

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2007

2007 Paper No. 7304 Page 1 of 10

Modernizing Army Experimentation using OneSAF Objective System

Jennifer Lewis, Kirk E. Kemmler and Khoi Do

Science Applications International Corporation

Orlando, FL

jennifer.e.lewis@saic.com, kirk.e.kemmler@saic.com, khoi.m.do@saic.com

ABSTRACT

Training and Doctrine Command (TRADOC) is executing its plan to replace its primary entity driver in the Battle

Lab Collaborative Simulation Environment (BLCSE). Replacing the existing multipurpose OneSAF Testbed

Baseline (OTB) functionalities with OneSAF Objective System (OOS) will transition Army experimentation in the

Advanced Concepts and Requirements domain to a fully capable environment for the study and testing of Future

Combat Systems (FCS) capabilities. Because BLCSE maintains an aggressive analytical experimentation schedule,

the transition from OTB to OOS must be completed in a short timeframe while preventing loss of functionality for

remaining BLCSE federate applications. This paper discusses the technical issues associated with BLCSE’s SAF

replacement process, ranging from entity driver replacement to simulation message protocol adaptation. The paper

specifically describes near-term activities associated with identification and resolution of interoperability issues and

functionality gaps within a large-scale, highly-distributed simulation environment. In addition, the paper discusses

potential enhancements to the BLCSE environment made possible by the integration of OOS, including behavior and

modeling flexibility, varying entity fidelity and the introduction of OOS-based servers and tools.

ABOUT THE AUTHORS

Jennifer Lewis is a simulation engineer supporting TRADOC’s Battle Lab Collaborative Simulation Environment.

She holds a Master of Science degree in Computer Science with an emphasis in Telecommunications and

Networking from the University of Texas at Dallas. She has designed and implemented network protocols for the

telecommunications and defense industries for the past seven years.

Kirk E. Kemmler is a software engineer supporting TRADOC’s Battle Lab Collaborative Simulation Environment..

He holds a Bachelor of Science degree in Computer Engineering from the University of Central Florida. Since

January 2000 he has participated in the design and development of Man-In-The-Loop, Virtual, and Constructive

simulation programs.

Khoi Do is a simulation software engineer supporting TRADOC’s Battle Lab Collaborative Simulation

Environment. He holds a Bachelor of Science degree in Computer Science from the University of Central Florida.

He has developed and integrated military constructive and virtual simulations for the past eight years.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2007

2007 Paper No. 7304 Page 2 of 10

Modernizing Army Experimentation using OneSAF Objective System

Jennifer Lewis, Kirk E. Kemmler and Khoi Do

Science Applications International Corporation

Orlando, FL

jennifer.e.lewis@saic.com, kirk.e.kemmler@saic.com, khoi.m.do@saic.com

INTRODUCTION

This paper discusses the technical issues associated with

modernizing Training and Doctrine Command’s

(TRADOC) Battle Lab Collaborative Simulation

Environment (BLCSE), specifically transitioning its

primary entity driver from OneSAF Testbed (OTB) to

OneSAF Objective System (OOS). It provides

background information about the federation and details

design and implementation activities associated with the

OTB-to-OOS transition. It also shows the results of

BLCSE’s technical integration events (TIEs) and

BLCSE’s OOS-centric path forward. The paper’s intent

is to familiarize the reader with BLCSE’s technical

environment and to provide solutions to potential

interoperability issues other simulation environments

may encounter as they transition to OOS.

TRADOC’s Simulation Environment

BLCSE conducts analytical experimentation to support

and give actionable recommendations for Doctrine,

Organization, Training, Materiel, Leadership and

Education, Personnel and Facilities (DOTMLPF)

decisions. It is a persistent, large-scale simulation

environment, geographically distributed among the

Army’s 18 Battle Labs and Centers. Twelve of these

sites are proponents, or advocates, for major

experimentation areas, such as maneuver support and

missile defense, each with their own specific, and

sometimes conflicting, simulation requirements.

As proponents, these sites do not merely host a federate

in the federation. A proponent is expected to

comprehensively represent its role in the experiment

scenario. For example, as the dismounted infantry

proponent, the Maneuver Battle Lab (MBL) at Ft.

Benning, GA, may have up to 60 soldier simulations

operating with one or more instantiations of OTB. In

addition, the MBL will run numerous Advanced

Simulation Technology, Inc. (ASTi) radio simulations

through a communications effects server. Therefore, a

single BLCSE site is often a complex federation in

itself.

BLCSE is connected by a classified, virtual network

hosted by the Defense Research and Engineering

Network (DREN). A fully functional BLCSE federation

involves more than 1,000 computers and network-

addressable components. During a major experiment,

the original BLCSE federation modeled up to 120,000

entities using Distributed Interactive Simulation (DIS)

as its primary inter-federate communications protocol

and using OTB as its primary federation entity driver.

Several technical issues arose from this original

configuration. First, BLCSE’s analysis capability

requires consistent, repeatable results between scenario

executions. By its best-effort, broadcast nature, DIS

cannot guarantee such results, especially as entity count

and site complexity increase.

Second, OTB’s architecture requires a software

engineer, rather than a user, to configure OTB for

specific experiments. To complicate matters further,

BLCSE’s use of OTB has diverged from the official

OTB v2.x baseline, and the community has developed

several BLCSE-unique OTB variants, including several

“server” applications that do not provide SAF-related

functionality. BLCSE has faced interoperability issues

as a result of lacking central configuration control for

these variants.

For these reasons, TRADOC is in the process of

transitioning BLCSE’s inter-federate communications

from DIS to the High Level Architecture (HLA) and

transitioning its primary entity driver from OTB to

OOS. These two transitions are separate engineering

tasks, and this paper will speak to the OTB-to-OOS

transition only. However, the paper necessarily refers to

issues related to the DIS-to-HLA transition, and during

the past year of continued effort, the team has found

that the success of one transition often relies on the

success of the other.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2007

2007 Paper No. 7304 Page 3 of 10

Interoperability with 3CE

The two separate transition tasks for BLCSE’s

modernization puts TRADOC into a position to

participate in the Cross Command Collaboration Effort

(3CE), a simulation environment combining:

TRADOC’s BLCSE; Research, Engineering and

Development Command’s (RDECOM) Modeling

Architecture for Training, Research and

Experimentation (MATREX); Army Test and

Evaluation Command’s (ATEC) Distributed Training

Environment (DTE); and Program Manager Lead

Systems Integrator’s (PM LSI) Future Combat Systems

(FCS) Simulation Environment. While the requirements

of the 3CE federation are still evolving, the

organizations have agreed to use the MATREX Run-

time Infrastructure (RTI) under the HLA as the primary

communication architecture. They have also agreed to

use Objective Force OOS (OFOOS) v1.5 as the primary

entity driver. As described above, BLCSE itself is a

complicated federation-of-federations. As a part of

3CE, BLCSE will become part of an even larger puzzle.

BLCSE’s internal modernization effort will limit the

interoperability issues that arise when piecing together

the 3CE federation.

OOS TRANSITION REQUIREMENTS

The primary requirement for the transition from OTB to

OOS is that the process put in place must prevent any

loss of BLCSE functionality. This includes functionality

provided by BLCSE-unique OTB variants, including

the situational awareness (SA) server, the effects

adjudication server, and the communications effects

server. This primary requirement calls for a thorough

understanding of how BLCSE uses its version of OTB

and each of its OTB variants.

Secondly, the transition process must not adversely

affect BLCSE’s experimentation schedule. BLCSE

normally conducts two to four major experiments per

year, each of which requires approximately six months

of preparation per site. In addition, the Battle Labs and

Centers conduct multiple mini-experiments per year to

prepare for or to augment the major experiments.

Finally, and perhaps most critical to the transition

support team, is the short timeline to complete work.

TRADOC wants BLCSE to be fully transitioned to

OOS by the time OOS v1.5 is released on October 1,

2007. To meet this deadline, the transition team is

executing a series of five TIEs from February to

October 2007. These events have stressed the entire

BLCSE federation, from OOS to the RTI to the DREN

connecting the sites, in a way never done before. The

next sections will describe, in detail, the activities

performed in preparation for the TIEs as well as notable

observations and solutions from past TIEs.

ENVIRONMENT ANALYSIS

To prepare for the OTB-to-OOS transition, the

transition team compared OOS capabilities to the ways

BLCSE is currently using OTB. Although many issues

were considered, two areas warranted the most

attention: gaps in modeled entities and differences in

SA architecture.

Model Gap Analysis

The team performed an entity and unit comparison

between Objective Force OOS version 1.0 and the OTB

versions used for FCS v1 and at the Unit of Action

Maneuver Battle Lab (UAMBL). Fundamental

differences in simulation architecture prevented a

straight forward one-to-one comparison. Within OTB

much of the entity and unit capabilities lie within OTB

Task Frames, which are equivalent to orderable

behaviors in OOS. This is not necessarily so in OOS,

where entity and unit capabilities are composed with

selectable behavioral and physical components. The

OOS-composed components define behaviors such as

movement, sensing, vulnerability and communications.

The only area that lends itself to a direct comparative

analysis is the graphical user interface (GUI)

capabilities of each simulation. The team identified and

compared 30 high value GUI features, and they found

that 28 of the features were represented in OOS. OOS

does not implement two of the features directly, but the

team found indirect ways of representing the

functionality.

The team completed compared OTB and OOS entities

by entity name comparison, using the OTB entity

models file and the OOS medium resolution entity

compositions. The OTB entity models file functionally

defines OTB entities in the entity name. Based on the

entity name, the team matched OTB entities with OOS

entities. In a comparison of only United States and

Soviet entities, the team found that OOS lacked about

30 percent of the entities that OTB contained. In

addition, OTB contains many country specific entities

that OOS does not directly represent, such as forces

from Canada, Czech Republic, Germany, and Slovakia.

The BLCSE federation does not typically use these

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2007

2007 Paper No. 7304 Page 4 of 10

country-specific entities, so they were given little

comparison weight during the entity analysis.

The team compared OTB and OOS units by unit name

comparison, using the OTB unit models file and OOS

medium resolution unit compositions. The majority of

missing units in OOS were foreign country units and

aviation units.

The team compared the OTB Task Frames and OOS

Composite Behaviors using the OTB provided Task

Frame user documentation and the behavior

descriptions available from the OOS Behavior

Composer Tool. The descriptions contained in the OTB

documentation provided a functionality assessment the

team used to compare like functionality in OOS.

Because of the transition team’s previous experience

with OOS, the Task Frame descriptions provided

enough of a functionality description to match OOS

behaviors.

A straight forward behavior-to-behavior comparison

between OTB and OOS revealed that OOS lacks about

16 percent of the orderable behavior functionality that

OTB contains. However, with further investigation, the

team discovered that two-thirds of the missing orderable

behaviors are represented in OOS indirectly, through

methods such as agents and direct intervention.

Furthermore, by making allowances for fundamental

architectural differences between OTB and OOS, the

team found that only eight percent of the missing

behaviors could not be represented in OOS without

software developer intervention. That is, 99 percent of

OTB functionality is represented in OOS. The missing

one percent of behavior functionality in OOS is in the

area of vehicular part articulation and manipulation of

construction or mine attachments, e.g. plows and sensor

arms. OOS does not model or perform this functionality

as an explicit behavior; rather, it is implied. Most

behaviors which utilize these parts model only the time

delays associated with their use instead of physically

modeling their use.

To conclude the OTB and OOS comparison, the

transition team compared physical models, using lists

obtained from the applications’ source libraries and

source code documentation. The team documented and

compared 93 OTB physical models to OOS physical

models. They discovered that, on a direct comparison,

OOS lacked approximately 30 percent of the models

OTB contains. Of the missing 30 percent, the team

found that 22 percent are soon-to-be released OOS

naval models. The team found that another 14 percent

are modeled functionality provided by other means

within OOS behavior or agent capabilities. That is,

OOS completely lacks approximately 20 percent OTB’s

physical models. The missing physical models are naval

based systems, radar systems such as Semi-active Radar

(SAR) and Laser Radar (LADAR), and models in

support of part and component articulation. The team

reported the results of the gap analysis to the BLCSE

community, who are now reviewing the need for

BLCSE development in these areas.

Situational Awareness Analysis

As BLCSE transitions from OTB to OOS, from DIS to

HLA, and from a standalone federation to a member of

the 3CE, there are certain external, OTB-based servers

that will no longer be supported or have become

redundant. One of the external servers that will be

diluted into the environment is the SA Server.

BLCSE’s SA architecture generates network data that

describes the perceived battlefield. The SA Server

receives ground truth data from the federation, performs

target fusion, and then distributes the perceived data to

all interested federates. The SA Server determines

which federates are interested by maintaining a database

of entity locations and assigning each entity to a

dynamic SA cell. The perceived data includes the

Current Operational Picture (COP) and a mechanism for

initiating and tracking indirect-fire missions. The

Mobile Command and Control (MC2) federate operates

via the COP, and therefore, it relies on the BLCSE SA

Server to forward properly translated salute reports and

perceived entity messages. Upon receiving data from

the SA Server, MC2 processes the salute report

messages and disperses them back out as fire mission

target messages.

The team anticipates replacing BLCSE’s current SA

architecture using a combination of the MATREX

Command, Control and Communications (C3) Grid and

newly-released modifications to OOS’s Data

Distribution Management (DDM) implementation. The

C3Grid federate will replace the target fusion and

distribution capabilities of the current SA Server. Using

the C3Grid will allow BLCSE to interoperate more

efficiently with the 3CE federation, since many 3CE

federates already use the C3Grid. In addition, OOS is

now capable of defining interaction regions from a data

file, subscribing to interactions with a region and

sending interactions for a specifically defined region.

This OOS functionality provides C3Grid the capability

to send and receive interactions to and from OOS

federates based on subscription regions, removing all

need for the complex SA cell structure currently in

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2007

2007 Paper No. 7304 Page 5 of 10

place. OOS salute reports will now be translated to an

HLA interaction, sent, and then received by command

and control systems like MC2 without using the existing

SA Server.

IMPLEMENTING OOS INTEROPERABILITY

OOS provides the user with ready-to-use composite

behaviors. These behaviors are mostly used in, and

currently designed for use in, either standalone mode or

distributed mode. Some of these behaviors do not have

the capability to operate effectively in interoperability

mode. If the behavior requires interaction between two

entities that are not modeled on the same federate, a

software engineer must make changes to the OOS

interoperability packages to allow the interaction. An

engineer must also implement a method, such as a

listener, an agent, or a user-initiated behavior, to

provide the needed Runtime Data Model (RDM) object

data.

HLA Interoperability

In order for OOS to communicate in HLA, OOS

internal objects and interactions need to be translated to

their Federation Object Model (FOM) equivalents.

These are objects and interactions such as entities

states, firing and detonation events. There is one main

eXtended Marking Language (XML) document called

“mappings.xml” that identifies how to map between

OOS and HLA. The mapping process involves mapping

each attribute in the HLA interaction or object that

interests OOS and the FOM requires. Each attribute can

be subscribed to, published or both. A Java class

translates an OOS data type to an HLA data type and

vice versa. These Java classes are referenced by the

“mappings.xml” during the mapping process.

There are additional XML mapping files that are needed

to translate OOS to FOM enumerations and vice versa.

These handle enumerations such as entity types and

munitions types. With this architecture, OOS can

support multiple FOMs without changing its internal

objects and interactions.

Because of the simplicity of this approach, OOS is

limited to using FOM platform enumerations that may

not provide enough values to cover all of the OOS

entity variants. To prevent inaccurate mappings, the

team created a new FOM attribute, which will contain

the name of the OOS entity composition. Instead of

using mappings, the receiving OOS will convert this

attribute to allow the exact entity to be displayed.

OOS version 1.0 was released with numerous

MATREX FOM objects and interactions mapped.

However, in order for OOS to replace OTB in BLCSE

without losing critical functionality, additional

interactions are required. Most important of these are

Call For Fire, Asset, and Salute Report.

Call For Fire Interaction Mapping

BLCSE was posed with a need to issue a fire order from

an OOS federate to the Fire Support Simulation

(FireSim) federate without using Command, Control,

Communications, Computers and Intelligence (C4I)

capabilities. To accomplish this, the transition team

implemented a user-initiated behavior to provide the

data needed to fill in the FOM class parameters. The

needed data is provided in the form of an RDM Call For

Fire message that is filtered by interoperability classes

to determine if the message recipient is a recipient

external to the issuing federate. If the message recipient

is an entity that is modeled on an external federate, then

the converter translates the RDM message data to a

FOM message data. The team added a Java converter

class to translate the OOS RDM Call For Fire class

objects into an appropriately formatted message based

on the MATREX FOM. Once all of the OOS Call For

Fire data is translated into the FOM object structure, the

message is sent from OOS. Systems such as FireSim

can receive and translate these messages from OOS into

an actionable engagement on a target or location

specified within the Call For Fire interaction.

Asset Object Mapping

BLCSE federates use the Asset object to learn about

external firing assets. They use this information to order

the correct asset to carry out a Call For Fire mission. In

order for OOS to receive asset information and use it to

issue a Call For Fire order to a BLCSE federate, the

team created an Asset converter Java class. As input,

the class uses the ID of the platform for which the Asset

object is reporting, munition type, authorized amount,

and current amount. Upon receiving an Asset object,

OOS finds the external entity for which the Asset object

is reporting and updates its basic load supply

information. The OOS user-interface is also updated

with the new information. Using the information

provided by the Asset object, the user can input correct

munition type and quantity to issue the Call For Fire

order to a BLCSE federate.

Salute Report Interaction Mapping

BLCSE federates use Salute Report interactions to

share perceived truth. As in the previous examples, the

team created Java classes to convert the parameters

from OOS internal to the FOM format, allowing OOS to

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2007

2007 Paper No. 7304 Page 6 of 10

distribute Salute Report messages to external federates.

Currently, OOS has the capability to distribute Salute

Reports to external federates but does not make use of

Salute Report interactions generated from external

federates. The OOS messaging framework requires

messages to contain a recipient and does not currently

provide the SA architecture or COP BLCSE requires.

However, the team is actively working in this area, in

coordination with OOS architects and those in the

community involved with SA and the COP.

INTEROPERABILITY WITH DIS FEDERATES

BLCSE is composed of a tightly woven set of DIS-

native simulations that have interoperated with one

another for approximately six years. Over the past two

years, as part of the DIS-to-HLA transition, these

simulations have begun using specifically-designed

Middleware software to allow the simulations to

“speak” HLA. The integration of a new simulation, in

this case OOS, brings new interoperability issues. One

of these issues is that OOS did not display firing lines

for fire events generated by BLCSE Middleware

federates. The detonation interaction in the FOM has

numerous optional parameters. OOS requires two of the

optional parameters to properly display firing lines. To

resolve the problem, the team made minor changes to

Middleware to allow existing BLCSE federates to fill in

the necessary optional attributes.

Another issue involves BLCSE federates that join the

federation after OOS federates. These federates do not

see entities that belong to OOS federates. The BLCSE

federation had never encountered this issue before

because previously all federates sent entity heart-beat

messages at set intervals which contain entity state

information. As is common in HLA-native simulations,

OOS does not send regularly-scheduled entity heart-

beat messages. Instead, OOS only sends entity status

information if there is a change to report. To resolve

this issue, upon joining the federation, all BLCSE

Middleware federates request attribute updates for all

RTI objects in which they are interested. The RTI then

triggers existing OOS federates to resend their entity

states, regardless of whether those states have changed.

In a future version, OOS will implement regularly

scheduled heart-beat messages.

The team also encountered a problem where OOS and

BLCSE Middleware federates could not discover each

other’s aircraft. Entity representation in the MATREX

FOM follows a parent-child hierarchical relationship.

BLCSE Middleware federates model air platforms as a

parent “platform” object. OOS, on the other hand,

models them as an “aircraft” object, which is a child

class of “platform”. The team solved this problem by

modifying the Middleware to publish and subscribe air

platforms as “aircraft” objects.

TECHNICAL INTEGRATION EXECUTION

During 2007, the transition team led a series of TIEs to

test the work described above. As of this writing, only

two of six planned TIEs have been executed. During

TIE2, the team organized a controlled federation of

seven geographically-dispersed sites using the

MATREX RTI v5.0. The federation maintained a stable

state that continued to operate satisfactorily for

approximately eight hours with a high entity count of

3,867 entities. Approximately 150 of these entities were

high resolution entities modeled by Middleware-

integrated BLCSE federates, including FireSim, the

Extended Air Defense Simulation (EADSIM) and OTB.

The remaining entities were modeled by OOS as

medium resolution entities. Figure 1 shows a deliberate

increase of distributed objects in the TIE2 federation as

federates performed certain actions specified by the

battlemaster, such as joining the federation and running

scenarios. At the 23
rd

 federate action, federates began

adding entities to the federation at once. The team then

noted a spike in RTI objects, when neither entity nor

federate increase seems to justify the RTI increase.

Before achieving this point, however, TIE1 and TIE2

encountered many technical issues associated with

running OOS in a large-scale, heterogeneous federation

such as BLCSE. The following subsections describe the

symptoms of and solutions to the problems encountered.

Using OOS on the DREN

One of the issues the team encountered while using

OOS over the DREN is receiving HLA object updates

before receiving their object discovery callbacks. This

issue causes OOS to generate Java exceptions. OOS

expects to receive object discoveries before receiving

object updates. Enabling the Lazy Object Discovery

feature within MATREX RTI Initialization Data (RID)

file fixed this problem. The MATREX RTI v5.2,

released in May 2007, has Lazy Object Discovery

enabled in software, eliminating the need for the RID

file parameter.

Another issue the team encountered is that not all OOS

systems at remote sites see the same number of entities

being modeled in the federation. Entity states in the

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2007

2007 Paper No. 7304 Page 7 of 10

MATREX FOM are always sent using User Datagram

Protocol (UDP) over multicast addresses. Therefore, if

a site’s network infrastructure blocks certain multicast

addresses, that site may not be able to see all of the

entities modeled in the federation. To determine if this

is the problem, the transition team will modify the RID

file to send everything as Transmission Control

Protocol (TCP), which does not use multicast addresses,

regardless of what the FOM specifies. If sending entity

states as TCP solves the problem, the team will involve

network design engineers to ensure the network

infrastructure is not blocking critical multicast

addresses. Since UDP packets are sent best effort, drops

in network packages may also be part of the cause.

Lowering the network’s Maximum Transmission Unit

(MTU) size may also help solve the problem.

0

5000

10000

15000

20000

25000

30000

35000

40000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Federate Action

E
n

ti
ty

 &
 O

b
je

c
t

C
o

u
n

t

Entity

Battlespace Objects

RTI Objects

Figure 1. Controlled Federate Actions Result in a Steady Increase of Entity and RTI Objects

Combining Multiple OOS Compositions

When running OOS with combined composition

functionality on the same personal computer (PC), the

team found the federation tends to become unstable and

susceptible to federate runtime failure. Insufficient

hardware resources were the cause of most federate

crashes. Combining the functionality of the

Management and Control Tool (MCT), entity modeling

(Simcore), and interoperability compositions

overwhelms typical hardware capabilities, even when

modeling only the number of entities recommended by

OOS.

To alleviate the problem, the team recommends running

OOS in a clustered environment, distributing computing

resources among multiple computers. A recommended

cluster configuration requires a single PC running as the

HLA interoperability manager, two to three PCs

running as the SimCore, and as many MCTs as needed

for user interaction. The MCT currently requires the

most computing resources and is the limiting factor in

any resource configuration used to operate an OOS

federate. The MCT handles all GUI functionalities and

environment databases. During experiment execution,

the hardware resource that usually causes the slowness

and instability of an OOS federate is the Random

Access Memory (RAM).

Figure 2 shows the number of entities an OOS system

was able to model in relation to the amount of RAM

available to the system. The x axis labels give the site

and amount of RAM available at that site, and the y axis

lists entity count. Notice that Ft. Sill was able to model

almost 200 more entities than any other site, even with

lower hardware capabilities than other sites. During

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2007

2007 Paper No. 7304 Page 8 of 10

TIE2, Ft. Sill had two machines each with four

gigabytes of RAM. The reason Ft. Sill was able to

remain stable while modeling so many entities on the

network is because Ft. Sill was not discovering all of

the external entities in the federation. Ft. Sill discovered

approximately 63 percent of the total entity count of the

federation. This low entity discovery rate provided Ft.

Sill’s systems with the resources to model a higher

entity count, while maintaining a stable interface to the

federation.

Running on Unsupported Operating Systems

OOS officially supports Windows XP and Red Hat

Enterprise 4. However, the team had issues running

OOS in HLA interoperability mode in a Windows XP

environment. The problem is that certain MATREX

RTI installations did not include the JavaBinding.jar file

that OOS requires. Once the team installed a correct

Java binding file, such as the jar file with the MATREX

RTI version 5.0, OOS ran as expected on Windows XP.

0

100

200

300

400

500

600

700

800

900

1000

Ft Rucker,

1 G

Ft Monroe,

4 G

Ft Sill, 8 G Ft Lee, 8 G Ft Benning

C3, 8

Ft Benning

C2, 8 G

Ft Benning

C1, 14 G

Ft Knox C1,

16 G

Ft Knox C2,

16 G

Site, Available RAM

E
n

ti
ti

e
s
 D

is
tr

ib
u

te
d

High Entity Count

Figure 2. Available Computer RAM vs. Maximum OOS-Medium Resolution Entity Count

In addition, TRADOC wants to use an open source

Linux flavor. In this case, the transition team

recommends using CentOS 4.4 since it is 100 percent

binary compatible with the officially-supported Red Hat

Enterprise 4. However, the team also successfully ran

OOS on other Linux operating systems, such as Fedora

Core 5 and 6. Again, the team installed the correct Java

package, since the Java packages included with those

operating systems are not OOS-compatible. Also, the

team discovered that OOS will not compile on Fedora

Core using the officially-supported gcc version 3.3.2.

However, the team compiled successfully using gcc

version 3.2.3.

Using the Mak RTI

Currently, BLCSE uses the MATREX RTI but plans to

use the Mak RTI in the future, mainly for its support for

IEEE 1516 standard. However, OOS provides a

MATREX RTI interface, and the team discovered some

issues when using the Mak RTI. First, the Mak RTI

Java binding package is not compatible with OOS. The

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2007

2007 Paper No. 7304 Page 9 of 10

class names and package path are different from those

of MATREX RTI Java packages. However, the team

made some simple RTI configuration changes, which

allows OOS to be compile and runtime compatible with

the Mak RTI using the same version of the Java binding

jar file that is used by the MATREX RTI.

The second issue arises from using the MATREX RTI

Java binding jar file, as described above. When a

federate sends an updateAttributeValues callback to the

RTI, the “tag” parameter causes null pointer exceptions.

The MATREX RTI resolves the allowed NULL “tag”

parameter in updateAttributeValues calls to an empty

string, whereas the Mak RTI leaves the “tag” attribute

as is. BLCSE Middleware federates always set the “tag”

attribute to NULL. This causes the MATREX Java

bindings to receive an unexpected NULL value,

resulting in a NULL pointer exception in OOS. The

latest MATREX release for RTI v5.2 updates the Java

bindings to check for a NULL “tag” value.

FUTURE OPPORTUNITIES

BLCSE’s OTB-to-OOS transition provides other

opportunities for modernization besides simply

replacing OTB with OOS. The following sections give a

glimpse of BLCSE’s OOS-centric path forward.

Development of OOS-based Tools

As aforementioned, BLCSE is currently using various

OTB-based tools to handle functionalities such as

situational awareness, damage effects, communication

effects, and area of interest. OOS is a highly

composable system, capable of replacing BLCSE’s

existing OTB-based tools. Different tools, or

capabilities, can be added into or removed from an

operating OOS simulation with relative ease, allowing

that OOS simulation to fit the role requested by the

federation. Tool development can follow an approach

similar to the one described for OOS’s HLA interop

module. The tools listen to HLA messages, process

them, and forward the results to the appropriate

federate. The goal for these tools is to remove the

processing burden from simulation federates. The

specialized tool federates handle the responsibility, then

hand off the processed information to the simulation

federates for consumption. These tools can leverage

Data Distribution Management (DDM) to optimize

network traffic and further reduce the processing load

on simulation federates. Although more analysis work is

needed in this area, BLCSE’s ultimate goal is to be

completely OOS-based.

Replacement of Other BLCSE Models

Currently, OOS has many low fidelity and medium

fidelity physical and behavioral models. These

adequately perform modeling needs for a constructive

simulation. In BLCSE, most of the federates perform

high fidelity modeling, such as EADSIM for aircraft

modeling and FireSim for fires modeling. In the past,

OOS has been used in a similar way to implement a

high-fidelity gunnery trainer known as the Common

Gunnery Architecture (CGA). Due to the highly

composable nature of OOS, it is possible to have a mix

of fidelity models running at the same time. As in CGA,

the main entity is composed of all high fidelity models

such as sensor sights, turret system, stabilization system,

laser designators, computer targeting system, and

munition flyout. On the other hand, the target entities in

the simulation are low and medium fidelity models. In

order to replace existing BLCSE models, it is critical to

obtain the existing models’ algorithm, modeling data

and, if possible, source code. It is cheaper and faster to

create models within OOS, taking advantage of model

reuse, rather than going through the physical knowledge

and design phases of model development.

Improvements can be made during this process with

new data and algorithm refinements.

The transition team recognizes that it may not be cost-

effective to create OOS models to replace existing

models that are sufficiently complex or detailed. In this

case, the team anticipates implementing ownership

management handoffs using the HLA. While all entities

would be created by OOS, the system would give

ownership of entities over to the higher fidelity

simulation when required. For example, assume an

OOS-created M1A1 fired at a target. Using the RTI

service to request attribute ownership, OOS would

request FireSim to “own” the M829A1 munition entity,

allowing FireSim to perform the detailed physical

modeling for the munition flyout. OOS might request

this service because it is aware that FireSim can model

this flyout more precisely. OOS might also request this

service to reduce its own modeling load. Technically,

implementing ownership management is a trivial

problem. However, the design of each federate

application, specifically its ability to create new entities

on-the-fly, must be thoroughly assessed before

implementation begins.

SUMMARY

The size, complexity and schedule of the BLCSE

federation present a number of challenges to its OTB-

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2007

2007 Paper No. 7304 Page 10 of 10

to-OOS transition. BLCSE’s transition is stressing the

functionality and performance of OOS’s interoperability

mode to its limits. This unparalleled stress test revealed

many technical issues to be resolved in areas ranging

from OOS and Middleware source code, RTI software,

network design and workstation configuration. The

transition team has found solutions for many of these

interoperability issues. However, some areas such as SA

will require a significant amount of additional work and

coordination with other organizations in the community.

Although BLCSE intends to use OOS as its primary

entity driver beginning in October 2007, removing all

vestiges of the OTB-centric federation will require more

time and effort. The transition team will continue to add

complexity to TIE scenarios to further identify and

resolve OOS interoperability issues. In addition, the

composable nature of OOS provides BLCSE an array of

options to further modernize Army experimentation.

ACKNOWLEDGEMENTS

The authors acknowledge the support of the following

colleagues while writing this paper: Karyn Eusey, Paul

Monday, Lawrence Rieger, Paul Hanover and Alex

Jones.

REFERENCES

Hanover, Paul; Progress Report on the Battle Lab

Collaborative Simulation Environment; Proceedings of

the 2004 Interservice/Industry Training, Simulation and

Education Conference.

Rieger, Lawrence and Lewis, Jennifer; Integrated

Middleware for Flexible DIS and HLA Interoperability;

Proceedings of the 2006 Interservice/Industry Training,

Simulation and Education Conference.

