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ABSTRACT 

 

Training and Doctrine Command (TRADOC) is executing its plan to replace its primary entity driver in the Battle 

Lab Collaborative Simulation Environment (BLCSE). Replacing the existing multipurpose OneSAF Testbed 

Baseline (OTB) functionalities with OneSAF Objective System (OOS) will transition Army experimentation in the 

Advanced Concepts and Requirements domain to a fully capable environment for the study and testing of Future 

Combat Systems (FCS) capabilities. Because BLCSE maintains an aggressive analytical experimentation schedule, 

the transition from OTB to OOS must be completed in a short timeframe while preventing loss of functionality for 

remaining BLCSE federate applications. This paper discusses the technical issues associated with BLCSE’s SAF 

replacement process, ranging from entity driver replacement to simulation message protocol adaptation. The paper 

specifically describes near-term activities associated with identification and resolution of interoperability issues and 

functionality gaps within a large-scale, highly-distributed simulation environment. In addition, the paper discusses 

potential enhancements to the BLCSE environment made possible by the integration of OOS, including behavior and 

modeling flexibility, varying entity fidelity and the introduction of OOS-based servers and tools. 
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INTRODUCTION 

 

This paper discusses the technical issues associated with 

modernizing Training and Doctrine Command’s 

(TRADOC) Battle Lab Collaborative Simulation 

Environment (BLCSE), specifically transitioning its 

primary entity driver from OneSAF Testbed (OTB) to 

OneSAF Objective System (OOS). It provides 

background information about the federation and details 

design and implementation activities associated with the 

OTB-to-OOS transition. It also shows the results of 

BLCSE’s technical integration events (TIEs) and 

BLCSE’s OOS-centric path forward. The paper’s intent 

is to familiarize the reader with BLCSE’s technical 

environment and to provide solutions to potential 

interoperability issues other simulation environments 

may encounter as they transition to OOS.  

 

TRADOC’s Simulation Environment 

 

BLCSE conducts analytical experimentation to support 

and give actionable recommendations for Doctrine, 

Organization, Training, Materiel, Leadership and 

Education, Personnel and Facilities (DOTMLPF) 

decisions. It is a persistent, large-scale simulation 

environment, geographically distributed among the 

Army’s 18 Battle Labs and Centers. Twelve of these 

sites are proponents, or advocates, for major 

experimentation areas, such as maneuver support and 

missile defense, each with their own specific, and 

sometimes conflicting, simulation requirements. 

 

As proponents, these sites do not merely host a federate 

in the federation. A proponent is expected to 

comprehensively represent its role in the experiment 

scenario. For example, as the dismounted infantry 

proponent, the Maneuver Battle Lab (MBL) at Ft. 

Benning, GA, may have up to 60 soldier simulations 

operating with one or more instantiations of OTB. In 

addition, the MBL will run numerous Advanced 

Simulation Technology, Inc. (ASTi) radio simulations 

through a communications effects server. Therefore, a 

single BLCSE site is often a complex federation in 

itself. 

 

BLCSE is connected by a classified, virtual network 

hosted by the Defense Research and Engineering 

Network (DREN). A fully functional BLCSE federation 

involves more than 1,000 computers and network-

addressable components. During a major experiment, 

the original BLCSE federation modeled up to 120,000 

entities using Distributed Interactive Simulation (DIS) 

as its primary inter-federate communications protocol 

and using OTB as its primary federation entity driver.  

 

Several technical issues arose from this original 

configuration. First, BLCSE’s analysis capability 

requires consistent, repeatable results between scenario 

executions. By its best-effort, broadcast nature, DIS 

cannot guarantee such results, especially as entity count 

and site complexity increase.  

 

Second, OTB’s architecture requires a software 

engineer, rather than a user, to configure OTB for 

specific experiments. To complicate matters further, 

BLCSE’s use of OTB has diverged from the official 

OTB v2.x baseline, and the community has developed 

several BLCSE-unique OTB variants, including several 

“server” applications that do not provide SAF-related 

functionality. BLCSE has faced interoperability issues 

as a result of lacking central configuration control for 

these variants.  

 

For these reasons, TRADOC is in the process of 

transitioning BLCSE’s inter-federate communications 

from DIS to the High Level Architecture (HLA) and 

transitioning its primary entity driver from OTB to 

OOS. These two transitions are separate engineering 

tasks, and this paper will speak to the OTB-to-OOS 

transition only. However, the paper necessarily refers to 

issues related to the DIS-to-HLA transition, and during 

the past year of continued effort, the team has found 

that the success of one transition often relies on the 

success of the other.  
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Interoperability with 3CE 

 

The two separate transition tasks for BLCSE’s 

modernization puts TRADOC into a position to 

participate in the Cross Command Collaboration Effort 

(3CE), a simulation environment combining: 

TRADOC’s BLCSE; Research, Engineering and 

Development Command’s (RDECOM) Modeling 

Architecture for Training, Research and 

Experimentation (MATREX); Army Test and 

Evaluation Command’s (ATEC) Distributed Training 

Environment (DTE); and Program Manager Lead 

Systems Integrator’s (PM LSI) Future Combat Systems 

(FCS) Simulation Environment. While the requirements 

of the 3CE federation are still evolving, the 

organizations have agreed to use the MATREX Run-

time Infrastructure (RTI) under the HLA as the primary 

communication architecture. They have also agreed to 

use Objective Force OOS (OFOOS) v1.5 as the primary 

entity driver. As described above, BLCSE itself is a 

complicated federation-of-federations. As a part of 

3CE, BLCSE will become part of an even larger puzzle. 

BLCSE’s internal modernization effort will limit the 

interoperability issues that arise when piecing together 

the 3CE federation.  

 

 

OOS TRANSITION REQUIREMENTS 

 

The primary requirement for the transition from OTB to 

OOS is that the process put in place must prevent any 

loss of BLCSE functionality. This includes functionality 

provided by BLCSE-unique OTB variants, including 

the situational awareness (SA) server, the effects 

adjudication server, and the communications effects 

server. This primary requirement calls for a thorough 

understanding of how BLCSE uses its version of OTB 

and each of its OTB variants.  

 

Secondly, the transition process must not adversely 

affect BLCSE’s experimentation schedule. BLCSE 

normally conducts two to four major experiments per 

year, each of which requires approximately six months 

of preparation per site. In addition, the Battle Labs and 

Centers conduct multiple mini-experiments per year to 

prepare for or to augment the major experiments.  

 

Finally, and perhaps most critical to the transition 

support team, is the short timeline to complete work. 

TRADOC wants BLCSE to be fully transitioned to 

OOS by the time OOS v1.5 is released on October 1, 

2007. To meet this deadline, the transition team is 

executing a series of five TIEs from February to 

October 2007. These events have stressed the entire 

BLCSE federation, from OOS to the RTI to the DREN 

connecting the sites, in a way never done before. The 

next sections will describe, in detail, the activities 

performed in preparation for the TIEs as well as notable 

observations and solutions from past TIEs.  

 

 

ENVIRONMENT ANALYSIS 

 

To prepare for the OTB-to-OOS transition, the 

transition team compared OOS capabilities to the ways 

BLCSE is currently using OTB. Although many issues 

were considered, two areas warranted the most 

attention: gaps in modeled entities and differences in 

SA architecture. 

 

Model Gap Analysis 

 

The team performed an entity and unit comparison 

between Objective Force OOS version 1.0 and the OTB 

versions used for FCS v1 and at the Unit of Action 

Maneuver Battle Lab (UAMBL). Fundamental 

differences in simulation architecture prevented a 

straight forward one-to-one comparison. Within OTB 

much of the entity and unit capabilities lie within OTB 

Task Frames, which are equivalent to orderable 

behaviors in OOS. This is not necessarily so in OOS, 

where entity and unit capabilities are composed with 

selectable behavioral and physical components. The 

OOS-composed components define behaviors such as 

movement, sensing, vulnerability and communications. 

 

The only area that lends itself to a direct comparative 

analysis is the graphical user interface (GUI) 

capabilities of each simulation. The team identified and 

compared 30 high value GUI features, and they found 

that 28 of the features were represented in OOS. OOS 

does not implement two of the features directly, but the 

team found indirect ways of representing the 

functionality.  

 

The team completed compared OTB and OOS entities 

by entity name comparison, using the OTB entity 

models file and the OOS medium resolution entity 

compositions. The OTB entity models file functionally 

defines OTB entities in the entity name. Based on the 

entity name, the team matched OTB entities with OOS 

entities. In a comparison of only United States and 

Soviet entities, the team found that OOS lacked about 

30 percent of the entities that OTB contained. In 

addition, OTB contains many country specific entities 

that OOS does not directly represent, such as forces 

from Canada, Czech Republic, Germany, and Slovakia. 

The BLCSE federation does not typically use these 
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country-specific entities, so they were given little 

comparison weight during the entity analysis. 

 

The team compared OTB and OOS units by unit name 

comparison, using the OTB unit models file and OOS 

medium resolution unit compositions. The majority of 

missing units in OOS were foreign country units and 

aviation units. 

 

The team compared the OTB Task Frames and OOS 

Composite Behaviors using the OTB provided Task 

Frame user documentation and the behavior 

descriptions available from the OOS Behavior 

Composer Tool. The descriptions contained in the OTB 

documentation provided a functionality assessment the 

team used to compare like functionality in OOS. 

Because of the transition team’s previous experience 

with OOS, the Task Frame descriptions provided 

enough of a functionality description to match OOS 

behaviors.  

 

A straight forward behavior-to-behavior comparison 

between OTB and OOS revealed that OOS lacks about 

16 percent of the orderable behavior functionality that 

OTB contains. However, with further investigation, the 

team discovered that two-thirds of the missing orderable 

behaviors are represented in OOS indirectly, through 

methods such as agents and direct intervention. 

Furthermore, by making allowances for fundamental 

architectural differences between OTB and OOS, the 

team found that only eight percent of the missing 

behaviors could not be represented in OOS without 

software developer intervention. That is, 99 percent of 

OTB functionality is represented in OOS. The missing 

one percent of behavior functionality in OOS is in the 

area of vehicular part articulation and manipulation of 

construction or mine attachments, e.g. plows and sensor 

arms. OOS does not model or perform this functionality 

as an explicit behavior; rather, it is implied. Most 

behaviors which utilize these parts model only the time 

delays associated with their use instead of physically 

modeling their use. 

 

To conclude the OTB and OOS comparison, the 

transition team compared physical models, using lists 

obtained from the applications’ source libraries and 

source code documentation. The team documented and 

compared 93 OTB physical models to OOS physical 

models. They discovered that, on a direct comparison, 

OOS lacked approximately 30 percent of the models 

OTB contains. Of the missing 30 percent, the team 

found that 22 percent are soon-to-be released OOS 

naval models. The team found that another 14 percent 

are modeled functionality provided by other means 

within OOS behavior or agent capabilities. That is, 

OOS completely lacks approximately 20 percent OTB’s 

physical models. The missing physical models are naval 

based systems, radar systems such as Semi-active Radar 

(SAR) and Laser Radar (LADAR), and models in 

support of part and component articulation. The team 

reported the results of the gap analysis to the BLCSE 

community, who are now reviewing the need for 

BLCSE development in these areas. 

 

Situational Awareness Analysis 

 

As BLCSE transitions from OTB to OOS, from DIS to 

HLA, and from a standalone federation to a member of 

the 3CE, there are certain external, OTB-based servers 

that will no longer be supported or have become 

redundant. One of the external servers that will be 

diluted into the environment is the SA Server. 

 

BLCSE’s SA architecture generates network data that 

describes the perceived battlefield. The SA Server 

receives ground truth data from the federation, performs 

target fusion, and then distributes the perceived data to 

all interested federates. The SA Server determines 

which federates are interested by maintaining a database 

of entity locations and assigning each entity to a 

dynamic SA cell. The perceived data includes the 

Current Operational Picture (COP) and a mechanism for 

initiating and tracking indirect-fire missions. The 

Mobile Command and Control (MC2) federate operates 

via the COP, and therefore, it relies on the BLCSE SA 

Server to forward properly translated salute reports and 

perceived entity messages. Upon receiving data from 

the SA Server, MC2 processes the salute report 

messages and disperses them back out as fire mission 

target messages.  

 

The team anticipates replacing BLCSE’s current SA 

architecture using a combination of the MATREX 

Command, Control and Communications (C3) Grid and 

newly-released modifications to OOS’s Data 

Distribution Management (DDM) implementation. The 

C3Grid federate will replace the target fusion and 

distribution capabilities of the current SA Server. Using 

the C3Grid will allow BLCSE to interoperate more 

efficiently with the 3CE federation, since many 3CE 

federates already use the C3Grid. In addition, OOS is 

now capable of defining interaction regions from a data 

file, subscribing to interactions with a region and 

sending interactions for a specifically defined region. 

This OOS functionality provides C3Grid the capability 

to send and receive interactions to and from OOS 

federates based on subscription regions, removing all 

need for the complex SA cell structure currently in 
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place. OOS salute reports will now be translated to an 

HLA interaction, sent, and then received by command 

and control systems like MC2 without using the existing 

SA Server.  

 

 

IMPLEMENTING OOS INTEROPERABILITY 

 

OOS provides the user with ready-to-use composite 

behaviors. These behaviors are mostly used in, and 

currently designed for use in, either standalone mode or 

distributed mode. Some of these behaviors do not have 

the capability to operate effectively in interoperability 

mode. If the behavior requires interaction between two 

entities that are not modeled on the same federate, a 

software engineer must make changes to the OOS 

interoperability packages to allow the interaction. An 

engineer must also implement a method, such as a 

listener, an agent, or a user-initiated behavior, to 

provide the needed Runtime Data Model (RDM) object 

data.  

 

HLA Interoperability 

 

In order for OOS to communicate in HLA, OOS 

internal objects and interactions need to be translated to 

their Federation Object Model (FOM) equivalents. 

These are objects and interactions such as entities 

states, firing and detonation events. There is one main 

eXtended Marking Language (XML) document called 

“mappings.xml” that identifies how to map between 

OOS and HLA. The mapping process involves mapping 

each attribute in the HLA interaction or object that 

interests OOS and the FOM requires. Each attribute can 

be subscribed to, published or both. A Java class 

translates an OOS data type to an HLA data type and 

vice versa. These Java classes are referenced by the 

“mappings.xml” during the mapping process.  

 

There are additional XML mapping files that are needed 

to translate OOS to FOM enumerations and vice versa. 

These handle enumerations such as entity types and 

munitions types. With this architecture, OOS can 

support multiple FOMs without changing its internal 

objects and interactions. 

 

Because of the simplicity of this approach, OOS is 

limited to using FOM platform enumerations that may 

not provide enough values to cover all of the OOS 

entity variants. To prevent inaccurate mappings, the 

team created a new FOM attribute, which will contain 

the name of the OOS entity composition. Instead of 

using mappings, the receiving OOS will convert this 

attribute to allow the exact entity to be displayed.  

OOS version 1.0 was released with numerous 

MATREX FOM objects and interactions mapped. 

However, in order for OOS to replace OTB in BLCSE 

without losing critical functionality, additional 

interactions are required. Most important of these are 

Call For Fire, Asset, and Salute Report. 

 

Call For Fire Interaction Mapping 

BLCSE was posed with a need to issue a fire order from 

an OOS federate to the Fire Support Simulation 

(FireSim) federate without using Command, Control, 

Communications, Computers and Intelligence (C4I) 

capabilities. To accomplish this, the transition team 

implemented a user-initiated behavior to provide the 

data needed to fill in the FOM class parameters. The 

needed data is provided in the form of an RDM Call For 

Fire message that is filtered by interoperability classes 

to determine if the message recipient is a recipient 

external to the issuing federate. If the message recipient 

is an entity that is modeled on an external federate, then 

the converter translates the RDM message data to a 

FOM message data. The team added a Java converter 

class to translate the OOS RDM Call For Fire class 

objects into an appropriately formatted message based 

on the MATREX FOM. Once all of the OOS Call For 

Fire data is translated into the FOM object structure, the 

message is sent from OOS. Systems such as FireSim 

can receive and translate these messages from OOS into 

an actionable engagement on a target or location 

specified within the Call For Fire interaction. 

 

Asset Object Mapping 

BLCSE federates use the Asset object to learn about 

external firing assets. They use this information to order 

the correct asset to carry out a Call For Fire mission. In 

order for OOS to receive asset information and use it to 

issue a Call For Fire order to a BLCSE federate, the 

team created an Asset converter Java class. As input, 

the class uses the ID of the platform for which the Asset 

object is reporting, munition type, authorized amount, 

and current amount. Upon receiving an Asset object, 

OOS finds the external entity for which the Asset object 

is reporting and updates its basic load supply 

information. The OOS user-interface is also updated 

with the new information. Using the information 

provided by the Asset object, the user can input correct 

munition type and quantity to issue the Call For Fire 

order to a BLCSE federate. 

 

Salute Report Interaction Mapping 

BLCSE federates use Salute Report interactions to 

share perceived truth. As in the previous examples, the 

team created Java classes to convert the parameters 

from OOS internal to the FOM format, allowing OOS to 
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distribute Salute Report messages to external federates. 

Currently, OOS has the capability to distribute Salute 

Reports to external federates but does not make use of 

Salute Report interactions generated from external 

federates. The OOS messaging framework requires 

messages to contain a recipient and does not currently 

provide the SA architecture or COP BLCSE requires. 

However, the team is actively working in this area, in 

coordination with OOS architects and those in the 

community involved with SA and the COP. 

 

 

INTEROPERABILITY WITH DIS FEDERATES 

 

BLCSE is composed of a tightly woven set of DIS-

native simulations that have interoperated with one 

another for approximately six years. Over the past two 

years, as part of the DIS-to-HLA transition, these 

simulations have begun using specifically-designed 

Middleware software to allow the simulations to 

“speak” HLA. The integration of a new simulation, in 

this case OOS, brings new interoperability issues. One 

of these issues is that OOS did not display firing lines 

for fire events generated by BLCSE Middleware 

federates. The detonation interaction in the FOM has 

numerous optional parameters. OOS requires two of the 

optional parameters to properly display firing lines. To 

resolve the problem, the team made minor changes to 

Middleware to allow existing BLCSE federates to fill in 

the necessary optional attributes.  

 

Another issue involves BLCSE federates that join the 

federation after OOS federates. These federates do not 

see entities that belong to OOS federates. The BLCSE 

federation had never encountered this issue before 

because previously all federates sent entity heart-beat 

messages at set intervals which contain entity state 

information. As is common in HLA-native simulations, 

OOS does not send regularly-scheduled entity heart-

beat messages. Instead, OOS only sends entity status 

information if there is a change to report. To resolve 

this issue, upon joining the federation, all BLCSE 

Middleware federates request attribute updates for all 

RTI objects in which they are interested. The RTI then 

triggers existing OOS federates to resend their entity 

states, regardless of whether those states have changed. 

In a future version, OOS will implement regularly 

scheduled heart-beat messages. 

 

The team also encountered a problem where OOS and 

BLCSE Middleware federates could not discover each 

other’s aircraft. Entity representation in the MATREX 

FOM follows a parent-child hierarchical relationship. 

BLCSE Middleware federates model air platforms as a 

parent “platform” object. OOS, on the other hand, 

models them as an “aircraft” object, which is a child 

class of “platform”. The team solved this problem by 

modifying the Middleware to publish and subscribe air 

platforms as “aircraft” objects. 

 

 

TECHNICAL INTEGRATION EXECUTION 

 

During 2007, the transition team led a series of TIEs to 

test the work described above. As of this writing, only 

two of six planned TIEs have been executed. During 

TIE2, the team organized a controlled federation of 

seven geographically-dispersed sites using the 

MATREX RTI v5.0. The federation maintained a stable 

state that continued to operate satisfactorily for 

approximately eight hours with a high entity count of 

3,867 entities. Approximately 150 of these entities were 

high resolution entities modeled by Middleware-

integrated BLCSE federates, including FireSim, the 

Extended Air Defense Simulation (EADSIM) and OTB. 

The remaining entities were modeled by OOS as 

medium resolution entities. Figure 1 shows a deliberate 

increase of distributed objects in the TIE2 federation as 

federates performed certain actions specified by the 

battlemaster, such as joining the federation and running 

scenarios. At the 23
rd

 federate action, federates began 

adding entities to the federation at once. The team then 

noted a spike in RTI objects, when neither entity nor 

federate increase seems to justify the RTI increase. 

 

Before achieving this point, however, TIE1 and TIE2 

encountered many technical issues associated with 

running OOS in a large-scale, heterogeneous federation 

such as BLCSE. The following subsections describe the 

symptoms of and solutions to the problems encountered.  

 

Using OOS on the DREN 

 

One of the issues the team encountered while using 

OOS over the DREN is receiving HLA object updates 

before receiving their object discovery callbacks. This 

issue causes OOS to generate Java exceptions. OOS 

expects to receive object discoveries before receiving 

object updates. Enabling the Lazy Object Discovery 

feature within MATREX RTI Initialization Data (RID) 

file fixed this problem. The MATREX RTI v5.2, 

released in May 2007, has Lazy Object Discovery 

enabled in software, eliminating the need for the RID 

file parameter.  

 

Another issue the team encountered is that not all OOS 

systems at remote sites see the same number of entities 

being modeled in the federation. Entity states in the 
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MATREX FOM are always sent using User Datagram 

Protocol (UDP) over multicast addresses. Therefore, if 

a site’s network infrastructure blocks certain multicast 

addresses, that site may not be able to see all of the 

entities modeled in the federation. To determine if this 

is the problem, the transition team will modify the RID 

file to send everything as Transmission Control 

Protocol (TCP), which does not use multicast addresses, 

regardless of what the FOM specifies. If sending entity 

states as TCP solves the problem, the team will involve 

network design engineers to ensure the network 

infrastructure is not blocking critical multicast 

addresses. Since UDP packets are sent best effort, drops 

in network packages may also be part of the cause. 

Lowering the network’s Maximum Transmission Unit 

(MTU) size may also help solve the problem. 
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Figure 1.  Controlled Federate Actions Result in a Steady Increase of Entity and RTI Objects 

 

 

Combining Multiple OOS Compositions 

 

When running OOS with combined composition 

functionality on the same personal computer (PC), the 

team found the federation tends to become unstable and 

susceptible to federate runtime failure. Insufficient 

hardware resources were the cause of most federate 

crashes. Combining the functionality of the 

Management and Control Tool (MCT), entity modeling 

(Simcore), and interoperability compositions 

overwhelms typical hardware capabilities, even when 

modeling only the number of entities recommended by 

OOS.  

 

To alleviate the problem, the team recommends running 

OOS in a clustered environment, distributing computing 

resources among multiple computers. A recommended 

cluster configuration requires a single PC running as the 

HLA interoperability manager, two to three PCs 

running as the SimCore, and as many MCTs as needed 

for user interaction. The MCT currently requires the 

most computing resources and is the limiting factor in 

any resource configuration used to operate an OOS 

federate. The MCT handles all GUI functionalities and 

environment databases. During experiment execution, 

the hardware resource that usually causes the slowness 

and instability of an OOS federate is the Random 

Access Memory (RAM).  

 

Figure 2 shows the number of entities an OOS system 

was able to model in relation to the amount of RAM 

available to the system. The x axis labels give the site 

and amount of RAM available at that site, and the y axis 

lists entity count. Notice that Ft. Sill was able to model 

almost 200 more entities than any other site, even with 

lower hardware capabilities than other sites. During 
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TIE2, Ft. Sill had two machines each with four 

gigabytes of RAM. The reason Ft. Sill was able to 

remain stable while modeling so many entities on the 

network is because Ft. Sill was not discovering all of 

the external entities in the federation. Ft. Sill discovered 

approximately 63 percent of the total entity count of the 

federation. This low entity discovery rate provided Ft. 

Sill’s systems with the resources to model a higher 

entity count, while maintaining a stable interface to the 

federation.  

 

Running on Unsupported Operating Systems 

 

OOS officially supports Windows XP and Red Hat 

Enterprise 4.  However, the team had issues running 

OOS in HLA interoperability mode in a Windows XP 

environment. The problem is that certain MATREX 

RTI installations did not include the JavaBinding.jar file 

that OOS requires. Once the team installed a correct 

Java binding file, such as the jar file with the MATREX 

RTI version 5.0, OOS ran as expected on Windows XP. 
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Figure 2.  Available Computer RAM vs. Maximum OOS-Medium Resolution Entity Count 

 

 

In addition, TRADOC wants to use an open source 

Linux flavor. In this case, the transition team 

recommends using CentOS 4.4 since it is 100 percent 

binary compatible with the officially-supported Red Hat 

Enterprise 4. However, the team also successfully ran 

OOS on other Linux operating systems, such as Fedora 

Core 5 and 6. Again, the team installed the correct Java 

package, since the Java packages included with those 

operating systems are not OOS-compatible. Also, the 

team discovered that OOS will not compile on Fedora 

Core using the officially-supported gcc version 3.3.2. 

However, the team compiled successfully using gcc 

version 3.2.3.  

 

Using the Mak RTI 

 

Currently, BLCSE uses the MATREX RTI but plans to 

use the Mak RTI in the future, mainly for its support for 

IEEE 1516 standard. However, OOS provides a 

MATREX RTI interface, and the team discovered some 

issues when using the Mak RTI. First, the Mak RTI 

Java binding package is not compatible with OOS. The 
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class names and package path are different from those 

of MATREX RTI Java packages. However, the team 

made some simple RTI configuration changes, which 

allows OOS to be compile and runtime compatible with 

the Mak RTI using the same version of the Java binding 

jar file that is used by the MATREX RTI. 

 

The second issue arises from using the MATREX RTI 

Java binding jar file, as described above. When a 

federate sends an updateAttributeValues callback to the 

RTI, the “tag” parameter causes null pointer exceptions. 

The MATREX RTI resolves the allowed NULL “tag” 

parameter in updateAttributeValues calls to an empty 

string, whereas the Mak RTI leaves the “tag” attribute 

as is. BLCSE Middleware federates always set the “tag” 

attribute to NULL. This causes the MATREX Java 

bindings to receive an unexpected NULL value, 

resulting in a NULL pointer exception in OOS. The 

latest MATREX release for RTI v5.2 updates the Java 

bindings to check for a NULL “tag” value.  

 

 

FUTURE OPPORTUNITIES 

 

BLCSE’s OTB-to-OOS transition provides other 

opportunities for modernization besides simply 

replacing OTB with OOS. The following sections give a 

glimpse of BLCSE’s OOS-centric path forward. 

 

Development of OOS-based Tools 

 

As aforementioned, BLCSE is currently using various 

OTB-based tools to handle functionalities such as 

situational awareness, damage effects, communication 

effects, and area of interest. OOS is a highly 

composable system, capable of replacing BLCSE’s 

existing OTB-based tools. Different tools, or 

capabilities, can be added into or removed from an 

operating OOS simulation with relative ease, allowing 

that OOS simulation to fit the role requested by the 

federation. Tool development can follow an approach 

similar to the one described for OOS’s HLA interop 

module. The tools listen to HLA messages, process 

them, and forward the results to the appropriate 

federate. The goal for these tools is to remove the 

processing burden from simulation federates. The 

specialized tool federates handle the responsibility, then 

hand off the processed information to the simulation 

federates for consumption. These tools can leverage 

Data Distribution Management (DDM) to optimize 

network traffic and further reduce the processing load 

on simulation federates. Although more analysis work is 

needed in this area, BLCSE’s ultimate goal is to be 

completely OOS-based.  

Replacement of Other BLCSE Models 

 

Currently, OOS has many low fidelity and medium 

fidelity physical and behavioral models. These 

adequately perform modeling needs for a constructive 

simulation. In BLCSE, most of the federates perform 

high fidelity modeling, such as EADSIM for aircraft 

modeling and FireSim for fires modeling. In the past, 

OOS has been used in a similar way to implement a 

high-fidelity gunnery trainer known as the Common 

Gunnery Architecture (CGA). Due to the highly 

composable nature of OOS, it is possible to have a mix 

of fidelity models running at the same time. As in CGA, 

the main entity is composed of all high fidelity models 

such as sensor sights, turret system, stabilization system, 

laser designators, computer targeting system, and 

munition flyout. On the other hand, the target entities in 

the simulation are low and medium fidelity models. In 

order to replace existing BLCSE models, it is critical to 

obtain the existing models’ algorithm, modeling data 

and, if possible, source code. It is cheaper and faster to 

create models within OOS, taking advantage of model 

reuse, rather than going through the physical knowledge 

and design phases of model development. 

Improvements can be made during this process with 

new data and algorithm refinements. 

 

The transition team recognizes that it may not be cost-

effective to create OOS models to replace existing 

models that are sufficiently complex or detailed. In this 

case, the team anticipates implementing ownership 

management handoffs using the HLA. While all entities 

would be created by OOS, the system would give 

ownership of entities over to the higher fidelity 

simulation when required. For example, assume an 

OOS-created M1A1 fired at a target. Using the RTI 

service to request attribute ownership, OOS would 

request FireSim to “own” the M829A1 munition entity, 

allowing FireSim to perform the detailed physical 

modeling for the munition flyout. OOS might request 

this service because it is aware that FireSim can model 

this flyout more precisely. OOS might also request this 

service to reduce its own modeling load. Technically, 

implementing ownership management is a trivial 

problem. However, the design of each federate 

application, specifically its ability to create new entities 

on-the-fly, must be thoroughly assessed before 

implementation begins.  

 

 

SUMMARY 

 

The size, complexity and schedule of the BLCSE 

federation present a number of challenges to its OTB-
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to-OOS transition. BLCSE’s transition is stressing the 

functionality and performance of OOS’s interoperability 

mode to its limits. This unparalleled stress test revealed 

many technical issues to be resolved in areas ranging 

from OOS and Middleware source code, RTI software, 

network design and workstation configuration. The 

transition team has found solutions for many of these 

interoperability issues. However, some areas such as SA 

will require a significant amount of additional work and 

coordination with other organizations in the community.  

 

Although BLCSE intends to use OOS as its primary 

entity driver beginning in October 2007, removing all 

vestiges of the OTB-centric federation will require more 

time and effort. The transition team will continue to add 

complexity to TIE scenarios to further identify and 

resolve OOS interoperability issues. In addition, the 

composable nature of OOS provides BLCSE an array of 

options to further modernize Army experimentation. 
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