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ABSTRACT 

Achieving simulation interoperability between autonomous federations is always a challenging problem. Despite the 
fact that different federations might accomplish seemingly similar tasks, they frequently implement solutions using 
drastically different approaches. A recent federation bridge development project implemented a unique approach to 
federation interoperability between differing Run-Time Infrastructure (RTI) solutions, Federation Object Models 
(FOMs), and federation level protocols. The ability to provide interoperability between two High Level Architecture 
(HLA) federations in a single software process using different versions of the RTI allows for an interoperability 
solution that requires no implementation changes to either federation while demonstrating the collective benefits 
combining the two federations.  

Providing interoperability between two HLA federations in a single software process using different versions of the 
RTI poses a unique challenge, as one normally cannot compile and link an application in this way. This challenge 
can be overcome using a specialized proxy that enables different versions of the RTI to simultaneously coexist in a 
single software process. This paper details the technological approach of using such a proxy for a federation bridge, 
including its applicability, architecture, and performance characteristics. The approach is proven via the successful 
implementation of a federation bridge that enables interoperability between two federations using the DMSO 1.3 NG 
v4 and Raytheon VTC NG Pro v2.0.4 RTIs. Examples of using the techniques presented in this paper in other 
situations are also given, as well as alternative approaches. 
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INTRODUCTION 

Interoperability between HLA federations is widely 
sought after. This is because interoperability 
potentially extracts the greatest value-added 
functionality for any given investment that was made 
in building a federation. In particular, training 
federations are developed for a specific purpose and 
set of objectives that may not be perfectly suited for 
future requirements or potential growth. Providing a 
means in which to interoperate an existing federation 
with other operational federations is likely more cost 
effective than rearchitecting the legacy federation. 
For example, the U.S. Navy wanted to enable 
interoperability between two of their F/A-18 Hornet 
flight simulator federations, the legacy F/A-18 E/F 
Tactical Operational Flight Training (TOFT) devices 
and a newer F/A-18 C/D Distributed Mission Trainer 
(DMT) suite of devices. Interoperability between 
these federations has tremendous value to the U.S. 
Navy, as it enables mixed section and mixed division 
exercises and allows training with more virtual 
aircraft in a scenario than otherwise possible. These 
additional training capabilities open the door for more 
realistic training for operations that may take place in 
actual combat. 

Federation interoperability, however, is faced with a 
myriad of technological challenges. One such 
challenge is that the two federations may use different 
RTI implementations and/or RTI versions.  

In some cases, it may be feasible to upgrade the RTI 
for one of these federations to match the second’s 
RTI. This could involve code changes to the federates 
in the modified federation or it may be possible to 
interoperate by exploiting the link-compatibility of 
many RTIs (SISO-STD-004-2004 and SISO-STD-
004.1-2004). 

Unfortunately, upgrading the RTI of one of the 
federations likely requires extensive development 
and/or re-testing costs. In addition, there can be lost 
training time if the federations are for training 
purposes. This reality places the burden of supporting 

multiple RTIs onto the federation interoperability 
developer. This is the theme of this paper. 

Using a federation bridge to enable interoperability 
between two federations that each use different RTIs 
is an idea first attributable to Braudaway and Little 
(1997). However, Bréholée and Siron (2003) are the 
first to attempt such a configuration and mention 
some of the problems encountered. In their case, they 
were able to circumvent the problems by making 
source code changes to one of the RTIs – which was 
under their control. Unfortunately, having control of 
the source of an RTI is a luxury that is not 
commonplace. In contrast, this paper presents and 
solves the issue more generally; the solutions 
presented do not require the source code and build 
environment of the RTI.  

This paper is structured as follows: the next section, 
‘Challenges,’ discusses in greater detail the problems 
encountered when creating a software process that 
links two different RTIs. The two subsequent 
sections, ‘Proxy Library’ and ‘Run-time Library 
Modification,’ discuss two techniques that, when used 
together, solve these problems. The section following, 
‘Operating System Specific Details,’ describes some 
of the subtleties with applying the techniques in 
different operating system contexts. Subsequently, the 
‘Experiences’ section details the authors’ experience 
using these techniques, the ‘Applicability’ section 
clarifies when the solutions are applicable, and the 
’Alternative Approaches’ section includes a 
comparison with other approaches. Finally, the 
‘Conclusions’ section contains closing remarks. 

CHALLENGES 

The fundamental challenge when constructing a 
federation bridge between two federations that use 
different RTIs is enabling the federation bridge to 
simultaneously use multiple RTIs. An initial 
architecture might have a dependency graph for its 
libraries similar to that in Figure 1.  
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Figure 1. Straightforward but problematic library 
dependency graph linking multiple RTIs. 

However, there are three problems with the above 
architecture, the first two of which are identified by 
Bréholée and Siron (2003). First, the code of the 
bridge federate is ambiguous with respect to which 
RTI it uses. RTI implementations typically use the 
same set of header files to declare their interface and 
enable link-compatibility. This also means they 
typically use the same set of programmatic symbols, 
e.g., RTI::RTIambassador. This is especially 
true of different versions of the RTI from the same 
vendor. 

In a bridge federate that uses multiple RTIs, it is 
unclear to the compiler which symbol would be for 
which RTI. For example, in the code 

RTI::RTIambassador rti_vX_Amb; 
RTI::RTIambassador rti_vY_Amb; 
 
the symbol RTI::RTIambassador, used by both 
RTIs, offers no hints as to which RTI it refers. 
Assuming the federate compiles, the result is a 
federate that will only use one RTI for all of its HLA-
related communication. This is problematic as it 
should use both RTIs.  

The second problem with the scenario in Figure 1 is 
that only one RTI’s Local RTI Component (LRC) is 
loaded when the federate is executed. The operating 
system loads only the first RTI library with a given 
name that it finds. Since both RTIs’ libraries have the 
same name (particularly if they are different versions 
from the same vendor) only the first library will be 
loaded. As a result, only the RTI that is loaded first 
will be used. 

The third problem emerges from the fact that multiple 
RTIs share the same environment of the federate. 
Many RTIs load their configuration options from an 
RTI Initialization Data (RID) file. The location of this 
file is specified in the RTI_RID_FILE environment 
variable. The RID file stores many RTI-related 
settings including which network interface the RTI 
should use. If a federate is going to use more than one 
RTI, it is highly likely that it will require different 
RID file settings for each. However, despite having 
more than one RTI linked into a process, there is only 

one RTI_RID_FILE environment variable. This 
causes the same set of RTI configuration options to 
be loaded for both RTIs.  

PROXY LIBRARY 

Resolving the first problem – compile-time symbol 
ambiguity – can be accomplished by introducing a 
software proxy to disambiguate and differentiate 
between different RTI implementations in the bridge 
federate’s source code. This proxy is a thin wrapper 
library around the RTI with an interface that uses 
different symbols. The bridge federate’s code is 
changed to use the proxy in place of one of its RTIs 
and is linked to the proxy library instead of that RTI. 
The code given in the previous section would change 
to: 

RTI::RTIambassador rti_vX_Amb; 
RTIProxy::RTIambassador rti_vY_Amb; 
 
The resultant dependency graph would be as in 
Figure 2. 

 

Figure 2. Dependency graph with a proxy library. 

This approach is an example of the proxy or adapter 
design pattern as given by Gamma, Helm, Johnson, 
and Vlissides (1995). The implementation of each 
method in the proxy essentially does four things: 

1. Converts the input arguments into their RTI 
equivalents. 

2. Calls the equivalent RTI method with the 
converted arguments. 

3. Converts the return value from the RTI 
method call into its proxy equivalent and 
returns it, if applicable. 

4. Catches any RTI exceptions thrown and 
throws a proxy equivalent exception. 

 
The implementation of the proxy’s 
FederateAmbassador is similar to the above 
steps, though in the opposite direction (i.e., 
converting from RTI arguments to their proxy 
equivalents and calling the user-supplied 
FederateAmbassador instead of the 
RTIambassador). 

Federate 

RTIvX RTIvY RTIvY 
Proxy 

Federate 

RTIvX RTIvY 
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RUN-TIME LIBRARY MODIFICATION 

Implementing and using a proxy library as presented 
in the previous section will solve the compile-time 
symbol ambiguity problem. However, alone it is 
insufficient to solve the remaining two problems. At 
runtime, one of the RTIs will not be loaded, causing 
one of the scenarios depicted in Figure 3. 

 

Figure 3. Run-time dependency graphs illustrating 
the insufficiency of a proxy library to resolve the 

RTI loading problem. 

In order for the operating system to load both RTI 
libraries, they also need to be disambiguated. One 
way to accomplish this is to first change the names of 
the libraries of the RTI and all of its dependencies 
and then alter those libraries so that they reference 
their new names. This is best performed in a private 
copy of the bin and/or lib directories of the RTI 
installation that is wrapped by the proxy library. This 
ensures that the technique does not interfere with 
other federates that may use the original installation. 
Note that this change is local to the process that uses 
multiple RTIs. This disambiguation technique is not 
required for any other federate in either federation. 

 Some notes on this process: 

• Like most binary files, these libraries will 
not function properly if bytes are added or 
removed. Therefore, modifications should 
only change existing bytes. This constrains 
the choice of alternate library names. On 
Windows systems, the authors recommend a 
naming scheme substituting the first 
character of each library’s name with an 
underscore character (e.g., “libRTI-NG” 
becomes “_ibRTI-NG”). On Linux and 
UNIX systems, the authors suggest changing 
the first character after the standard library 

prefix “lib” (e.g., “libRTI-NG” becomes 
“lib_TI-NG”). 

• It is important to only modify the portion of 
the library that lists its dependencies; 
however in the authors’ experience, a global 
search-and-replace for the entire file name is 
safe since the library names do not show up 
in the libraries otherwise. 

• The directory with the modified libraries 
needs to be in the appropriate PATH 
environment variable(s) of the environment 
the federate is executed from. 

 
The third problem, loading multiple RID files, is 
solved by performing one additional modification on 
the RTI libraries: replacing RTI_RID_FILE with an 
alternate name of the same length. The authors 
recommend using the same re-naming scheme that 
was used for the libraries, replacing the first character 
with an underscore. Thus, RTI_RID_FILE becomes 
_TI_RID_FILE. This enables the modified RTI to 
use a different environment variable to locate its 
particular RID file. 

OPERATING SYSTEM SPECIFIC DETAILS 

Until this point in the paper, the ideas and techniques 
have not been operating system-specific. However, 
the realization of a process simultaneously using 
multiple RTIs requires some steps that differ 
depending on the target operating system. The 
disparity is due to the difference between the file 
formats the operating systems use for shared libraries. 
Windows dynamically-linked libraries (DLLs) are 
structured differently than dynamic shared objects 
(DSOs) on systems using the Executable and Linker 
Format (ELF), such as Linux.  

Windows 

The final – and critical – step to enabling a process to 
use two RTIs on a Windows system is to use the run-
time library modification technique one additional 
time—to alter the proxy’s run-time library so that it 
references the modified RTI libraries. This gives the 
desired configuration as shown in Figure 4.  

Federate 

RTIvX RTIvY RTIvY 
Proxy 

Federate 

RTIvX RTIvY RTIvY 
Proxy 
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Figure 4. Run-time library dependency graph on a 
Windows system. Boldfaced items have been 

modified to alter their dependencies per the above 
technique. 

The effectiveness of this approach on Windows is due 
to the file format of DLLs. A DLL contains a section 
that lists its own dependent DLLs. This section also 
lists what functions each DLL invokes. Performing 
the replacement in this section of the DLL enables it 
to use alternate DLLs when making external function 
calls.  

Linux (and Other Systems that Use ELF) 

On Linux and other systems using ELF, the problem 
is more complicated. In contrast to the way Windows 
DLLs are loaded, distinguishing which library the 
symbol comes from is less relevant when symbols are 
loaded from ELF-based libraries. Without 
intervention, the first library from which a symbol is 
loaded will be the only library from which it is 
loaded. This is true even if the libraries have been 
renamed using the run-time library modification 
technique. 

To avoid this problem, the RTI has to be loaded into 
a “private” symbol space. This is accomplished by 
use of the dlopen system call, which loads libraries 
on demand at runtime. Bitwise or-ing the values 
RTLD_LOCAL and RTLD_DEEPBIND to the mode 
argument to dlopen enables the loading of the 
library into a private space. Symbols from a library 
loaded using this mechanism can be referenced via 
the dlsym system call.  

The advantage of using these two system calls is 
twofold. First, libraries loaded and referenced using 
these functions do not create a dependency for the 
caller. Such a dependency would create another 
instance of the problem being solved with this 
approach. The second advantage is that the library 
loaded using these calls can have its references 
resolved in a private space. This prevents any 
collisions with other libraries. 

The disadvantage is that this approach requires 
additional complexity for its implementation to be 

realized. The proxy library must be split into two 
separate libraries. The first library converts the 
symbols of the RTI so they become accessible via 
dlsym. The second library provides the RTI-like 
interface to the bridge federate and loads the first via 
dlopen. The authors refer to the first library as the 
“proxy delegate library” and the second as simply the 
“proxy library.” The resulting architecture is depicted 
in Figure 5. 

 

Figure 5. Run-time library dependency graph on a 
system using ELF. Boldfaced items have been 

modified to alter their dependencies. The dotted 
line illustrates a library loaded via the dlopen 

system call. 

EXPERIENCES 

This section chronicles the authors’ experiences using 
the proxy library and run-time library modification 
techniques to date. 

F/A-18 Federation Bridge 

The development of the two presented techniques 
first occurred during the preliminary phases of the 
federation bridge project for the U.S. Navy. As 
mentioned in the introduction, the U.S. Navy desired 
the additional training capability that could be 
realized via a federation bridge between two different 
F/A-18 flight simulator suites at NAS Lemoore, CA. 
The first simulator suite used the DMSO RTI 1.3 
NGv4 to provide networking capability amongst the 
four F/A-18 E/F flight simulator trainers in the suite. 
The second suite consisted of four NASMP 1.2.4 
compliant F/A-18 C/D DMT trainers. These used the 
Raytheon VTC NG-Pro v2.0.4 to facilitate network 
communication. There were several challenges 
encountered during the design of this federation 
bridge. One challenge addressed the need to 
simultaneously support both the DMSO RTI 1.3 

Federate 

RTIvX 

RTIvY 

RTIvY 
Proxy 

RTIvY 
Proxy 

Delegate 

Federate 

RTIvX RTIvY RTIvY 
Proxy 
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NGv4 and the Raytheon VTC NG-Pro v2.0.4. The 
latter RTI is a derivative of the former, albeit several 
versions later. Both RTIs also have a dependency on 
the ADAPTIVE Communication Environment (ACE) 
(Schmidt, 2007) though each depends on a different 
version. 

The proxy library and run-time library modification 
techniques were applied to resolve this simultaneous 
RTI support need. To mitigate implementation risks, 
they were first proven using a prototype to ensure 
they solved the problem of a single process using 
multiple RTIs. A proxy library was then created to 
wrap the DMSO RTI 1.3 NG v4. One of the ways the 
proxy library was tested was by using the RTI’s User 
Test Suite (UTS), a battery of 275 tests used to verify 
the RTI is working properly. The UTS was modified 
to use the proxy library instead of the RTI directly. 
Tests were then executed to ensure that the behavior 
of the proxy library was equivalent to the behavior of 
the RTI itself. 

The processing overhead of the proxy library needed 
to be ascertained. A simple program was created to 
compare using the RTI directly versus using the RTI 
via a proxy library. This program was designed to 
provide a reasonable but worst-case situation for the 
overhead incurred while using the proxy library to 
perform an update. An “update” is defined as the 
complete process of instantiating an attribute handle 
value pair set, populating it with attributes, sending it, 
and destroying the attribute handle value pair set. The 
program performed the following algorithm for both 
the RTI and the proxy library: 

• Capture the system time, t1 
• Do the following 1,000,000 times: 

o Create an attribute handle value pair set 
o Put 10 attributes in the attribute handle 

value pair set, each with a payload of 64 
bytes 

o Call updateAttributeValues 
using the attribute handle value pair set 

o Delete the attribute handle value pair set 
• Capture the system time, t2 

 
Notice that each loop of the algorithm makes 13 RTI 
API calls (or their proxy library equivalents). The 
authors found that the delta between t1 and t2 was 50 
seconds for the RTI and 60 seconds for the proxy 
library. This results in the RTI being able to process 
an update in 50 microseconds, and the proxy library 
being able to process an update in 60 microseconds. 
The overhead incurred for using a proxy library is 10 
microseconds per update, which is less than 1 

microsecond of additional processing time per proxy 
library RTI API call. This experiment was performed 
on an IBM Thinkpad laptop with a 2 GHz Intel 
Centrino processor and 1 GB of RAM. The operating 
system was Windows XP, and the proxy library 
architecture was as depicted in Figure 4. 

The proxy library’s performance could be improved 
if it utilized a caching strategy for the attribute handle 
value pair set. This would eliminate the additional 
memory allocation/de-allocation per iteration of the 
loop.  

In short, applying these techniques to the F/A-18 
federation bridge was enormously successful. There 
were no issues attributable to the use of the proxy 
library or the run-time library modification of the 
RTI. Furthermore, there were no detrimental side-
effects with using these approaches. It was originally 
believed that there might be the risk that the run-time 
library modification for one RTI LRC would cause it 
to become not operational. However, the federation 
bridge was able to participate in both federations 
seamlessly. Pilots in trainers on one federation were 
able to perform a large set of common procedures 
with pilots on trainers in the other federation and vice 
versa. This resulted in greatly increased capability for 
training at a very low cost for the U.S. Navy. As a 
final note, the U.S. Navy specifically required that the 
federation bridge be completely removed with zero 
footprint on either federation within 10 minutes. 
Because these solutions were external to the 
federations, removing the federation bridge was a 
matter of shutting down the federation bridge’s 
software. This took less than one minute. 

NASMP Interoperability Interfaces 

These techniques have been used on several other 
projects. Many of these projects are related to 
building and customizing federates to participate in 
Navy Aviation Simulator Master Plan (NASMP) 
federations. “NASMP-compliant” federates adhere to 
a specific FOM and federation agreements document 
(FAD). Many current and future training systems 
achieve NASMP-compliance via a NASMP 
Interoperability Interface (NII), a NASMP-compliant 
federate that communicates NASMP federation data 
to and from the training device.  

One challenge in creating an NII for a trainer is that 
the latest version (1.4.x) of the NASMP FAD requires 
use of data-distribution management (DDM) in a 
specific way. To facilitate this, the engineers involved 
used the proxy library technique. Since all RTI API 
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calls are made through a proxy library, it becomes a 
convenient location in the system to implement the 
required DDM functionality. This effectively 
leverages the adapter design pattern (Gamma, Helm, 
Johnson, & Vlissides, 1995). The proxy 
implementation for this purpose is straightforward: 
for each non-DDM RTI API call, determine the 
appropriate region to use and invoke the DDM analog 
of that API call using the determined region. 

One benefit of this approach is that the proxy library 
is also reusable among NIIs or other NASMP-
compliant federates. Furthermore, extensive design 
and development work is not necessary for each 
federate that uses this approach to participate in a 
NASMP 1.4.x federation using this proxy library. As 
a corollary, if a federate is ever upgraded to a later 
version, the changes to re-add the proxy library are 
smaller than the re-engineering that would be 
required to re-fit the federate with the new DDM 
solution. Conversely, if the federate requires 
compliance to a newer version of the NASMP FAD, 
all of the changes to support the DDM portion of this 
change are confined to the proxy library. Parnas 
(1972) points out other advantages of decoupling in 
this manner. 

This technique has been used in other contexts as 
well. For instance, many trainers are unable to 
internally support the number of entities that may 
exist on a NASMP federation. In these cases, NIIs 
make use of a proxy library to filter entities based on 
proximity to the simulated trainer entity, among other 
factors. Implementing filtering functionality closely to 
the RTI also makes sense for performance reasons. 

In the above scenarios, the run-time library 
modification technique is not used because it is only 
necessary when using multiple RTIs. However, 
trainers often use different mechanisms to 
communicate between their different subsystems. One 
such case used HLA-based communication via the 
STOW RTI. In addition to using the proxy library 
technique to implement DDM and filtering 
capabilities, this particular NII had to simultaneously 
use two different RTIs from two different vendors 
(the STOW RTI to communicate to the trainer and 
the Raytheon VTC NG Pro RTI to participate in the 
NASMP federation). The run-time library 
modification technique was used to support this. 

The two techniques in this paper have been used 
together on other smaller projects and in other 
situations. These situations are discussed more 
generally in the next section.  

APPLICABILITY 

Table 1 captures and summarizes the different 
situations in which a proxy library and run-time 
library modification may be required. Each column 
merits an explanation: the ‘Case’ column serves to 
label the rows of the table so that they may be 
referenced.  

The second column, ‘Multiple RTIambassador 
Instances,’ and the third column, ‘Different RTI 
Versions,’ determine how many RTIambassadors 
are required in a federate implementation and to 
which RTI each belongs. It is possible to have 
multiple RTIambassador instances from one RTI. 
It is also possible to have multiple 
RTIambassador instances, each from a different 
RTI. The second column denotes whether there is 
simply more than one RTIambassador in the 
federate, while the third column determines if all of 
the RTIambassadors are from the same RTI or are 
from different RTIs. 

The ‘RID File Conflict’ column denotes whether each 
RTI implementation requires its own 
RTI_RID_FILE environment variable setting. 
Cases where the multiple RID files are not necessary 
when multiple RTIambassador instances are 
present from different RTIs can occur when one or 
more of the RTIs do not make use of the 
RTI_RID_FILE environmental variable. 

The ‘Symbolic Ambiguity’ column addresses whether 
the different RTI versions use the same symbols in 
their RTI APIs. A “yes” in this column indicates that 
the federate code will be unable to determine which 
RTI it is using when it makes calls to the RTI. A “no” 
indicates that this is not a problem. 

The ‘Library Name Collision’ column denotes 
whether the different RTI versions use different 
library names that are loaded at runtime. A “yes” in 
this column indicates that the two different versions 
of the RTI use the same name for their library or for a 
dependency library. A “no” specifies that different 
library names are used. 

The ‘Is Proxy Library Required?’ and ‘Is Run-time 
Library Modification Required?’ columns answer 
whether one or both techniques presented in this 
paper are required to support the federate based on 
the entries in the previous columns. 

Next, each case is considered. Most federates fit the 
profiles of case 1 in that they only require one 
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RTIambassador instance, through which they 
communicate with other federates. As this case 
involves only one RTIambassador instance, the 
problems associated with having multiple RTIs in a 
single software process are not applicable. 

Federates in case 2 are uncommon but nonetheless 
possible. The ModelEngine (Geyer, Glintz, Thomas, 
& Luebke, 2004) is an example of one such federate. 
This federate enables multiple models (such as 
mission computers, radars, etc.) to be loaded 
simultaneously. Each model has an associated 
RTIambassador, all of which are used in the same 
federation. Neither a proxy library nor run-time 
library modification is required for this case, though a 
proxy library could be used to add additional 
functionality as described in the previous section. 

Case 3 encompasses the situation in which a 
federation bridge spans two federations. These 
federations use the same version of the RTI but are 
using two different RTI executives (perhaps on two 
different networks) or are running in connectionless 
mode with different settings for each federation. 
Support for this situation requires different RID files 
for each RTIambassador instance.  

Unfortunately, this seemingly small problem requires 
both a proxy library and a run-time library 
modification. It is worth mentioning that copying RID 

files around in a controlled way while the federate is 
initializing or making calls to setenv may be a 
viable alternative. However, this may not work for all 
RTIs due to the caching of environment variables by 
their underlying libraries or the way the operating 
system performs library loading. 

Case 4 includes instances when two RTIs are 
different enough to avoid the problems in this paper. 
Neither a proxy library nor run-time library 
modification is required if the two RTIs have no RID 
file conflict, no symbolic ambiguity, and no library 
name collision. The authors are not aware of a pair of 
COTS RTIs existing today that fall into these 
categories, though cases when one of the RTIs is a 
“home-grown” RTI implementation very well might.  

Case 5 covers situations when two RTIs share the 
same library names but do not suffer from using the 
same API. The RTIs also have different mechanisms 
for loading RID files or otherwise configuring the 
RTI. In this case, run-time library modification is 
necessary to change the names of one of the RTI’s 
library files (and possibly its dependencies as well). 
However, on systems that use ELF, a proxy library 
delegate is not necessary since the RTIs have no 
symbols in common. 

Situations involving two RTIs with different 
mechanisms for RID configuration, different library 
names, but that use the same symbols for their APIs 

Table 1. Summary of Applicability 
 

Case Multiple 
RTIambassador 

Instances 

Different 
RTI 

Versions 

RID File 
Conflict 

Symbolic 
Ambiguity 

Library 
Name 

Collision 

Is Proxy 
Library 

Required? 

Is Run-time 
Library 

Modification 
Required? 

1 No N/A N/A N/A N/A No No 
2 Yes No No No No No No 
3 Yes No Yes Yes Yes Yes Yes 
4 Yes Yes No No No No No 
5 Yes Yes No No Yes No Yes1 
6 Yes Yes No Yes No Yes Depends2 
7 Yes Yes No Yes Yes Yes Yes 
8 Yes Yes Yes No No No Yes3 
9 Yes Yes Yes No Yes Yes Yes1 
10 Yes Yes Yes Yes No Yes Yes4 
11 Yes Yes Yes Yes Yes Yes Yes 

1. On systems that use ELF, a proxy delegate library is not necessary due to the lack of symbol ambiguity. 
2. No for Windows systems, but required for Linux and other systems that use ELF 
3. Only to modify the RID file environment variable 
4. On Windows systems, only to modify the RID file environment variable. On systems that use ELF, the entire library disambiguation process is 
required. 
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fall into case 6. If the operating system is Windows, 
the problem can be resolved by using a proxy library 
to merely wrap the API. This is the only case where a 
proxy library is necessary but run-time library 
modification is not. On operating systems using ELF, 
the problem requires both techniques due to the way 
symbols are loaded from the libraries at run-time. 

Case 7 is basically the same as case 6 except that the 
additional issue of a library name collision is present. 
In addition to a proxy library, this issue requires run-
time library modification to overcome. 

If a bridge federate uses two RTIs that differ in both 
API and choice of library names, but still conflict in 
their use of the RTI_RID_FILE environment 
variable in order to load a RID file (case 8), then one 
of the RTIs’ run-time libraries can be modified to 
change that symbol.  

Case 9, like case 5, covers instances where the RTIs 
share library names but do not have a symbolic 
ambiguity problem. Unlike case 5, the RTIs in case 9 
both use the same RTI_RID_FILE environment 
variable. The approach is the same as in those 
previous cases, except that as a final step in 
modifying the run-time library of one of the RTIs, the 
name of the environment variable used to locate the 
RID file is also changed. The bridge federate in the 
previous section that uses the STOW RTI and the 
Raytheon VTC RTI-NG Pro is a good example of this 
case, as the STOW RTI uses slightly modified header 
files that replace the RTI enclosing class with the 
rti13 namespace. 

The next case (10) encompasses situations where the 
bridge federate uses different RTI versions that use 
the same API and RID file loading mechanism, but 
use different library names and thus have no collision 
in that regard. On a Windows system, the issue can be 
resolved by wrapping the RTI’s API and making the 
change to the library’s RTI_RID_FILE 
environment variable via a binary modification. On 
systems using ELF, the entire library disambiguation 
binary modification process is required. 

Case 11, best illustrated by the F/A-18 Federation 
Bridge, makes use of both a proxy library and run-
time library modification in order to span two 
federations on two networks using two different RTIs. 

ALTERNATIVE APPROACHES 

A seemingly viable alternative to the solutions 
presented in this paper is to avoid the issue altogether 

and change one or both federations so that they use 
the same RTI. As mentioned previously, this 
approach is unlikely to be feasible due to cost in time 
and money. This is especially true in the military 
training systems community, where such a change 
would require full regression testing and revalidation 
of the training device(s). Furthermore, this approach 
is merely a point solution; it is possible that other 
federations may need to bridge later as well. This 
would require that the whole testing and revalidation 
process be repeated. Granowetter (2003) points out 
other challenges, both technical and otherwise, with 
this approach. 

In some cases, it may be acceptable to modify the 
source code and build processes of the RTI itself to 
overcome this obstacle. This is the approach Bréholée 
and Siron (2003) used. They controlled the source 
code of one of the RTIs in use. For example, the 
STOW RTI is an open-source HLA implementation. 
It would be straightforward to change its relevant 
symbols and library names and build a private copy 
for use with a federation bridge. One caveat of this 
approach in general is that the library dependencies of 
the RTIs may also need to be addressed. The DMSO 
RTI and Raytheon VTC NG Pro RTIs, for instance, 
are built on top of ACE (Schmidt, 2007). In many 
cases they may use different and incompatible 
versions of it. This approach would prevent RTI link-
compatibility; however the techniques put forth in this 
paper also have that same drawback. 

Another alternative is to split the federation bridge 
into multiple processes that communicate via some 
IPC mechanism. While this approach would work, 
there are some significant disadvantages. First, 
designing, implementing, and testing the mechanism 
by which the processes communicate would be 
significantly more expensive compared to the effort 
required by the techniques presented in this paper. A 
second disadvantage is the performance penalty 
associated with sending and receiving data between 
the processes. This penalty varies depending on the 
mechanism on which the IPC is based and the way it 
is used. In any case, the overhead falls into two 
categories: the additional processing required to 
package and transmit data (including the overhead of 
copying data if applicable) and the delay inherent to 
the transmission itself. In contrast, the performance 
penalty of using a proxy library is typically an 
additional method call per RTI API call on Windows 
and typically two additional method calls per RTI 
API call on Linux and other operating systems using 
ELF. 
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CONCLUSION 

The two techniques discussed in this paper, wrapping 
the RTI using a proxy library and run-time library 
modification, provide a simple, straightforward 
solution in linking multiple disparate RTIs into a 
single software process. The use of these two 
techniques is a low-cost alternative that due to its 
simplicity of concept and code lends itself well to 
lifecycle support. The techniques can be broadly 
applied, though there are subtleties and caveats with 
each one on Windows and Linux/UNIX-based 
operating systems. These solutions are not tied to a 
single set of HLA products; rather, the same 
techniques can be used for any RTIs. This approach 
has the potential of being applied in many more 
federation bridging engagements with very low risk 
incurred. 
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