Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2007
Modernizing Army Experimentation using OneSAF Objective System

Jennifer Lewis, Kirk E. Kemmler and Khoi Do
Science Applications International Corporation
Orlando, FL
jennifer.e.lewis @saic.com, Kkirk.e.kemmler @saic.com, khoi.m.do @saic.com

ABSTRACT

Training and Doctrine Command (TRADOC) is executing its plan to replace its primary entity driver in the Battle
Lab Collaborative Simulation Environment (BLCSE). Replacing the existing multipurpose OneSAF Testbed
Baseline (OTB) functionalities with OneSAF Objective System (OOS) will transition Army experimentation in the
Advanced Concepts and Requirements domain to a fully capable environment for the study and testing of Future
Combat Systems (FCS) capabilities. Because BLCSE maintains an aggressive analytical experimentation schedule,
the transition from OTB to OOS must be completed in a short timeframe while preventing loss of functionality for
remaining BLCSE federate applications. This paper discusses the technical issues associated with BLCSE’s SAF
replacement process, ranging from entity driver replacement to simulation message protocol adaptation. The paper
specifically describes near-term activities associated with identification and resolution of interoperability issues and
functionality gaps within a large-scale, highly-distributed simulation environment. In addition, the paper discusses
potential enhancements to the BLCSE environment made possible by the integration of OOS, including behavior and
modeling flexibility, varying entity fidelity and the introduction of OOS-based servers and tools.

ABOUT THE AUTHORS

Jennifer Lewis is a simulation engineer supporting TRADOC’s Battle Lab Collaborative Simulation Environment.
She holds a Master of Science degree in Computer Science with an emphasis in Telecommunications and
Networking from the University of Texas at Dallas. She has designed and implemented network protocols for the
telecommunications and defense industries for the past seven years.

Kirk E. Kemmler is a software engineer supporting TRADOC’s Battle Lab Collaborative Simulation Environment..
He holds a Bachelor of Science degree in Computer Engineering from the University of Central Florida. Since
January 2000 he has participated in the design and development of Man-In-The-Loop, Virtual, and Constructive
simulation programs.

Khoi Do is a simulation software engineer supporting TRADOC’s Battle Lab Collaborative Simulation

Environment. He holds a Bachelor of Science degree in Computer Science from the University of Central Florida.
He has developed and integrated military constructive and virtual simulations for the past eight years.

2007 Paper No. 7304 Page 1 of 10

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2007

Modernizing Army Experimentation using OneSAF Objective System

Jennifer Lewis, Kirk E. Kemmler and Khoi Do
Science Applications International Corporation
Orlando, FL
jennifer.e.lewis @saic.com, kirk.e.kemmler @saic.com, khoi.m.do @saic.com

INTRODUCTION

This paper discusses the technical issues associated with
modernizing Training and Doctrine Command’s
(TRADOC) Battle Lab Collaborative Simulation
Environment (BLCSE), specifically transitioning its
primary entity driver from OneSAF Testbed (OTB) to
OneSAF Objective System (OOS). It provides
background information about the federation and details
design and implementation activities associated with the
OTB-to-OOS transition. It also shows the results of
BLCSE’s technical integration events (TIEs) and
BLCSE’s OOS-centric path forward. The paper’s intent
is to familiarize the reader with BLCSE’s technical
environment and to provide solutions to potential
interoperability issues other simulation environments
may encounter as they transition to OOS.

TRADOC’s Simulation Environment

BLCSE conducts analytical experimentation to support
and give actionable recommendations for Doctrine,
Organization, Training, Materiel, Leadership and
Education, Personnel and Facilities (DOTMLPF)
decisions. It is a persistent, large-scale simulation
environment, geographically distributed among the
Army’s 18 Battle Labs and Centers. Twelve of these
sites are proponents, or advocates, for major
experimentation areas, such as maneuver support and
missile defense, each with their own specific, and
sometimes conflicting, simulation requirements.

As proponents, these sites do not merely host a federate
in the federation. A proponent is expected to
comprehensively represent its role in the experiment
scenario. For example, as the dismounted infantry
proponent, the Maneuver Battle Lab (MBL) at Ft.
Benning, GA, may have up to 60 soldier simulations
operating with one or more instantiations of OTB. In
addition, the MBL will run numerous Advanced
Simulation Technology, Inc. (ASTi) radio simulations
through a communications effects server. Therefore, a

2007 Paper No. 7304 Page 2 of 10

single BLCSE site is often a complex federation in
itself.

BLCSE is connected by a classified, virtual network
hosted by the Defense Research and Engineering
Network (DREN). A fully functional BLCSE federation
involves more than 1,000 computers and network-
addressable components. During a major experiment,
the original BLCSE federation modeled up to 120,000
entities using Distributed Interactive Simulation (DIS)
as its primary inter-federate communications protocol
and using OTB as its primary federation entity driver.

Several technical issues arose from this original
configuration. First, BLCSE’s analysis capability
requires consistent, repeatable results between scenario
executions. By its best-effort, broadcast nature, DIS
cannot guarantee such results, especially as entity count
and site complexity increase.

Second, OTB’s architecture requires a software
engineer, rather than a user, to configure OTB for
specific experiments. To complicate matters further,
BLCSE’s use of OTB has diverged from the official
OTB v2.x baseline, and the community has developed
several BLCSE-unique OTB variants, including several
“server” applications that do not provide SAF-related
functionality. BLCSE has faced interoperability issues
as a result of lacking central configuration control for
these variants.

For these reasons, TRADOC is in the process of
transitioning BLCSE’s inter-federate communications
from DIS to the High Level Architecture (HLA) and
transitioning its primary entity driver from OTB to
OOS. These two transitions are separate engineering
tasks, and this paper will speak to the OTB-to-OOS
transition only. However, the paper necessarily refers to
issues related to the DIS-to-HLA transition, and during
the past year of continued effort, the team has found
that the success of one transition often relies on the
success of the other.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2007

Interoperability with 3CE

The two separate transition tasks for BLCSE’s
modernization puts TRADOC into a position to
participate in the Cross Command Collaboration Effort
(3CE), a simulation environment combining:
TRADOC’s BLCSE; Research, Engineering and
Development Command’s (RDECOM) Modeling
Architecture for Training, Research and
Experimentation (MATREX); Army Test and
Evaluation Command’s (ATEC) Distributed Training
Environment (DTE); and Program Manager Lead
Systems Integrator’s (PM LSI) Future Combat Systems
(FCS) Simulation Environment. While the requirements
of the 3CE federation are still evolving, the
organizations have agreed to use the MATREX Run-
time Infrastructure (RTI) under the HLA as the primary
communication architecture. They have also agreed to
use Objective Force OOS (OFOOS) v1.5 as the primary
entity driver. As described above, BLCSE itself is a
complicated federation-of-federations. As a part of
3CE, BLCSE will become part of an even larger puzzle.
BLCSE’s internal modernization effort will limit the
interoperability issues that arise when piecing together
the 3CE federation.

OOS TRANSITION REQUIREMENTS

The primary requirement for the transition from OTB to
OOS is that the process put in place must prevent any
loss of BLCSE functionality. This includes functionality
provided by BLCSE-unique OTB variants, including
the situational awareness (SA) server, the effects
adjudication server, and the communications effects
server. This primary requirement calls for a thorough
understanding of how BLCSE uses its version of OTB
and each of its OTB variants.

Secondly, the transition process must not adversely
affect BLCSE’s experimentation schedule. BLCSE
normally conducts two to four major experiments per
year, each of which requires approximately six months
of preparation per site. In addition, the Battle Labs and
Centers conduct multiple mini-experiments per year to
prepare for or to augment the major experiments.

Finally, and perhaps most critical to the transition
support team, is the short timeline to complete work.
TRADOC wants BLCSE to be fully transitioned to
OOS by the time OOS v1.5 is released on October 1,
2007. To meet this deadline, the transition team is
executing a series of five TIEs from February to
October 2007. These events have stressed the entire

2007 Paper No. 7304 Page 3 of 10

BLCSE federation, from OOS to the RTI to the DREN
connecting the sites, in a way never done before. The
next sections will describe, in detail, the activities
performed in preparation for the TIEs as well as notable
observations and solutions from past TIEs.

ENVIRONMENT ANALYSIS

To prepare for the OTB-to-OOS transition, the
transition team compared OOS capabilities to the ways
BLCSE is currently using OTB. Although many issues
were considered, two areas warranted the most
attention: gaps in modeled entities and differences in
SA architecture.

Model Gap Analysis

The team performed an entity and unit comparison
between Objective Force OOS version 1.0 and the OTB
versions used for FCS vl and at the Unit of Action
Maneuver Battle Lab (UAMBL). Fundamental
differences in simulation architecture prevented a
straight forward one-to-one comparison. Within OTB
much of the entity and unit capabilities lie within OTB
Task Frames, which are equivalent to orderable
behaviors in OOS. This is not necessarily so in OOS,
where entity and unit capabilities are composed with
selectable behavioral and physical components. The
OOS-composed components define behaviors such as
movement, sensing, vulnerability and communications.

The only area that lends itself to a direct comparative
analysis is the graphical user interface (GUI)
capabilities of each simulation. The team identified and
compared 30 high value GUI features, and they found
that 28 of the features were represented in OOS. OOS
does not implement two of the features directly, but the
team found indirect ways of representing the
functionality.

The team completed compared OTB and OOS entities
by entity name comparison, using the OTB entity
models file and the OOS medium resolution entity
compositions. The OTB entity models file functionally
defines OTB entities in the entity name. Based on the
entity name, the team matched OTB entities with OOS
entities. In a comparison of only United States and
Soviet entities, the team found that OOS lacked about
30 percent of the entities that OTB contained. In
addition, OTB contains many country specific entities
that OOS does not directly represent, such as forces
from Canada, Czech Republic, Germany, and Slovakia.
The BLCSE federation does not typically use these

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2007

country-specific entities, so they were given little
comparison weight during the entity analysis.

The team compared OTB and OOS units by unit name
comparison, using the OTB unit models file and OOS
medium resolution unit compositions. The majority of
missing units in OOS were foreign country units and
aviation units.

The team compared the OTB Task Frames and OOS
Composite Behaviors using the OTB provided Task
Frame user documentation and the behavior
descriptions available from the OOS Behavior
Composer Tool. The descriptions contained in the OTB
documentation provided a functionality assessment the
team used to compare like functionality in OOS.
Because of the transition team’s previous experience
with OOS, the Task Frame descriptions provided
enough of a functionality description to match OOS
behaviors.

A straight forward behavior-to-behavior comparison
between OTB and OOS revealed that OOS lacks about
16 percent of the orderable behavior functionality that
OTB contains. However, with further investigation, the
team discovered that two-thirds of the missing orderable
behaviors are represented in OOS indirectly, through
methods such as agents and direct intervention.
Furthermore, by making allowances for fundamental
architectural differences between OTB and OOS, the
team found that only eight percent of the missing
behaviors could not be represented in OOS without
software developer intervention. That is, 99 percent of
OTB functionality is represented in OOS. The missing
one percent of behavior functionality in OOS is in the
area of vehicular part articulation and manipulation of
construction or mine attachments, e.g. plows and sensor
arms. OOS does not model or perform this functionality
as an explicit behavior; rather, it is implied. Most
behaviors which utilize these parts model only the time
delays associated with their use instead of physically
modeling their use.

To conclude the OTB and OOS comparison, the
transition team compared physical models, using lists
obtained from the applications’ source libraries and
source code documentation. The team documented and
compared 93 OTB physical models to OOS physical
models. They discovered that, on a direct comparison,
OOS lacked approximately 30 percent of the models
OTB contains. Of the missing 30 percent, the team
found that 22 percent are soon-to-be released OOS
naval models. The team found that another 14 percent
are modeled functionality provided by other means

2007 Paper No. 7304 Page 4 of 10

within OOS behavior or agent capabilities. That is,
OOS completely lacks approximately 20 percent OTB’s
physical models. The missing physical models are naval
based systems, radar systems such as Semi-active Radar
(SAR) and Laser Radar (LADAR), and models in
support of part and component articulation. The team
reported the results of the gap analysis to the BLCSE
community, who are now reviewing the need for
BLCSE development in these areas.

Situational Awareness Analysis

As BLCSE transitions from OTB to OOS, from DIS to
HLA, and from a standalone federation to a member of
the 3CE, there are certain external, OTB-based servers
that will no longer be supported or have become
redundant. One of the external servers that will be
diluted into the environment is the SA Server.

BLCSE’s SA architecture generates network data that
describes the perceived battlefield. The SA Server
receives ground truth data from the federation, performs
target fusion, and then distributes the perceived data to
all interested federates. The SA Server determines
which federates are interested by maintaining a database
of entity locations and assigning each entity to a
dynamic SA cell. The perceived data includes the
Current Operational Picture (COP) and a mechanism for
initiating and tracking indirect-fire missions. The
Mobile Command and Control (MC2) federate operates
via the COP, and therefore, it relies on the BLCSE SA
Server to forward properly translated salute reports and
perceived entity messages. Upon receiving data from
the SA Server, MC2 processes the salute report
messages and disperses them back out as fire mission
target messages.

The team anticipates replacing BLCSE’s current SA
architecture using a combination of the MATREX
Command, Control and Communications (C3) Grid and
newly-released modifications to OOS’s Data
Distribution Management (DDM) implementation. The
C3Grid federate will replace the target fusion and
distribution capabilities of the current SA Server. Using
the C3Grid will allow BLCSE to interoperate more
efficiently with the 3CE federation, since many 3CE
federates already use the C3Grid. In addition, OOS is
now capable of defining interaction regions from a data
file, subscribing to interactions with a region and
sending interactions for a specifically defined region.
This OOS functionality provides C3Grid the capability
to send and receive interactions to and from OOS
federates based on subscription regions, removing all
need for the complex SA cell structure currently in

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2007

place. OOS salute reports will now be translated to an
HLA interaction, sent, and then received by command
and control systems like MC2 without using the existing
SA Server.

IMPLEMENTING OOS INTEROPERABILITY

OOS provides the user with ready-to-use composite
behaviors. These behaviors are mostly used in, and
currently designed for use in, either standalone mode or
distributed mode. Some of these behaviors do not have
the capability to operate effectively in interoperability
mode. If the behavior requires interaction between two
entities that are not modeled on the same federate, a
software engineer must make changes to the OOS
interoperability packages to allow the interaction. An
engineer must also implement a method, such as a
listener, an agent, or a user-initiated behavior, to
provide the needed Runtime Data Model (RDM) object
data.

HLA Interoperability

In order for OOS to communicate in HLA, OOS
internal objects and interactions need to be translated to
their Federation Object Model (FOM) equivalents.
These are objects and interactions such as entities
states, firing and detonation events. There is one main
eXtended Marking Language (XML) document called
“mappings.xml” that identifies how to map between
OOS and HLA. The mapping process involves mapping
each attribute in the HLA interaction or object that
interests OOS and the FOM requires. Each attribute can
be subscribed to, published or both. A Java class
translates an OOS data type to an HLA data type and
vice versa. These Java classes are referenced by the
“mappings.xml” during the mapping process.

There are additional XML mapping files that are needed
to translate OOS to FOM enumerations and vice versa.
These handle enumerations such as entity types and
munitions types. With this architecture, OOS can
support multiple FOMs without changing its internal
objects and interactions.

Because of the simplicity of this approach, OOS is
limited to using FOM platform enumerations that may
not provide enough values to cover all of the OOS
entity variants. To prevent inaccurate mappings, the
team created a new FOM attribute, which will contain
the name of the OOS entity composition. Instead of
using mappings, the receiving OOS will convert this
attribute to allow the exact entity to be displayed.

2007 Paper No. 7304 Page 5 of 10

OOS version 1.0 was released with numerous
MATREX FOM objects and interactions mapped.
However, in order for OOS to replace OTB in BLCSE
without losing critical functionality, additional
interactions are required. Most important of these are
Call For Fire, Asset, and Salute Report.

Call For Fire Interaction Mapping

BLCSE was posed with a need to issue a fire order from
an OOS federate to the Fire Support Simulation
(FireSim) federate without using Command, Control,
Communications, Computers and Intelligence (C4I)
capabilities. To accomplish this, the transition team
implemented a user-initiated behavior to provide the
data needed to fill in the FOM class parameters. The
needed data is provided in the form of an RDM Call For
Fire message that is filtered by interoperability classes
to determine if the message recipient is a recipient
external to the issuing federate. If the message recipient
is an entity that is modeled on an external federate, then
the converter translates the RDM message data to a
FOM message data. The team added a Java converter
class to translate the OOS RDM Call For Fire class
objects into an appropriately formatted message based
on the MATREX FOM. Once all of the OOS Call For
Fire data is translated into the FOM object structure, the
message is sent from OOS. Systems such as FireSim
can receive and translate these messages from OOS into
an actionable engagement on a target or location
specified within the Call For Fire interaction.

Asset Object Mapping

BLCSE federates use the Asset object to learn about
external firing assets. They use this information to order
the correct asset to carry out a Call For Fire mission. In
order for OOS to receive asset information and use it to
issue a Call For Fire order to a BLCSE federate, the
team created an Asset converter Java class. As input,
the class uses the ID of the platform for which the Asset
object is reporting, munition type, authorized amount,
and current amount. Upon receiving an Asset object,
OOS finds the external entity for which the Asset object
is reporting and updates its basic load supply
information. The OOS user-interface is also updated
with the new information. Using the information
provided by the Asset object, the user can input correct
munition type and quantity to issue the Call For Fire
order to a BLCSE federate.

Salute Report Interaction Mapping

BLCSE federates use Salute Report interactions to
share perceived truth. As in the previous examples, the
team created Java classes to convert the parameters
from OOS internal to the FOM format, allowing OOS to

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2007

distribute Salute Report messages to external federates.
Currently, OOS has the capability to distribute Salute
Reports to external federates but does not make use of
Salute Report interactions generated from external
federates. The OOS messaging framework requires
messages to contain a recipient and does not currently
provide the SA architecture or COP BLCSE requires.
However, the team is actively working in this area, in
coordination with OOS architects and those in the
community involved with SA and the COP.

INTEROPERABILITY WITH DIS FEDERATES

BLCSE is composed of a tightly woven set of DIS-
native simulations that have interoperated with one
another for approximately six years. Over the past two
years, as part of the DIS-to-HLA transition, these
simulations have begun using specifically-designed
Middleware software to allow the simulations to
“speak” HLA. The integration of a new simulation, in
this case OOS, brings new interoperability issues. One
of these issues is that OOS did not display firing lines
for fire events generated by BLCSE Middleware
federates. The detonation interaction in the FOM has
numerous optional parameters. OOS requires two of the
optional parameters to properly display firing lines. To
resolve the problem, the team made minor changes to
Middleware to allow existing BLCSE federates to fill in
the necessary optional attributes.

Another issue involves BLCSE federates that join the
federation after OOS federates. These federates do not
see entities that belong to OOS federates. The BLCSE
federation had never encountered this issue before
because previously all federates sent entity heart-beat
messages at set intervals which contain entity state
information. As is common in HLA-native simulations,
OOS does not send regularly-scheduled entity heart-
beat messages. Instead, OOS only sends entity status
information if there is a change to report. To resolve
this issue, upon joining the federation, all BLCSE
Middleware federates request attribute updates for all
RTI objects in which they are interested. The RTI then
triggers existing OOS federates to resend their entity
states, regardless of whether those states have changed.
In a future version, OOS will implement regularly
scheduled heart-beat messages.

The team also encountered a problem where OOS and
BLCSE Middleware federates could not discover each
other’s aircraft. Entity representation in the MATREX
FOM follows a parent-child hierarchical relationship.
BLCSE Middleware federates model air platforms as a

2007 Paper No. 7304 Page 6 of 10

parent “platform” object. OOS, on the other hand,
models them as an “aircraft” object, which is a child
class of “platform”. The team solved this problem by
modifying the Middleware to publish and subscribe air
platforms as “aircraft” objects.

TECHNICAL INTEGRATION EXECUTION

During 2007, the transition team led a series of TIEs to
test the work described above. As of this writing, only
two of six planned TIEs have been executed. During
TIE2, the team organized a controlled federation of
seven geographically-dispersed sites using the
MATREX RTI v5.0. The federation maintained a stable
state that continued to operate satisfactorily for
approximately eight hours with a high entity count of
3,867 entities. Approximately 150 of these entities were
high resolution entities modeled by Middleware-
integrated BLCSE federates, including FireSim, the
Extended Air Defense Simulation (EADSIM) and OTB.
The remaining entities were modeled by OOS as
medium resolution entities. Figure 1 shows a deliberate
increase of distributed objects in the TIE2 federation as
federates performed certain actions specified by the
battlemaster, such as joining the federation and running
scenarios. At the 23" federate action, federates began
adding entities to the federation at once. The team then
noted a spike in RTI objects, when neither entity nor
federate increase seems to justify the RTI increase.

Before achieving this point, however, TIEl and TIE2
encountered many technical issues associated with
running OOS in a large-scale, heterogeneous federation
such as BLCSE. The following subsections describe the
symptoms of and solutions to the problems encountered.

Using OOS on the DREN

One of the issues the team encountered while using
OOS over the DREN is receiving HLA object updates
before receiving their object discovery callbacks. This
issue causes OOS to generate Java exceptions. OOS
expects to receive object discoveries before receiving
object updates. Enabling the Lazy Object Discovery
feature within MATREX RTI Initialization Data (RID)
file fixed this problem. The MATREX RTI v5.2,
released in May 2007, has Lazy Object Discovery
enabled in software, eliminating the need for the RID
file parameter.

Another issue the team encountered is that not all OOS
systems at remote sites see the same number of entities
being modeled in the federation. Entity states in the

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2007

MATREX FOM are always sent using User Datagram
Protocol (UDP) over multicast addresses. Therefore, if
a site’s network infrastructure blocks certain multicast
addresses, that site may not be able to see all of the
entities modeled in the federation. To determine if this
is the problem, the transition team will modify the RID
file to send everything as Transmission Control
Protocol (TCP), which does not use multicast addresses,

regardless of what the FOM specifies. If sending entity
states as TCP solves the problem, the team will involve
network design engineers to ensure the network
infrastructure is not blocking critical multicast
addresses. Since UDP packets are sent best effort, drops
in network packages may also be part of the cause.
Lowering the network’s Maximum Transmission Unit
(MTU) size may also help solve the problem.

40000

35000

30000

25000

20000

—o— Entity

Entity & Object Count

15000

—— Battlespace Objects
RTI Objects

10000

5000

AR S & = e~ e

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Federate Action

Figure 1. Controlled Federate Actions Result in a Steady Increase of Entity and RTI Objects

Combining Multiple OOS Compositions

When running OOS with combined composition
functionality on the same personal computer (PC), the
team found the federation tends to become unstable and
susceptible to federate runtime failure. Insufficient
hardware resources were the cause of most federate
crashes. Combining the functionality of the
Management and Control Tool (MCT), entity modeling
(Simcore), and interoperability compositions
overwhelms typical hardware capabilities, even when
modeling only the number of entities recommended by
00S.

To alleviate the problem, the team recommends running
OOS in a clustered environment, distributing computing
resources among multiple computers. A recommended
cluster configuration requires a single PC running as the

2007 Paper No. 7304 Page 7 of 10

HLA interoperability manager, two to three PCs
running as the SimCore, and as many MCTs as needed
for user interaction. The MCT currently requires the
most computing resources and is the limiting factor in
any resource configuration used to operate an OOS
federate. The MCT handles all GUI functionalities and
environment databases. During experiment execution,
the hardware resource that usually causes the slowness
and instability of an OOS federate is the Random
Access Memory (RAM).

Figure 2 shows the number of entities an OOS system
was able to model in relation to the amount of RAM
available to the system. The x axis labels give the site
and amount of RAM available at that site, and the y axis
lists entity count. Notice that Ft. Sill was able to model
almost 200 more entities than any other site, even with
lower hardware capabilities than other sites. During

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2007

TIE2, Ft. Sill had two machines each with four
gigabytes of RAM. The reason Ft. Sill was able to
remain stable while modeling so many entities on the
network is because Ft. Sill was not discovering all of
the external entities in the federation. Ft. Sill discovered
approximately 63 percent of the total entity count of the
federation. This low entity discovery rate provided Ft.
Sill’s systems with the resources to model a higher
entity count, while maintaining a stable interface to the
federation.

1000

Running on Unsupported Operating Systems

OOS officially supports Windows XP and Red Hat
Enterprise 4. However, the team had issues running
OOS in HLA interoperability mode in a Windows XP
environment. The problem is that certain MATREX
RTI installations did not include the JavaBinding.jar file
that OOS requires. Once the team installed a correct
Java binding file, such as the jar file with the MATREX
RTI version 5.0, OOS ran as expected on Windows XP.

900 —

800

700

600

500

Entities Distributed

400

—— |@High Entity Count

300

200

100

L

Ft Rucker, FtMonroe, FtSill,8 G FtlLee,8 G FtBenning FtBenning FtBenning FtKnox C1, Ft Knox C2,

1G 4G C3,8

C2,8G C1,14G 16 G 16 G

Site, Available RAM

Figure 2. Available Computer RAM vs. Maximum OOS-Medium Resolution Entity Count

In addition, TRADOC wants to use an open source
Linux flavor. In this case, the transition team
recommends using CentOS 4.4 since it is 100 percent
binary compatible with the officially-supported Red Hat
Enterprise 4. However, the team also successfully ran
OOS on other Linux operating systems, such as Fedora
Core 5 and 6. Again, the team installed the correct Java
package, since the Java packages included with those
operating systems are not OOS-compatible. Also, the
team discovered that OOS will not compile on Fedora
Core using the officially-supported gcc version 3.3.2.

2007 Paper No. 7304 Page 8 of 10

However, the team compiled successfully using gcc
version 3.2.3.

Using the Mak RTI

Currently, BLCSE uses the MATREX RTI but plans to
use the Mak RTTI in the future, mainly for its support for
IEEE 1516 standard. However, OOS provides a
MATREX RTI interface, and the team discovered some
issues when using the Mak RTI. First, the Mak RTI
Java binding package is not compatible with OOS. The

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2007

class names and package path are different from those
of MATREX RTI Java packages. However, the team
made some simple RTI configuration changes, which
allows OOS to be compile and runtime compatible with
the Mak RTI using the same version of the Java binding
jar file that is used by the MATREX RTI.

The second issue arises from using the MATREX RTI
Java binding jar file, as described above. When a
federate sends an updateAttributeValues callback to the
RTI, the “tag” parameter causes null pointer exceptions.
The MATREX RTI resolves the allowed NULL “tag”
parameter in updateAttributeValues calls to an empty
string, whereas the Mak RTI leaves the “tag” attribute
as is. BLCSE Middleware federates always set the “tag”
attribute to NULL. This causes the MATREX Java
bindings to receive an unexpected NULL value,
resulting in a NULL pointer exception in OOS. The
latest MATREX release for RTI v5.2 updates the Java
bindings to check for a NULL “tag” value.

FUTURE OPPORTUNITIES
BLCSE’s OTB-to-OOS transition provides other
opportunities for modernization besides simply

replacing OTB with OOS. The following sections give a
glimpse of BLCSE’s OOS-centric path forward.

Development of OOS-based Tools

As aforementioned, BLCSE is currently using various
OTB-based tools to handle functionalities such as
situational awareness, damage effects, communication
effects, and area of interestt OOS is a highly
composable system, capable of replacing BLCSE’s
existing OTB-based tools. Different tools, or
capabilities, can be added into or removed from an
operating OOS simulation with relative ease, allowing
that OOS simulation to fit the role requested by the
federation. Tool development can follow an approach
similar to the one described for OOS’s HLA interop
module. The tools listen to HLA messages, process
them, and forward the results to the appropriate
federate. The goal for these tools is to remove the
processing burden from simulation federates. The
specialized tool federates handle the responsibility, then
hand off the processed information to the simulation
federates for consumption. These tools can leverage
Data Distribution Management (DDM) to optimize
network traffic and further reduce the processing load
on simulation federates. Although more analysis work is
needed in this area, BLCSE’s ultimate goal is to be
completely OOS-based.

2007 Paper No. 7304 Page 9 of 10

Replacement of Other BLCSE Models

Currently, OOS has many low fidelity and medium
fidelity physical and behavioral models. These
adequately perform modeling needs for a constructive
simulation. In BLCSE, most of the federates perform
high fidelity modeling, such as EADSIM for aircraft
modeling and FireSim for fires modeling. In the past,
OOS has been used in a similar way to implement a
high-fidelity gunnery trainer known as the Common
Gunnery Architecture (CGA). Due to the highly
composable nature of OOS, it is possible to have a mix
of fidelity models running at the same time. As in CGA,
the main entity is composed of all high fidelity models
such as sensor sights, turret system, stabilization system,
laser designators, computer targeting system, and
munition flyout. On the other hand, the target entities in
the simulation are low and medium fidelity models. In
order to replace existing BLCSE models, it is critical to
obtain the existing models’ algorithm, modeling data
and, if possible, source code. It is cheaper and faster to
create models within OOS, taking advantage of model
reuse, rather than going through the physical knowledge
and design phases of model development.
Improvements can be made during this process with
new data and algorithm refinements.

The transition team recognizes that it may not be cost-
effective to create OOS models to replace existing
models that are sufficiently complex or detailed. In this
case, the team anticipates implementing ownership
management handoffs using the HLA. While all entities
would be created by OOS, the system would give
ownership of entities over to the higher fidelity
simulation when required. For example, assume an
OOS-created M1A1 fired at a target. Using the RTI
service to request attribute ownership, OOS would
request FireSim to “own” the M829A1 munition entity,
allowing FireSim to perform the detailed physical
modeling for the munition flyout. OOS might request
this service because it is aware that FireSim can model
this flyout more precisely. OOS might also request this
service to reduce its own modeling load. Technically,
implementing ownership management is a trivial
problem. However, the design of each federate
application, specifically its ability to create new entities

on-the-fly, must be thoroughly assessed before
implementation begins.
SUMMARY

The size, complexity and schedule of the BLCSE
federation present a number of challenges to its OTB-

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2007

to-OO0S transition. BLCSE’s transition is stressing the
functionality and performance of OOS’s interoperability
mode to its limits. This unparalleled stress test revealed
many technical issues to be resolved in areas ranging
from OOS and Middleware source code, RTI software,
network design and workstation configuration. The
transition team has found solutions for many of these
interoperability issues. However, some areas such as SA
will require a significant amount of additional work and
coordination with other organizations in the community.

Although BLCSE intends to use OOS as its primary
entity driver beginning in October 2007, removing all
vestiges of the OTB-centric federation will require more
time and effort. The transition team will continue to add
complexity to TIE scenarios to further identify and
resolve OOS interoperability issues. In addition, the
composable nature of OOS provides BLCSE an array of
options to further modernize Army experimentation.

2007 Paper No. 7304 Page 10 of 10

ACKNOWLEDGEMENTS

The authors acknowledge the support of the following
colleagues while writing this paper: Karyn Eusey, Paul
Monday, Lawrence Rieger, Paul Hanover and Alex
Jones.

REFERENCES

Hanover, Paul; Progress Report on the Battle Lab
Collaborative Simulation Environment; Proceedings of
the 2004 Interservice/Industry Training, Simulation and
Education Conference.

Rieger, Lawrence and Lewis, Jennifer; Integrated
Middleware for Flexible DIS and HLA Interoperability;
Proceedings of the 2006 Interservice/Industry Training,
Simulation and Education Conference.

