that only
handles a single directional light source, other GL
lights would not render. Figures 1 and 2 below
illustrate the situation.

Figure 1. FFP rendering with directional light_0
and spot light_1

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2007

2007 Paper No. 7097 Page 3 of 9

Figure 2. A basic shader provides no support for
the spot light_1 so the building remains dark

Not only does the shader code need to account for all
light sources in the scene, it also must implement their
types correctly. In our example, even the light_0 light
will not render correctly if the light is configured as a
spot or positional light in the run-time. This creates a
dilemma for the run-time. On one hand, implementing
all of the OpenGL lights in a shader is
computationally expensive, especially if only some of
the lights are going to be used. On the other hand,
adding or changing a light source requires re-
generation of all affected shaders or maintaining a
shader for each permutation of light configuration to
account for the potential different lighting conditions
encountered at run-time. Neither alternative is
attractive. This introduces a content management
challenge.

Fog is another FFP feature that is often problematic to
combine with shaders. Mismatching fog is
immediately obvious when the fog’s visibility range is
small and a different fog equation is running on
different parts of the scene. Figures 3 and 4 illustrate
the problem.

Lighting and fogging are visual effects which should
alter virtually everything in the scene. If we applied a
new lighting model to just a few pieces of geometry
and used fixed-function lighting on the remainder, the
shader-lit objects would look out of place in contrast to
the scene’s overall fixed-function lighting. In a similar
fashion, if we applied a new fog model to some objects
but not all, the realism of the fog effect would suffer if
two objects, which are very close in proximity,
received differing amounts of fog.

Nullifying visual anomalies caused by inconsistency in
rendering state is typically non-trivial and in many
cases the solutions tend to lower the quality of the
newer technique for the sake of reconciling with the
older technique.

Figure 3. Shader rendering bump-mapped terrain
without fog, but the airfield and buildings use FFP

with vertex linear fog

Figure 4. Shader rendering bump-mapped terrain
matches the FFP vertex linear fog on the airfield

and buildings

PREVIOUS WORK

Shading languages, such as Pixar’s RenderMan, have
long provided mechanisms to describe transformation
of geometry, displacement of geometry, behavior of
light sources, effects in the atmosphere, shading of a
surface, and sampling of an image – often as separable
shading components (Upstill 1989). Shaders and
shading languages have also been broken into
“building blocks” which are assembled through “shade

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2007

2007 Paper No. 7097 Page 4 of 9

trees.” A visual editor to link various sub-components
of a shader through a shading network was proposed
such that execution of a shading network would be
similar to the execution of an interpreted language
(Abram & Whitted, 1990). Today, tools common in
the film industry allow for artists to use graphical tools
to create shaders executed in another shading
language on the CPU.

These topics are gaining renewed interest in real-time
graphics now that shading languages allow
programmability directly to specialized hardware (the
GPU). One advantage of breaking a shader into
smaller pieces is that it allows more code re-use.
Another advantage is that it abstracts the algorithm-
development part of shader programming away from
the syntax of any particular shading language so that
artists can construct shaders using visual editors.
Modern GPU shading languages are in need of the
building block approach.

On the fly generation, manipulation, and
specialization of shader programs for programmable
graphics hardware is described in Shader
Metaprogramming, where the Sh shading language is
described (McCool, Qin, Popa, 2002). This source
explains that C++ wrappers on assembly language
shaders can tame some of the complexity of shader
writing. In addition, the real-time program is the only
place where the shader is actually generated, rather
than files containing strings on disk. The Sh shading
language allows for modularity of shaders that
unfortunately is not found in Cg, HLSL, or GLSL.

Without modular shaders, system integrators and run-
time providers face an explosion in shader
permutations (discussed in the next section). Many
game companies have treated shader application as a
content management problem to be handled by the
modeler. A few have built tools around the idea of
generating shaders in the run-time. Some have even
built über-shaders for a particular game engine that
can perform any function, utilizing dynamic branching
and allowing some code execution that does not
contribute to the final rendered result. But this can
degrade run-time performance.

The “Supershader” (McGuire, 2005) is an attempt to
improve upon traditional über-shaders. A shader that
does everything is hand-coded with many pre-
processor conditionals (#if statements) that remove
sections of the code at run-time when the shader is
compiled for a particular surface or run-time
condition. The supershader resolves some of the

permutation problems, but is not very extensible and
maintenance is more burdensome.

Current research on “Abstract Shade Trees”
(McGuire, Stathis, Pfister, & Krishnamurthi, 2006)
provides a framework for shade tree construction,
which can result in vertex and fragment shaders
written in modern GPU shading languages. In this
approach, links among blocks of code are simplified
through inferred connectivity of parameters and
conversion of types to resolve type mismatching. This
accomplishes the goal of modularizing the modern
real-time shading languages and is a good starting
point for this paper’s research into constructing an
extensible FFP from building blocks.

The shader infrastructure presented in this paper
directly re-uses the “abstract shade tree” concept of
breaking each shader into “atoms” and “weaving” a
complete shader, so it is important to understand a few
concepts. In an abstract shade tree, nodes of shader
operations called “atoms” are connected in order of
execution until reaching the “root” of the tree which is
the output of the shader, typically a color value. By
treating atoms as building blocks, many portions of
various shaders can be mixed together by dragging
and dropping atoms into the shader and connecting
them to describe the flow of execution. The “weaver”
is the program which translates the abstract shade tree
into shader code in a particular shading language,
such as Cg or GLSL.

The “Shader Infrastructure” described in this paper
does not include a GUI for editing shade trees, but
instead covers reconstruction of the fixed-function
pipeline and automated merging of multiple shade
trees. The final shader sent to the graphics pipe then,
becomes a combination of the shading techniques
created by an artist when modeling, and the shading
techniques provided by the run-time. On the fly
specialization of shader programs is accomplished by
keeping the shader in its parametric, or “building
block” form and weaving the shader itself during
loading by the run-time. To facilitate this merging, an
über-shader is effectively constructed from “atomic”
building blocks.

CHALLENGES AND REQUIREMENTS FOR

REAL-TIME SHADER MANAGEMENT

In the Motivation section, we presented only a few
examples that demonstrate fundamental difficulties
inherent in real-time visualization applications that
use shaders. Further analysis of use-case scenarios

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2007

2007 Paper No. 7097 Page 5 of 9

netted a complete set of high-level requirements and
challenges the Shader Infrastructure must solve. We
discuss them in the following subsections.

Handling of OpenGL Rendering State
Permutations

Fixed-function pipeline rendering as implemented by
standard OpenGL offers a huge variety of ways to
render content, even without shaders. Industry-
standard formats, such as OpenFlightTM or Collada,
are capable of storing all of the rendering nuances,
while content creation tools allow modelers to take full
advantage of the visualization options. On the
receiving end, the run-time engine is responsible for
loading, interpreting, and rendering the content via
the OpenGL API. As mentioned in the previous
section, the introduction of shaders forces developers
to re-implement much of the FFP logic in one or more
shaders. This requirement exposes us to the problem of
programmatic handling of all state element
permutations, previously done by the OpenGL driver
and hardware. Let us take a closer look at state
elements implemented in the FFP to fully appreciate
the complexity of the problem. Consider the OpenGL
state elements that represent vertex lighting (see Table
1).

Table 1: Permutations introduced by vertex lighting

Aspect of vertex lighting Number of

permutations
Lit or unlit 2
glColorMaterial for each
component of lighting material
(ambient, diffuse, ambient and
diffuse, none)

4

Light source type (directional,
point, spot, or none) for up to 8
hardware lights: 4*4*4*4*4*4*4*4

65536

Specular highlight On or OFF 2

Vertex lighting alone introduces 1,048,576
permutations. Omitted from this tally are permutations
introduced by fog, texture coordinate transformations,
texturing and texture blending, to mention just a few.
Obviously, hand-coding a shader for every
permutation appears infeasible. Additionally,
managing a large number of shaders leads to other
weighty questions:

• How will I store and load these shaders into
my rendering system?

• How will my rendering system manage these
shaders and apply them to my geometry?

• How will I setup the parameters my shaders
need to run correctly?

• How do I protect my intellectual property in
the shader code?

A brute-force, über-shader approach is also going to
fall short simply because of limitations in the number
of allowed instructions, which in turn are due to code
complexity and potentially unacceptable run-time
performance characteristics caused by dynamic
branching. This leads us to consider an approach
capable of dynamic, yet optimal, shader code
generation at run-time, just to handle the FFP
permutations alone if nothing else. Therefore, the
question is: how do I automatically generate shaders
for any piece of geometry?

At first, this question seems ridiculous. We’ve been
taught to hand-code our shaders for highly narrow and
specific purposes. We even tailor shaders to specific
geometry with specific state settings. In a sense, we
view vertex and fragment shaders as state attributes in
the same way we view texture maps or materials, and
for the most part, this view works well and is very
intuitive. We write vertex and fragment shaders in text
files and associate them with geometry just like we
associate a texture file that contains texels. And when
we render that geometry we simply bind those shaders
just like we bind textures. However, as illustrated by
the examples, treating shaders as just another state
attribute becomes problematic if we’re using shaders
to implement a new lighting or fog model.

The naïve and most common approach to the problem
of render-state inconsistency is hand-coding a
collection of shaders that support only the minimum
sub-set of features a particular rendering application
requires. In other words, if we restrict what state
settings can be applied by the run-time and force our
modelers to obey a series of rules concerning lighting
and texturing usage, we can manage a limited solution
through hand-coding. In fact, this approach is widely
popular in console and PC games.

But if a FFP-like shader could be auto generated based
on OpenGL state, the need for hard-coded shaders is
removed. Each element of OpenGL state implies a set
of shader code. For example, light_0 configured as a
directional light generates one set of shader code,
while light_0 configured as a spot light generates a
different set.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2007

2007 Paper No. 7097 Page 6 of 9

Additionally, the naïve hand-coding approach is too
restrictive for use with modern graphics APIs that
include a wide array of potential settings. This aspect
of content management is particularly important if you
are already invested in the content. A developer or
system integrator may already have a library of models
and, even more importantly, may not have the
capability to upgrade the content. This brings us to the
next challenge that needs to be addressed by the
Shader Infrastructure.

The Need for Parametric Definitions of Techniques
Applied to Models

We live in a world where a variety of content creation
and management tools, both COTS and custom, are
used simultaneously. Industry-standard data exchange
formats, such as OpenFlightTM or Collada, are used to
survive in this heterogeneous world. However, each
tool operates and renders differently. Additionally,
modelers may be unaware of the run-time environment
where the model is to be deployed. The run-time
engine may or may not apply bump maps to a model,
or cast cloud shadows onto it. Realizing that the
rendering engine may be undefined during model
creation leads one to the conclusion that it’s
impractical to use complete shader code as a means of
providing the model’s rendering definition.

Additionally, the world of advanced rendering effects
is essentially open-ended. An introduction of a
parametric definition of a rendering technique into the
data format makes it easier to manage the assets
associated with both render-state and shader
techniques. Keeping the shader in its parametric form
allows for each advanced technique’s assets to be
communicated appropriately with the model, but
without requiring the complete shader attached to the
model. For instance, a model may come with a bump
technique attached. However, it would be up to the
run-time engine to resolve the details, such as what
shader code to use for the lighting computation, what
texture stage to place the bump texture on, etc. This
puts even more stress on the Shader Infrastructure,
which would then need to be able to interpret
parametric definitions of rendering techniques and
generate shader code that makes this technique
compatible with other pieces of the rendering puzzle.
In certain cases, a rendering technique may even come
with a snippet of code that represents a certain aspect
of the simulation. For instance, consider a tree model
that uses a vertex shader snippet to encode a tree’s
reaction to the wind. The Shader Infrastructure should

be capable of incorporating the snippet seamlessly into
the synthesized shader.

The shader auto-generation mechanism has other
advantages. It could be extended not only to allow for
new rendering techniques on a render-state for a
model, but also for a global application of the
technique to the whole scene. This is the subject of the
next section.

Applying Global Rendering Techniques

Certain types of advanced rendering techniques such
as light models, shadows, light maps, and cloud
shadows require modifications to a shader for every
geometry and state in the scene. Figure 5 demonstrates
a cloud shadow technique, where the shadow is visible
both on the terrain skin and the buildings.

Figure 5. Global cloud shadow technique applied to
all scene objects

The “apply to all” requirement introduces several
fundamental difficulties for the Shader Infrastructure.

1. The number of permutations in the shader
code expands even further (refer to the
previous subsection for more details).

2. Global effects significantly complicate state
management for the run-time. Consider cloud
shadows as an example. A typical
implementation requires that a cloud shadow
texture is available for sampling in a
fragment shader. However, the texture was
not initially present in a geometry and,
furthermore, the geometry maybe already
using multi-texturing for implementing other
effects. As a result, the Shader Infrastructure
needs to find a way to incorporate an

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2007

2007 Paper No. 7097 Page 7 of 9

additional texture into an already packed
multi-texturing state.

3. A technique may also require additional
vertex attributes to be generated. A projected
texture based technique provides an example,
where eye-linear texture coordinate
generation needs to be enabled for it to work.

In principle, global techniques require a dynamic
approach to shader code generation primarily because
globally applied techniques are typically application
specific. Cloud shadows are a perfect example in this
context, where it is never considered during the
database design or modeling phase due to its highly
dynamic and application specific nature. Every run-
time might have a different shader for applying cloud
shadowing effects.

THE SHADER INFRASTRUCTURE

In order to tackle the problems of shader permutations,
reproducing the fixed-function pipeline, and allowing
for an extensible system, the Shader Infrastructure
was born. The idea is not to manually write out
shaders during content creation, which is tedious and
error prone, but to dynamically create shaders at run-
time. More precisely, we want to move away from
guessing up front what rendering state our shaders will
need to support, and toward analyzing the rendering
state itself in order to dynamically build supporting
shaders.

This ability to convert state into shaders is not only
useful in handling the permutation problem, but is
crucial for mixing older data, initially designed for the
fixed-function pipeline, with newer shader based
rendering techniques. If we ever hope to leverage these
new rendering techniques, we will need a way to
recreate the fixed-function pipeline which was the
initial target during modeling. Only then can users
apply new shader techniques to these old models.

As a technology, the Shader Infrastructure basically
involves the sub-division of vertex and fragment
shaders into a series of well defined “stages” in which
indivisible snippets of shader code called “atoms” are
stored. When a model needs shaders, the model’s state
is passed to the Shader Infrastructure and an algorithm
uses the state to find atoms, which when combined,
will construct vertex and fragment shaders suitable for
rendering the model in question.

Defining Features as “Atoms” of Shader Code

In the Shader Infrastructure, a snippet of shader code
is called an “atom.” Atoms are the indivisible building
blocks used to build dynamic shaders and they may
comprise several lines of code, a single line of code, or
even a single operation within a line of code. As an
example, see Figure 6.

Figure 6. A Shader Atom

The primary goal of the Shader Infrastructure is
managing all of the atoms required to implement the
features of the fixed-function pipeline and combine
them dynamically to create valid vertex and fragment
shaders. For example, if a model requires lighting and
texturing, the Shader Infrastructure will mix together
the atoms that implement lighting and texturing and
auto generate vertex and fragment shaders suitable for
that model. If the next model doesn’t require lighting
but uses multi-texture, the Shader Infrastructure will
not bother with any lighting atoms but will use atoms
concerned with blending two or more textures. In this
way, any permutation possible by state settings can be
implemented through dynamically created vertex and
fragment shaders.

Defining the “Stages” of Shader Processing

Shader technology itself is actually broken into two
units of computation: vertex shaders and fragment
shaders. Within these two units, processing is possible
in any order. However, it is useful to define further
sub-units or “stages” of shader processing shown in
Figure 7 below. The shader infrastructure supports
nine stages of processing. The four Vertex Stages,
“transformation,” “per-vertex lighting,” “per-vertex
fog,” and “texture coordinate generation,” order and
group the work done in a vertex shader, while the five

Atom “NdotL”

Snippet:

float NdotL =
 max(dot(normal,
lightdir),0);

Parameters:
 Inputs:
 float3 normal, lightdir;

 Output:

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2007

2007 Paper No. 7097 Page 8 of 9

Fragment Stages, “texel lookup,” “per-fragment
lighting,” “fragment combiners,” “per-fragment fog,”
and “post processing,” order and group the work done
in a fragment shader. These stages are useful for
defining exactly the type of processing the vertices and
fragments will undergo and their processing order.

Figure 7. Vertex and Fragment Shader Stages

By registering atoms with a specific stage, the Shader
Infrastructure has a way to define the type of vertex or
fragment processing that is considered appropriate for
each atom. More importantly, the registration of each
atom to a stage amounts to the creation of an über-
shader of atoms, or “Meta-Shader”, which fully
defines the feature set that the Shader Infrastructure
supports.

Defining the “Meta-Shader”

Due to conflicts, such as order-of-execution or mutual-
exclusion between the atoms of a particular stage, it’s
important not only to register an atom with the correct
stage, but to define its relationship to at least one other
atom within that stage. A “Meta-Shader,” which is an
über-shader of atoms, is used for this task. For
example, the per-vertex fog stage will contain separate
atoms for the calculation of linear, exponential, and
exponential squared fog, but only one of those atoms
should be active at a time. In this case, these three
atoms are mutually-exclusive and it’s important to
record this relationship while building the meta-
shader. As an example of atoms that are not mutually-
exclusive but are order dependant, imagine two atoms
within the fragment combiner stage that re-implement

texture blending. One atom will be needed to handle
the blending of the first texture stage while another is
needed to handle the blending of the second texture
stage to the result of the first. These two atoms are
clearly not mutually-exclusive but if they are allowed
to perform their calculations out of order the blending
will be incorrect.

Once each atom has been registered to a stage and its
relationship to the other atoms defined via the meta-
shader, it becomes possible to analyze the rendering
state of a model and to literally automate the weaving
of atoms into vertex and fragment shaders. The atoms
define functionality, the stages define global structure
and flow, and the meta-shader resolves conflicts
concerning the two most important relational aspects
of atoms which are order and mutual-exclusion.

CREATING NEW “TECHNIQUES”

“Techniques” are simply collections of one or more
atoms that work together to perform an identifiable
task. Creation of new atoms and techniques allows for
extension beyond fixed-function pipeline rendering.
“Advanced Rendering Techniques” (ART) are
techniques which provide capabilities beyond the FFP.
Techniques are new attributes for render-state that can
be provided during modeling or run-time. Therefore,
techniques are the method for extension of render-
state.

Commonly, ART is provided by the run-time rather
than a modeler. Cloud shadows, HDR lighting, physics
based atmospheric effects, and many other techniques
require that shader snippets be inserted into the
shaders for every model in the scene.

In addition, modelers should no longer be limited to
the feature set of the FFP. Bump mapping, emissive
light maps, and environment reflections are all ART
that should be specified by an artist when creating a
model. Common techniques’ atoms should have their
snippets of shader code specified by the run-time’s
Shader Infrastructure. Having the run-time provide
atoms for ART eliminates the need for the artist to
understand the technical details behind a technique.
The Shader Infrastructure presented in this paper is
currently a part of the commercially available Vega
Prime run-time toolkit, which contains atoms for all of
the above techniques. While the shader code itself is
fairly universal and can be implemented in any run-
time, it should be noted that many techniques require
additional data, such as a texture, texture coordinates,

Transformation

Per-Vertex Lighting

Per-Vertex Fog

Tex-Coord Generation

Per-Fragment Lighting

Fragment Combiners

Per-Fragment Fog

Post Processing

Texel Lookup

Vertex Stages Fragment Stages

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2007

2007 Paper No. 7097 Page 9 of 9

or shader parameters as well. The modeling tools and
formats need to grow to encompass this new data.

The specification of the FFP render state on a
polygonal face of a model allows the Shader
Infrastructure to select some atoms. The model and/or
the run-time may specify ART on the render state as
well. When all of the atoms are collected and ordered
through the meta-shader, a vertex and fragment shader
can be automatically generated. Thus, the Shader
Infrastructure can automatically generate a shader for
the FFP render state plus additional “techniques”
provided by either the modeler or the run-time.

FUTURE WORK AND CONCLUSIONS

The Shader Infrastructure allows designers to
customize portions of the rendering pipeline and to
automatically combine that customization with other
rendering techniques, covering both modeling and
run-time techniques. Reproduction of the fixed-
function pipeline can be seamlessly merged with
advanced rendering techniques.

For simulation and training, leveraging the modeling
assets that have already been created is very important.
Being able to load those models in new run-time
engines that continue to take advantage of
programmable graphics hardware is also important.

Being able to extend those models through advanced
modeling Techniques will require new standards for
the additional data and methods. OpenFlightTM is one
mechanism through which modeling assets are
currently communicated. New data fields for the most
common Techniques are currently being added to
OpenFlightTM.

Run-time supplied techniques will also continue to
expand. To be extensible, the full list of atoms and
techniques in the Shader Infrastructure would have to
be exposed to the user. This would allow the user to
define atoms and techniques that could be merged with
existing modeling and run-time techniques.

The Shader Infrastructure significantly simplifies the
problem of content management and reuse while
taking full advantage of the advances in
programmable PC graphics hardware. As we move
forward with nearly infinite possibilities for rendering
in hardware, utilization of a shader infrastructure to
combine multiple techniques into executable shaders
will become increasingly important.

REFERENCES

Abram, G. D., & Whitted T. (1990). Building Block

Shaders. SIGGRPAH ’90 Conference Proceedings,
Computer Graphics, Vol 24:4, pp 283-288.

Fernando, R., & Kilgard, J. (2003). The Cg Tutorial,
New York: Addison-Wesley.

McCool, M., Qin, Z., & Popa, T. (2002). Shader
MetaProgramming (Revised). Eurographics
Graphics Hardware Workshop, September 2-3,
2002, Saarbruecken, Germany, pp. 57-68. Retrieved
June 13, 2007 from
http://www.cgl.uwaterloo.ca/Projects/rendering/Pape
rs/metaAPIpaper.pdf

McGuire, M., Stathis, G., Pfister, H., & Krishnamurthi,
S. (2006). Abstract Shade Trees. Symposium on
Interactive 3D Graphics and Games. Retrieved June
13, 2007 from
http://www.cs.brown.edu/research/graphics/games/
AbstractShadeTrees/index.html

McGuire, M., (2005). The SuperShader. ShaderX4.
Hingham, Massachusetts: Charles River Media, Inc.
pp. 485-498.

MultiGen-Paradigm. (2006). Vega Prime Marine
Datasheet. Retrieved June 13, 2007 from
http://www.multigen.com/support/dc_files/VP_Mari
ne.pdf

Stamminger, M., & Drettakis, G. (2002). Perspective
Shadow Maps. Proceedings of ACM SIGGRAPH
2002.

Upstill, Steve. (1989). The RenderMan Companion.
New York: Addison-Wesley.

