

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2007

2007 Paper No. 7216 Page 1 of 10

Supporting Multiple RTIs within a Single Process

William Luebke, John Baker, Adrian Porter
Raytheon Virtual Technology Corporation

Alexandria, VA
wluebke@raytheonvtc.com, jbaker@raytheonvtc.com, aporter@raytheonvtc.com

ABSTRACT

Achieving simulation interoperability between autonomous federations is always a challenging problem. Despite the
fact that different federations might accomplish seemingly similar tasks, they frequently implement solutions using
drastically different approaches. A recent federation bridge development project implemented a unique approach to
federation interoperability between differing Run-Time Infrastructure (RTI) solutions, Federation Object Models
(FOMs), and federation level protocols. The ability to provide interoperability between two High Level Architecture
(HLA) federations in a single software process using different versions of the RTI allows for an interoperability
solution that requires no implementation changes to either federation while demonstrating the collective benefits
combining the two federations.

Providing interoperability between two HLA federations in a single software process using different versions of the
RTI poses a unique challenge, as one normally cannot compile and link an application in this way. This challenge
can be overcome using a specialized proxy that enables different versions of the RTI to simultaneously coexist in a
single software process. This paper details the technological approach of using such a proxy for a federation bridge,
including its applicability, architecture, and performance characteristics. The approach is proven via the successful
implementation of a federation bridge that enables interoperability between two federations using the DMSO 1.3 NG
v4 and Raytheon VTC NG Pro v2.0.4 RTIs. Examples of using the techniques presented in this paper in other
situations are also given, as well as alternative approaches.

ABOUT THE AUTHORS

William Luebke is a Senior Software Engineer with Raytheon Virtual Technology Corporation. He holds an M.S. in
Computer Science from the University of North Carolina at Chapel Hill and a B.S. in Computer Science and
Mathematics from the Virginia Polytechnic Institute and State University.

John Baker is a Senior Systems Engineer with Raytheon Virtual Technology Corporation. He holds an M.S. in
Industrial Engineering from the Pennsylvania State University and a B.S. in Industrial Engineering from the
University of Central Florida.

Adrian Porter is a Senior Software Engineer with Raytheon Virtual Technology Corporation. He holds a B.S. in
Computer Science from the Virginia Polytechnic Institute and State University.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2007

2007 Paper No. 7216 Page 2 of 10

Supporting Multiple RTIs within a Single Process

William Luebke, John Baker, Adrian Porter
Raytheon Virtual Technology Corporation

Alexandria, VA
wluebke@raytheonvtc.com, jbaker@raytheonvtc.com, aporter@raytheonvtc.com

INTRODUCTION

Interoperability between HLA federations is widely
sought after. This is because interoperability
potentially extracts the greatest value-added
functionality for any given investment that was made
in building a federation. In particular, training
federations are developed for a specific purpose and
set of objectives that may not be perfectly suited for
future requirements or potential growth. Providing a
means in which to interoperate an existing federation
with other operational federations is likely more cost
effective than rearchitecting the legacy federation.
For example, the U.S. Navy wanted to enable
interoperability between two of their F/A-18 Hornet
flight simulator federations, the legacy F/A-18 E/F
Tactical Operational Flight Training (TOFT) devices
and a newer F/A-18 C/D Distributed Mission Trainer
(DMT) suite of devices. Interoperability between
these federations has tremendous value to the U.S.
Navy, as it enables mixed section and mixed division
exercises and allows training with more virtual
aircraft in a scenario than otherwise possible. These
additional training capabilities open the door for more
realistic training for operations that may take place in
actual combat.

Federation interoperability, however, is faced with a
myriad of technological challenges. One such
challenge is that the two federations may use different
RTI implementations and/or RTI versions.

In some cases, it may be feasible to upgrade the RTI
for one of these federations to match the second’s
RTI. This could involve code changes to the federates
in the modified federation or it may be possible to
interoperate by exploiting the link-compatibility of
many RTIs (SISO-STD-004-2004 and SISO-STD-
004.1-2004).

Unfortunately, upgrading the RTI of one of the
federations likely requires extensive development
and/or re-testing costs. In addition, there can be lost
training time if the federations are for training
purposes. This reality places the burden of supporting

multiple RTIs onto the federation interoperability
developer. This is the theme of this paper.

Using a federation bridge to enable interoperability
between two federations that each use different RTIs
is an idea first attributable to Braudaway and Little
(1997). However, Bréholée and Siron (2003) are the
first to attempt such a configuration and mention
some of the problems encountered. In their case, they
were able to circumvent the problems by making
source code changes to one of the RTIs – which was
under their control. Unfortunately, having control of
the source of an RTI is a luxury that is not
commonplace. In contrast, this paper presents and
solves the issue more generally; the solutions
presented do not require the source code and build
environment of the RTI.

This paper is structured as follows: the next section,
‘Challenges,’ discusses in greater detail the problems
encountered when creating a software process that
links two different RTIs. The two subsequent
sections, ‘Proxy Library’ and ‘Run-time Library
Modification,’ discuss two techniques that, when used
together, solve these problems. The section following,
‘Operating System Specific Details,’ describes some
of the subtleties with applying the techniques in
different operating system contexts. Subsequently, the
‘Experiences’ section details the authors’ experience
using these techniques, the ‘Applicability’ section
clarifies when the solutions are applicable, and the
’Alternative Approaches’ section includes a
comparison with other approaches. Finally, the
‘Conclusions’ section contains closing remarks.

CHALLENGES

The fundamental challenge when constructing a
federation bridge between two federations that use
different RTIs is enabling the federation bridge to
simultaneously use multiple RTIs. An initial
architecture might have a dependency graph for its
libraries similar to that in Figure 1.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2007

2007 Paper No. 7216 Page 3 of 10

Figure 1. Straightforward but problematic library
dependency graph linking multiple RTIs.

However, there are three problems with the above
architecture, the first two of which are identified by
Bréholée and Siron (2003). First, the code of the
bridge federate is ambiguous with respect to which
RTI it uses. RTI implementations typically use the
same set of header files to declare their interface and
enable link-compatibility. This also means they
typically use the same set of programmatic symbols,
e.g., RTI::RTIambassador. This is especially
true of different versions of the RTI from the same
vendor.

In a bridge federate that uses multiple RTIs, it is
unclear to the compiler which symbol would be for
which RTI. For example, in the code

RTI::RTIambassador rti_vX_Amb;
RTI::RTIambassador rti_vY_Amb;

the symbol RTI::RTIambassador, used by both
RTIs, offers no hints as to which RTI it refers.
Assuming the federate compiles, the result is a
federate that will only use one RTI for all of its HLA-
related communication. This is problematic as it
should use both RTIs.

The second problem with the scenario in Figure 1 is
that only one RTI’s Local RTI Component (LRC) is
loaded when the federate is executed. The operating
system loads only the first RTI library with a given
name that it finds. Since both RTIs’ libraries have the
same name (particularly if they are different versions
from the same vendor) only the first library will be
loaded. As a result, only the RTI that is loaded first
will be used.

The third problem emerges from the fact that multiple
RTIs share the same environment of the federate.
Many RTIs load their configuration options from an
RTI Initialization Data (RID) file. The location of this
file is specified in the RTI_RID_FILE environment
variable. The RID file stores many RTI-related
settings including which network interface the RTI
should use. If a federate is going to use more than one
RTI, it is highly likely that it will require different
RID file settings for each. However, despite having
more than one RTI linked into a process, there is only

one RTI_RID_FILE environment variable. This
causes the same set of RTI configuration options to
be loaded for both RTIs.

PROXY LIBRARY

Resolving the first problem – compile-time symbol
ambiguity – can be accomplished by introducing a
software proxy to disambiguate and differentiate
between different RTI implementations in the bridge
federate’s source code. This proxy is a thin wrapper
library around the RTI with an interface that uses
different symbols. The bridge federate’s code is
changed to use the proxy in place of one of its RTIs
and is linked to the proxy library instead of that RTI.
The code given in the previous section would change
to:

RTI::RTIambassador rti_vX_Amb;
RTIProxy::RTIambassador rti_vY_Amb;

The resultant dependency graph would be as in
Figure 2.

Figure 2. Dependency graph with a proxy library.

This approach is an example of the proxy or adapter
design pattern as given by Gamma, Helm, Johnson,
and Vlissides (1995). The implementation of each
method in the proxy essentially does four things:

1. Converts the input arguments into their RTI
equivalents.

2. Calls the equivalent RTI method with the
converted arguments.

3. Converts the return value from the RTI
method call into its proxy equivalent and
returns it, if applicable.

4. Catches any RTI exceptions thrown and
throws a proxy equivalent exception.

The implementation of the proxy’s
FederateAmbassador is similar to the above
steps, though in the opposite direction (i.e.,
converting from RTI arguments to their proxy
equivalents and calling the user-supplied
FederateAmbassador instead of the
RTIambassador).

Federate

RTIvX RTIvY RTIvY
Proxy

Federate

RTIvX RTIvY

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2007

2007 Paper No. 7216 Page 4 of 10

RUN-TIME LIBRARY MODIFICATION

Implementing and using a proxy library as presented
in the previous section will solve the compile-time
symbol ambiguity problem. However, alone it is
insufficient to solve the remaining two problems. At
runtime, one of the RTIs will not be loaded, causing
one of the scenarios depicted in Figure 3.

Figure 3. Run-time dependency graphs illustrating
the insufficiency of a proxy library to resolve the

RTI loading problem.

In order for the operating system to load both RTI
libraries, they also need to be disambiguated. One
way to accomplish this is to first change the names of
the libraries of the RTI and all of its dependencies
and then alter those libraries so that they reference
their new names. This is best performed in a private
copy of the bin and/or lib directories of the RTI
installation that is wrapped by the proxy library. This
ensures that the technique does not interfere with
other federates that may use the original installation.
Note that this change is local to the process that uses
multiple RTIs. This disambiguation technique is not
required for any other federate in either federation.

 Some notes on this process:

• Like most binary files, these libraries will
not function properly if bytes are added or
removed. Therefore, modifications should
only change existing bytes. This constrains
the choice of alternate library names. On
Windows systems, the authors recommend a
naming scheme substituting the first
character of each library’s name with an
underscore character (e.g., “libRTI-NG”
becomes “_ibRTI-NG”). On Linux and
UNIX systems, the authors suggest changing
the first character after the standard library

prefix “lib” (e.g., “libRTI-NG” becomes
“lib_TI-NG”).

• It is important to only modify the portion of
the library that lists its dependencies;
however in the authors’ experience, a global
search-and-replace for the entire file name is
safe since the library names do not show up
in the libraries otherwise.

• The directory with the modified libraries
needs to be in the appropriate PATH
environment variable(s) of the environment
the federate is executed from.

The third problem, loading multiple RID files, is
solved by performing one additional modification on
the RTI libraries: replacing RTI_RID_FILE with an
alternate name of the same length. The authors
recommend using the same re-naming scheme that
was used for the libraries, replacing the first character
with an underscore. Thus, RTI_RID_FILE becomes
_TI_RID_FILE. This enables the modified RTI to
use a different environment variable to locate its
particular RID file.

OPERATING SYSTEM SPECIFIC DETAILS

Until this point in the paper, the ideas and techniques
have not been operating system-specific. However,
the realization of a process simultaneously using
multiple RTIs requires some steps that differ
depending on the target operating system. The
disparity is due to the difference between the file
formats the operating systems use for shared libraries.
Windows dynamically-linked libraries (DLLs) are
structured differently than dynamic shared objects
(DSOs) on systems using the Executable and Linker
Format (ELF), such as Linux.

Windows

The final – and critical – step to enabling a process to
use two RTIs on a Windows system is to use the run-
time library modification technique one additional
time—to alter the proxy’s run-time library so that it
references the modified RTI libraries. This gives the
desired configuration as shown in Figure 4.

Federate

RTIvX RTIvY RTIvY
Proxy

Federate

RTIvX RTIvY RTIvY
Proxy

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2007

2007 Paper No. 7216 Page 5 of 10

Figure 4. Run-time library dependency graph on a
Windows system. Boldfaced items have been

modified to alter their dependencies per the above
technique.

The effectiveness of this approach on Windows is due
to the file format of DLLs. A DLL contains a section
that lists its own dependent DLLs. This section also
lists what functions each DLL invokes. Performing
the replacement in this section of the DLL enables it
to use alternate DLLs when making external function
calls.

Linux (and Other Systems that Use ELF)

On Linux and other systems using ELF, the problem
is more complicated. In contrast to the way Windows
DLLs are loaded, distinguishing which library the
symbol comes from is less relevant when symbols are
loaded from ELF-based libraries. Without
intervention, the first library from which a symbol is
loaded will be the only library from which it is
loaded. This is true even if the libraries have been
renamed using the run-time library modification
technique.

To avoid this problem, the RTI has to be loaded into
a “private” symbol space. This is accomplished by
use of the dlopen system call, which loads libraries
on demand at runtime. Bitwise or-ing the values
RTLD_LOCAL and RTLD_DEEPBIND to the mode
argument to dlopen enables the loading of the
library into a private space. Symbols from a library
loaded using this mechanism can be referenced via
the dlsym system call.

The advantage of using these two system calls is
twofold. First, libraries loaded and referenced using
these functions do not create a dependency for the
caller. Such a dependency would create another
instance of the problem being solved with this
approach. The second advantage is that the library
loaded using these calls can have its references
resolved in a private space. This prevents any
collisions with other libraries.

The disadvantage is that this approach requires
additional complexity for its implementation to be

realized. The proxy library must be split into two
separate libraries. The first library converts the
symbols of the RTI so they become accessible via
dlsym. The second library provides the RTI-like
interface to the bridge federate and loads the first via
dlopen. The authors refer to the first library as the
“proxy delegate library” and the second as simply the
“proxy library.” The resulting architecture is depicted
in Figure 5.

Figure 5. Run-time library dependency graph on a
system using ELF. Boldfaced items have been

modified to alter their dependencies. The dotted
line illustrates a library loaded via the dlopen

system call.

EXPERIENCES

This section chronicles the authors’ experiences using
the proxy library and run-time library modification
techniques to date.

F/A-18 Federation Bridge

The development of the two presented techniques
first occurred during the preliminary phases of the
federation bridge project for the U.S. Navy. As
mentioned in the introduction, the U.S. Navy desired
the additional training capability that could be
realized via a federation bridge between two different
F/A-18 flight simulator suites at NAS Lemoore, CA.
The first simulator suite used the DMSO RTI 1.3
NGv4 to provide networking capability amongst the
four F/A-18 E/F flight simulator trainers in the suite.
The second suite consisted of four NASMP 1.2.4
compliant F/A-18 C/D DMT trainers. These used the
Raytheon VTC NG-Pro v2.0.4 to facilitate network
communication. There were several challenges
encountered during the design of this federation
bridge. One challenge addressed the need to
simultaneously support both the DMSO RTI 1.3

Federate

RTIvX

RTIvY

RTIvY
Proxy

RTIvY
Proxy

Delegate

Federate

RTIvX RTIvY RTIvY
Proxy

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2007

2007 Paper No. 7216 Page 6 of 10

NGv4 and the Raytheon VTC NG-Pro v2.0.4. The
latter RTI is a derivative of the former, albeit several
versions later. Both RTIs also have a dependency on
the ADAPTIVE Communication Environment (ACE)
(Schmidt, 2007) though each depends on a different
version.

The proxy library and run-time library modification
techniques were applied to resolve this simultaneous
RTI support need. To mitigate implementation risks,
they were first proven using a prototype to ensure
they solved the problem of a single process using
multiple RTIs. A proxy library was then created to
wrap the DMSO RTI 1.3 NG v4. One of the ways the
proxy library was tested was by using the RTI’s User
Test Suite (UTS), a battery of 275 tests used to verify
the RTI is working properly. The UTS was modified
to use the proxy library instead of the RTI directly.
Tests were then executed to ensure that the behavior
of the proxy library was equivalent to the behavior of
the RTI itself.

The processing overhead of the proxy library needed
to be ascertained. A simple program was created to
compare using the RTI directly versus using the RTI
via a proxy library. This program was designed to
provide a reasonable but worst-case situation for the
overhead incurred while using the proxy library to
perform an update. An “update” is defined as the
complete process of instantiating an attribute handle
value pair set, populating it with attributes, sending it,
and destroying the attribute handle value pair set. The
program performed the following algorithm for both
the RTI and the proxy library:

• Capture the system time, t1
• Do the following 1,000,000 times:

o Create an attribute handle value pair set
o Put 10 attributes in the attribute handle

value pair set, each with a payload of 64
bytes

o Call updateAttributeValues
using the attribute handle value pair set

o Delete the attribute handle value pair set
• Capture the system time, t2

Notice that each loop of the algorithm makes 13 RTI
API calls (or their proxy library equivalents). The
authors found that the delta between t1 and t2 was 50
seconds for the RTI and 60 seconds for the proxy
library. This results in the RTI being able to process
an update in 50 microseconds, and the proxy library
being able to process an update in 60 microseconds.
The overhead incurred for using a proxy library is 10
microseconds per update, which is less than 1

microsecond of additional processing time per proxy
library RTI API call. This experiment was performed
on an IBM Thinkpad laptop with a 2 GHz Intel
Centrino processor and 1 GB of RAM. The operating
system was Windows XP, and the proxy library
architecture was as depicted in Figure 4.

The proxy library’s performance could be improved
if it utilized a caching strategy for the attribute handle
value pair set. This would eliminate the additional
memory allocation/de-allocation per iteration of the
loop.

In short, applying these techniques to the F/A-18
federation bridge was enormously successful. There
were no issues attributable to the use of the proxy
library or the run-time library modification of the
RTI. Furthermore, there were no detrimental side-
effects with using these approaches. It was originally
believed that there might be the risk that the run-time
library modification for one RTI LRC would cause it
to become not operational. However, the federation
bridge was able to participate in both federations
seamlessly. Pilots in trainers on one federation were
able to perform a large set of common procedures
with pilots on trainers in the other federation and vice
versa. This resulted in greatly increased capability for
training at a very low cost for the U.S. Navy. As a
final note, the U.S. Navy specifically required that the
federation bridge be completely removed with zero
footprint on either federation within 10 minutes.
Because these solutions were external to the
federations, removing the federation bridge was a
matter of shutting down the federation bridge’s
software. This took less than one minute.

NASMP Interoperability Interfaces

These techniques have been used on several other
projects. Many of these projects are related to
building and customizing federates to participate in
Navy Aviation Simulator Master Plan (NASMP)
federations. “NASMP-compliant” federates adhere to
a specific FOM and federation agreements document
(FAD). Many current and future training systems
achieve NASMP-compliance via a NASMP
Interoperability Interface (NII), a NASMP-compliant
federate that communicates NASMP federation data
to and from the training device.

One challenge in creating an NII for a trainer is that
the latest version (1.4.x) of the NASMP FAD requires
use of data-distribution management (DDM) in a
specific way. To facilitate this, the engineers involved
used the proxy library technique. Since all RTI API

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2007

2007 Paper No. 7216 Page 7 of 10

calls are made through a proxy library, it becomes a
convenient location in the system to implement the
required DDM functionality. This effectively
leverages the adapter design pattern (Gamma, Helm,
Johnson, & Vlissides, 1995). The proxy
implementation for this purpose is straightforward:
for each non-DDM RTI API call, determine the
appropriate region to use and invoke the DDM analog
of that API call using the determined region.

One benefit of this approach is that the proxy library
is also reusable among NIIs or other NASMP-
compliant federates. Furthermore, extensive design
and development work is not necessary for each
federate that uses this approach to participate in a
NASMP 1.4.x federation using this proxy library. As
a corollary, if a federate is ever upgraded to a later
version, the changes to re-add the proxy library are
smaller than the re-engineering that would be
required to re-fit the federate with the new DDM
solution. Conversely, if the federate requires
compliance to a newer version of the NASMP FAD,
all of the changes to support the DDM portion of this
change are confined to the proxy library. Parnas
(1972) points out other advantages of decoupling in
this manner.

This technique has been used in other contexts as
well. For instance, many trainers are unable to
internally support the number of entities that may
exist on a NASMP federation. In these cases, NIIs
make use of a proxy library to filter entities based on
proximity to the simulated trainer entity, among other
factors. Implementing filtering functionality closely to
the RTI also makes sense for performance reasons.

In the above scenarios, the run-time library
modification technique is not used because it is only
necessary when using multiple RTIs. However,
trainers often use different mechanisms to
communicate between their different subsystems. One
such case used HLA-based communication via the
STOW RTI. In addition to using the proxy library
technique to implement DDM and filtering
capabilities, this particular NII had to simultaneously
use two different RTIs from two different vendors
(the STOW RTI to communicate to the trainer and
the Raytheon VTC NG Pro RTI to participate in the
NASMP federation). The run-time library
modification technique was used to support this.

The two techniques in this paper have been used
together on other smaller projects and in other
situations. These situations are discussed more
generally in the next section.

APPLICABILITY

Table 1 captures and summarizes the different
situations in which a proxy library and run-time
library modification may be required. Each column
merits an explanation: the ‘Case’ column serves to
label the rows of the table so that they may be
referenced.

The second column, ‘Multiple RTIambassador
Instances,’ and the third column, ‘Different RTI
Versions,’ determine how many RTIambassadors
are required in a federate implementation and to
which RTI each belongs. It is possible to have
multiple RTIambassador instances from one RTI.
It is also possible to have multiple
RTIambassador instances, each from a different
RTI. The second column denotes whether there is
simply more than one RTIambassador in the
federate, while the third column determines if all of
the RTIambassadors are from the same RTI or are
from different RTIs.

The ‘RID File Conflict’ column denotes whether each
RTI implementation requires its own
RTI_RID_FILE environment variable setting.
Cases where the multiple RID files are not necessary
when multiple RTIambassador instances are
present from different RTIs can occur when one or
more of the RTIs do not make use of the
RTI_RID_FILE environmental variable.

The ‘Symbolic Ambiguity’ column addresses whether
the different RTI versions use the same symbols in
their RTI APIs. A “yes” in this column indicates that
the federate code will be unable to determine which
RTI it is using when it makes calls to the RTI. A “no”
indicates that this is not a problem.

The ‘Library Name Collision’ column denotes
whether the different RTI versions use different
library names that are loaded at runtime. A “yes” in
this column indicates that the two different versions
of the RTI use the same name for their library or for a
dependency library. A “no” specifies that different
library names are used.

The ‘Is Proxy Library Required?’ and ‘Is Run-time
Library Modification Required?’ columns answer
whether one or both techniques presented in this
paper are required to support the federate based on
the entries in the previous columns.

Next, each case is considered. Most federates fit the
profiles of case 1 in that they only require one

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2007

2007 Paper No. 7216 Page 8 of 10

RTIambassador instance, through which they
communicate with other federates. As this case
involves only one RTIambassador instance, the
problems associated with having multiple RTIs in a
single software process are not applicable.

Federates in case 2 are uncommon but nonetheless
possible. The ModelEngine (Geyer, Glintz, Thomas,
& Luebke, 2004) is an example of one such federate.
This federate enables multiple models (such as
mission computers, radars, etc.) to be loaded
simultaneously. Each model has an associated
RTIambassador, all of which are used in the same
federation. Neither a proxy library nor run-time
library modification is required for this case, though a
proxy library could be used to add additional
functionality as described in the previous section.

Case 3 encompasses the situation in which a
federation bridge spans two federations. These
federations use the same version of the RTI but are
using two different RTI executives (perhaps on two
different networks) or are running in connectionless
mode with different settings for each federation.
Support for this situation requires different RID files
for each RTIambassador instance.

Unfortunately, this seemingly small problem requires
both a proxy library and a run-time library
modification. It is worth mentioning that copying RID

files around in a controlled way while the federate is
initializing or making calls to setenv may be a
viable alternative. However, this may not work for all
RTIs due to the caching of environment variables by
their underlying libraries or the way the operating
system performs library loading.

Case 4 includes instances when two RTIs are
different enough to avoid the problems in this paper.
Neither a proxy library nor run-time library
modification is required if the two RTIs have no RID
file conflict, no symbolic ambiguity, and no library
name collision. The authors are not aware of a pair of
COTS RTIs existing today that fall into these
categories, though cases when one of the RTIs is a
“home-grown” RTI implementation very well might.

Case 5 covers situations when two RTIs share the
same library names but do not suffer from using the
same API. The RTIs also have different mechanisms
for loading RID files or otherwise configuring the
RTI. In this case, run-time library modification is
necessary to change the names of one of the RTI’s
library files (and possibly its dependencies as well).
However, on systems that use ELF, a proxy library
delegate is not necessary since the RTIs have no
symbols in common.

Situations involving two RTIs with different
mechanisms for RID configuration, different library
names, but that use the same symbols for their APIs

Table 1. Summary of Applicability

Case Multiple
RTIambassador

Instances

Different
RTI

Versions

RID File
Conflict

Symbolic
Ambiguity

Library
Name

Collision

Is Proxy
Library

Required?

Is Run-time
Library

Modification
Required?

1 No N/A N/A N/A N/A No No
2 Yes No No No No No No
3 Yes No Yes Yes Yes Yes Yes
4 Yes Yes No No No No No
5 Yes Yes No No Yes No Yes1
6 Yes Yes No Yes No Yes Depends2
7 Yes Yes No Yes Yes Yes Yes
8 Yes Yes Yes No No No Yes3
9 Yes Yes Yes No Yes Yes Yes1
10 Yes Yes Yes Yes No Yes Yes4
11 Yes Yes Yes Yes Yes Yes Yes

1. On systems that use ELF, a proxy delegate library is not necessary due to the lack of symbol ambiguity.
2. No for Windows systems, but required for Linux and other systems that use ELF
3. Only to modify the RID file environment variable
4. On Windows systems, only to modify the RID file environment variable. On systems that use ELF, the entire library disambiguation process is
required.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2007

2007 Paper No. 7216 Page 9 of 10

fall into case 6. If the operating system is Windows,
the problem can be resolved by using a proxy library
to merely wrap the API. This is the only case where a
proxy library is necessary but run-time library
modification is not. On operating systems using ELF,
the problem requires both techniques due to the way
symbols are loaded from the libraries at run-time.

Case 7 is basically the same as case 6 except that the
additional issue of a library name collision is present.
In addition to a proxy library, this issue requires run-
time library modification to overcome.

If a bridge federate uses two RTIs that differ in both
API and choice of library names, but still conflict in
their use of the RTI_RID_FILE environment
variable in order to load a RID file (case 8), then one
of the RTIs’ run-time libraries can be modified to
change that symbol.

Case 9, like case 5, covers instances where the RTIs
share library names but do not have a symbolic
ambiguity problem. Unlike case 5, the RTIs in case 9
both use the same RTI_RID_FILE environment
variable. The approach is the same as in those
previous cases, except that as a final step in
modifying the run-time library of one of the RTIs, the
name of the environment variable used to locate the
RID file is also changed. The bridge federate in the
previous section that uses the STOW RTI and the
Raytheon VTC RTI-NG Pro is a good example of this
case, as the STOW RTI uses slightly modified header
files that replace the RTI enclosing class with the
rti13 namespace.

The next case (10) encompasses situations where the
bridge federate uses different RTI versions that use
the same API and RID file loading mechanism, but
use different library names and thus have no collision
in that regard. On a Windows system, the issue can be
resolved by wrapping the RTI’s API and making the
change to the library’s RTI_RID_FILE
environment variable via a binary modification. On
systems using ELF, the entire library disambiguation
binary modification process is required.

Case 11, best illustrated by the F/A-18 Federation
Bridge, makes use of both a proxy library and run-
time library modification in order to span two
federations on two networks using two different RTIs.

ALTERNATIVE APPROACHES

A seemingly viable alternative to the solutions
presented in this paper is to avoid the issue altogether

and change one or both federations so that they use
the same RTI. As mentioned previously, this
approach is unlikely to be feasible due to cost in time
and money. This is especially true in the military
training systems community, where such a change
would require full regression testing and revalidation
of the training device(s). Furthermore, this approach
is merely a point solution; it is possible that other
federations may need to bridge later as well. This
would require that the whole testing and revalidation
process be repeated. Granowetter (2003) points out
other challenges, both technical and otherwise, with
this approach.

In some cases, it may be acceptable to modify the
source code and build processes of the RTI itself to
overcome this obstacle. This is the approach Bréholée
and Siron (2003) used. They controlled the source
code of one of the RTIs in use. For example, the
STOW RTI is an open-source HLA implementation.
It would be straightforward to change its relevant
symbols and library names and build a private copy
for use with a federation bridge. One caveat of this
approach in general is that the library dependencies of
the RTIs may also need to be addressed. The DMSO
RTI and Raytheon VTC NG Pro RTIs, for instance,
are built on top of ACE (Schmidt, 2007). In many
cases they may use different and incompatible
versions of it. This approach would prevent RTI link-
compatibility; however the techniques put forth in this
paper also have that same drawback.

Another alternative is to split the federation bridge
into multiple processes that communicate via some
IPC mechanism. While this approach would work,
there are some significant disadvantages. First,
designing, implementing, and testing the mechanism
by which the processes communicate would be
significantly more expensive compared to the effort
required by the techniques presented in this paper. A
second disadvantage is the performance penalty
associated with sending and receiving data between
the processes. This penalty varies depending on the
mechanism on which the IPC is based and the way it
is used. In any case, the overhead falls into two
categories: the additional processing required to
package and transmit data (including the overhead of
copying data if applicable) and the delay inherent to
the transmission itself. In contrast, the performance
penalty of using a proxy library is typically an
additional method call per RTI API call on Windows
and typically two additional method calls per RTI
API call on Linux and other operating systems using
ELF.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2007

2007 Paper No. 7216 Page 10 of 10

CONCLUSION

The two techniques discussed in this paper, wrapping
the RTI using a proxy library and run-time library
modification, provide a simple, straightforward
solution in linking multiple disparate RTIs into a
single software process. The use of these two
techniques is a low-cost alternative that due to its
simplicity of concept and code lends itself well to
lifecycle support. The techniques can be broadly
applied, though there are subtleties and caveats with
each one on Windows and Linux/UNIX-based
operating systems. These solutions are not tied to a
single set of HLA products; rather, the same
techniques can be used for any RTIs. This approach
has the potential of being applied in many more
federation bridging engagements with very low risk
incurred.

REFERENCES

Braudaway, W., & Little, R. (1997). The High Level
Architecture’s Bridge Federate. In Proceedings
from the Fall 1997 Simulation Interoperability
Workshop, September 1997, 97F-SIW-078.

Bréholée, B., & Siron, P. (2003). Design and
Implementation of a HLA Inter-federation
Bridge. In Proceedings of the 2003 Euro
Simulation Interoperability Workshop, June
2003, 03E-SIW-054.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J.
(1995). Design Patterns: Elements of Reusable
Object-Oriented Software, Addison-Wesley.

Geyer, D., Glintz, S., Thomas, N., & Luebke, W.
(2004). ModelEngine: An Application
Framework for Integrating Simulation Models
into HLA Federations. In Proceedings from
Spring 2004 Simulation Interoperability
Workshop, April 2004, 04S-SIW-107.

Granowetter, L. (2003). RTI Interoperability Issues –
API Standards, Wire Standards, and RTI
Bridges. In Proceedings of the 2003 Euro
Simulation Interoperability Workshop, June
2003, 03E-SIW-077.

Parnas, D. (1972). On the Criteria to be Used in
Decomposing Systems into Modules.
Communications of the ACM, 15(12), 1053-
1058.

Schmidt, D. (2007). The ADAPTIVE Communication
Environment (ACE). Retrieved June 3, 2007
from
http://www.cs.wustl.edu/~schmidt/ACE.html

SISO (2004). Dynamic Link Compatible HLA API
Standard for the HLA Interface Specification
Version 1.3. SISO-STD-004-2004,
http://www.sisostds.org.

SISO (2004). Dynamic Link Compatible HLA API
Standard for the HLA Interface Specification
(IEEE 1516.1 Version), SISO-STD-004.1-2004,
http://www.sisostds.org.

