Interservice/Industry Training, Smulation, and Education Conference (I/ITSEC) 2007

Supporting Multiple RTIswithin a Single Process

William Luebke, John Baker, Adrian Porter
Raytheon Virtual Technology Corporation
Alexandria, VA
wluebke@raytheonvtc.com, jbaker @raytheonvtc.com, aporter @r aytheonvtc.com

ABSTRACT

Achieving simulation interoperability between autaorous federations is always a challenging probleespite the
fact that different federations might accompliskraggly similar tasks, they frequently implementusions using
drastically different approaches. A recent federatiridge development project implemented a unapgroach to
federation interoperability between differing Ruimi€ Infrastructure (RTI) solutions, Federation @bj&odels
(FOMs), and federation level protocols. The abildyprovide interoperability between two High Levethitecture
(HLA) federations in a single software process ggiifferent versions of the RTI allows for an interoperability
solution that requires no implementation changesitioer federation while demonstrating the collestbenefits
combining the two federations.

Providing interoperability between two HLA fedemts in a single software process ugiliffierent versions of the
RTI poses a unique challenge, as one normally ¢acoropile and link an application in this way. Tleisallenge
can be overcome using a specialized proxy thatlesalifferent versions of the RTI to simultaneoushexist in a
single software process. This paper details thentdogical approach of using such a proxy for aefation bridge,
including its applicability, architecture, and pmrhance characteristics. The approach is proveitheauccessful
implementation of a federation bridge that enable=roperability between two federations usingEiSO 1.3 NG
v4 and Raytheon VTC NG Pro v2.0.4 RTIs. Examplesusig the techniques presented in this paper hierot
situations are also given, as well as alternatppr@aches.

ABOUT THE AUTHORS

William Luebke is a Senior Software Engineer with Raytheon Virfiechnology Corporation. He holds an M.S. in
Computer Science from the University of North Cam@lat Chapel Hill and a B.S. in Computer Sciennd a
Mathematics from the Virginia Polytechnic Institated State University.

John Baker is a Senior Systems Engineer with Raytheon Virflethnology Corporation. He holds an M.S. in
Industrial Engineering from the Pennsylvania Steli@versity and a B.S. in Industrial Engineering nirahe
University of Central Florida.

Adrian Porter is a Senior Software Engineer with Raytheon Virfliachnology Corporation. He holds a B.S. in
Computer Science from the Virginia Polytechnicibugt and State University.

2007 Paper No. 7216 Page 1 of 10

Interservice/Industry Training, Smulation, and Education Conference (I/ITSEC) 2007

Supporting Multiple RTIswithin a Single Process

William Luebke, John Baker, Adrian Porter
Raytheon Virtual Technology Corporation
Alexandria, VA
wluebke@raytheonvtc.com, jbaker @raytheonvtc.com, aporter @r aytheonvtc.com

INTRODUCTION

Interoperability between HLA federations is widely
sought after. This is because interoperability
potentially extracts the greatest value-added
functionality for any given investment that was mad
in building a federation. In particular, training
federations are developed for a specific purposk an
set of objectives that may not be perfectly sufed
future requirements or potential growth. Providang
means in which to interoperate an existing fedenati
with other operational federations is likely most
effective than rearchitecting the legacy federation
For example, the U.S. Navy wanted to enable
interoperability between two of their F/A-18 Hornet
flight simulator federations, the legacy F/A-18 E/F
Tactical Operational Flight Training (TOFT) devices
and a newer F/A-18 C/D Distributed Mission Trainer
(DMT) suite of devices. Interoperability between

these federations has tremendous value to the U.S.

Navy, as it enables mixed section and mixed dinisio
exercises and allows training with more virtual
aircraft in a scenario than otherwise possible.s€he
additional training capabilities open the door rfwore
realistic training for operations that may takecplan
actual combat.

Federation interoperability, however, is faced wath
myriad of technological challenges. One such
challenge is that the two federations may use rdiffe
RTI implementations and/or RTI versions.

In some cases, it may be feasible to upgrade tHe RT
for one of these federations to match the second’s
RTI. This could involve code changes to the federat
in the modified federation or it may be possible to
interoperate by exploiting the link-compatibilityf o
many RTIs (SISO-STD-004-2004 and SISO-STD-
004.1-2004).

Unfortunately, upgrading the RTI of one of the
federations likely requires extensive development
and/or re-testing costs. In addition, there cariolsé
training time if the federations are for training
purposes. This reality places the burden of supyprt

2007 Paper No. 7216 Page 2 of 10

multiple RTIs onto the federation interoperability
developer. This is the theme of this paper.

Using a federation bridge to enable interoperabilit
between two federations that each use differensRTI
is an idea first attributable to Braudaway andI&itt
(1997). However, Bréholée and Siron (2003) are the
first to attempt such a configuration and mention
some of the problems encountered. In their casg, th
were able to circumvent the problems by making
source code changes to one of the RTIs — which was
under their control. Unfortunately, having contadl

the source of an RTI is a luxury that is not
commonplace. In contrast, this paper presents and
solves the issue more generally; the solutions
presented do not require the source code and build
environment of the RTI.

This paper is structured as follows: the next secti
‘Challenges,’ discusses in greater detail the pnwisl
encountered when creating a software process that
links two different RTIs. The two subsequent
sections, ‘Proxy Library’ and ‘Run-time Library
Modification,” discuss two techniques that, wherdis
together, solve these problems. The section foligwi
‘Operating System Specific Details,” describes some
of the subtleties with applying the techniques in
different operating system contexts. Subsequetiity,
‘Experiences’ section details the authors’ experien
using these techniques, the ‘Applicability’ section
clarifies when the solutions are applicable, angl th
'Alternative Approaches’ section includes a
comparison with other approaches. Finally, the
‘Conclusions’ section contains closing remarks.

CHALLENGES

The fundamental challenge when constructing a
federation bridge between two federations that use
different RTIs is enabling the federation bridge to
simultaneously use multiple RTIs. An initial
architecture might have a dependency graph for its
libraries similar to that in Figure 1.

Interservice/Industry Training, Smulation, and Education Conference (I/ITSEC) 2007

RTIVX RTIVY
. 7

-
~ -’
~ -

Federat

Figure 1. Straightforward but problematic library
dependency graph linking multiple RTIs.

However, there are three problems with the above
architecture, the first two of which are identifieg
Bréholée and Siron (2003). First, the code of the
bridge federate is ambiguous with respect to which
RTI it uses. RTI implementations typically use the
same set of header files to declare their interfaud
enable link-compatibility. This also means they
typically use the same set of programmatic symbols,
e.g., RTl : : RTl anbassador . This is especially
true of different versions of the RTI from the same
vendor.

In a bridge federate that uses multiple RTIs, it is
unclear to the compiler which symbol would be for
which RTI. For example, in the code

RTI : : RTI ambassador
RTI : : RTI ambassador

rti_vx Anb;
rti_vY_Anb;

the symbolRTI : : RTI anbassador, used by both
RTIs, offers no hints as to which RTI it refers.
Assuming the federate compiles, the result is a
federate that will only use one RTI for all of i A-
related communication. This is problematic as it
should use both RTIs.

The second problem with the scenario in Figure 1 is
that only one RTI's Local RTI Component (LRC) is
loaded when the federate is executed. The operating
system loads only the first RTI library with a give
name that it finds. Since both RTIs’ libraries have
same name (particularly if they are different vensi
from the same vendor) only the first library wilé b
loaded. As a result, only the RTI that is loadeadtfi
will be used.

The third problem emerges from the fact that midgtip
RTIs share the same environment of the federate.
Many RTIs load their configuration options from an
RTI Initialization Data (RID) file. The location dhis

file is specified in th&kTl _RI D_FI LE environment
variable. The RID file stores many RTI-related
settings including which network interface the RTI
should use. If a federate is going to use more timen
RTI, it is highly likely that it will require diffeent
RID file settings for each. However, despite having
more than one RTI linked into a process, therenlg o

2007 Paper No. 7216 Page 3 of 10

one RTI _RI D FILE environment variable. This
causes the same set of RTI configuration options to
be loaded for both RTIs.

PROXY LIBRARY

Resolving the first problem — compile-time symbol
ambiguity — can be accomplished by introducing a
software proxy to disambiguate and differentiate
between different RTI implementations in the bridge
federate’s source code. This proxy is a thin wrappe
library around the RTI with an interface that uses
different symbols. The bridge federate’s code is
changed to use the proxy in place of one of itssRTI
and is linked to the proxy library instead of tiRikl.
The code given in the previous section would change
to:

RTI : : RTI anbassador rti_vX Anb;
RTI Proxy: : RTl anbassador rti_vY_Anb;

The resultant dependency graph would be as in
Figure 2.

RTIVX RTIVY | | RTIVY
N Proxy [

\\\ /,_7

Federat

Figure 2. Dependency graph with a proxy library.

This approach is an example of the proxy or adapter
design pattern as given by Gamma, Helm, Johnson,
and Vlissides (1995)The implementation of each
method in the proxy essentially does four things:

1. Converts the input arguments into their RTI
equivalents.

2. Calls the equivalent RTI method with the
converted arguments.

3. Converts the return value from the RTI
method call into its proxy equivalent and
returns it, if applicable.

4. Catches any RTI exceptions thrown and
throws a proxy equivalent exception.

The implementation of the proxy’s
Feder at eAnbassador is similar to the above

steps, though in the opposite direction (i.e.,
converting from RTI arguments to their proxy
equivalents and calling the user-supplied
Feder at eAnrbassador instead of the

RTI ambassador).

Interservice/Industry Training, Smulation, and Education Conference (I/ITSEC) 2007

RUN-TIME LIBRARY MODIFICATION

Implementing and using a proxy library as presented
in the previous section will solve the compile-time
symbol ambiguity problem. However, alone it is
insufficient to solve the remaining two problemd. A
runtime, one of the RTIs will not be loaded, cagsin
one of the scenarios depicted in Figure 3.

RTIvX RTIVY
AN Proxy

RTIVY

RTIVX

RTIVY | >
Proxy [

A
>
:
PRy
- L

Federat

Figure 3. Run-time dependency graphsillustrating
the insufficiency of a proxy library to resolve the
RTI loading problem.

In order for the operating system to load both RTI
libraries, they also need to be disambiguated. One
way to accomplish this is to first change the naofes
the libraries of the RTI and all of its dependeacie
and then alter those libraries so that they refaren
their new names. This is best performed in a peivat
copy of thebi n and/orl i b directories of the RTI
installation that is wrapped by the proxy librafhis
ensures that the technique does not interfere with
other federates that may use the original instalat
Note that this change is local to the processubkat
multiple RTIs. This disambiguation technique is not
required for any other federate in either federatio

Some notes on this process:

» Like most binary files, these libraries will
not function properly if bytes are added or
removed. Therefore, modifications should
only change existing bytes. This constrains
the choice of alternate library names. On
Windows systems, the authors recommend a
naming scheme substituting the first
character of each library’'s name with an
underscore character (e.g., “libRTI-NG”
becomes “_ibRTI-NG”). On Linux and
UNIX systems, the authors suggest changing
the first character after the standard library

2007 Paper No. 7216 Page 4 of 10

prefix “lib” (e.g., “libRTI-NG” becomes
“lib_TI-NG").

e Itis important to only modify the portion of
the library that lists its dependencies;
however in the authors’ experience, a global
search-and-replace for the entire file name is
safe since the library names do not show up
in the libraries otherwise.

» The directory with the modified libraries
needs to be in the appropriattATH
environment variable(s) of the environment
the federate is executed from.

The third problem, loading multiple RID files, is
solved by performing one additional modification on
the RTI libraries: replacin®TI _RI D_FI LE with an
alternate name of the same length. The authors
recommend using the same re-naming scheme that
was used for the libraries, replacing the firstraloter

with an underscore. ThuRTI _RI D_FI LE becomes

_TI _RI D _FI LE. This enables the modified RTI to
use a different environment variable to locate its
particular RID file.

OPERATING SYSTEM SPECIFIC DETAILS

Until this point in the paper, the ideas and teghas
have not been operating system-specific. However,
the realization of a process simultaneously using
multiple RTIs requires some steps that differ
depending on the target operating system. The
disparity is due to the difference between the file
formats the operating systems use for shared idsar
Windows dynamically-linked libraries (DLLs) are
structured differently than dynamic shared objects
(DSOs) on systems using the Executable and Linker
Format (ELF), such as Linux.

Windows

The final — and critical — step to enabling a pexc®

use two RTIs on a Windows system is to use the run-
time library modification technique one additional
time—to alter the proxy’s run-time library so that
references the modified RTI libraries. This givbes t
desired configuration as shown in Figure 4.

Interservice/Industry Training, Smulation, and Education Conference (I/ITSEC) 2007

RTIVX RTIVY | 3| RTIvY
N Proxy [

\\\ ’/7

Federat

Figure 4. Run-timelibrary dependency graph on a
Windows system. Boldfaced items have been
modified to alter their dependencies per the above
technique.

The effectiveness of this approach on Windows & du
to the file format of DLLs. A DLL contains a seatio
that lists its own dependent DLLs. This sectioroals
lists what functions each DLL invokes. Performing
the replacement in this section of the DLL enaliles
to use alternate DLLs when making external function
calls.

Linux (and Other Systemsthat Use ELF)

On Linux and other systems using ELF, the problem
is more complicated. In contrast to the way Windows
DLLs are loaded, distinguishing which library the
symbol comes from is less relevant when symbols are
loaded from ELF-based libraries. Without
intervention, the first library from which a symbisl
loaded will be the only library from which it is
loaded. This is true even if the libraries haverbee
renamed using the run-time library modification
technique.

To avoid this problem, the RTI has to be loaded int

a “private” symbol space. This is accomplished by
use of thedl open system call, which loads libraries
on demand at runtime. Bitwise or-ing the values
RTLD_LOCAL and RTLD DEEPBI ND to thenpde
argument todl open enables the loading of the
library into a private space. Symbols from a lilgrar
loaded using this mechanism can be referenced via
thedl symsystem call.

The advantage of using these two system calls is
twofold. First, libraries loaded and referencedngsi
these functions do not create a dependency for the
caller. Such a dependency would create another
instance of the problem being solved with this
approach. The second advantage is that the library
loaded using these calls can have its references
resolved in a private space. This prevents any
collisions with other libraries.

The disadvantage is that this approach requires
additional complexity for its implementation to be

2007 Paper No. 7216 Page 5 of 10

realized. The proxy library must be split into two
separate libraries. The first library converts the
symbols of the RTI so they become accessible via
dl sym The second library provides the RTI-like
interface to the bridge federate and loads thé Vies

dl open. The authors refer to the first library as the
“proxy delegate library” and the second as simpby t
“proxy library.” The resulting architecture is defsd

in Figure 5.

RTIVY

RTIVY | _ =
Proxy [
Delegate

A

RTIVY
~ Proxy

Federat

Figure5. Run-time library dependency graph on a
system using EL F. Boldfaced items have been
modified to alter their dependencies. The dotted
lineillustratesalibrary loaded via thedl open
system call.

EXPERIENCES

This section chronicles the authors’ experiencéasgus
the proxy library and run-time library modification
techniques to date.

F/A-18 Federation Bridge

The development of the two presented techniques
first occurred during the preliminary phases of the
federation bridge project for the U.S. Navy. As
mentioned in the introduction, the U.S. Navy dasire
the additional training capability that could be
realized via a federation bridge between two défifer
F/A-18 flight simulator suites at NAS Lemoore, CA.
The first simulator suite used the DMSO RTI 1.3
NGv4 to provide networking capability amongst the
four F/A-18 E/F flight simulator trainers in theitgu

The second suite consisted of four NASMP 1.2.4
compliant F/A-18 C/D DMT trainers. These used the
Raytheon VTC NG-Pro v2.0.4 to facilitate network
communication. There were several challenges
encountered during the design of this federation
bridge. One challenge addressed the need to
simultaneously support both the DMSO RTI 1.3

Interservice/Industry Training, Smulation, and Education Conference (I/ITSEC) 2007

NGv4 and the Raytheon VTC NG-Pro v2.0.4. The
latter RTI is a derivative of the former, albeivesal
versions later. Both RTIs also have a dependency on
the ADAPTIVE Communication Environment (ACE)
(Schmidt, 2007) though each depends on a different
version.

The proxy library and run-time library modification
techniques were applied to resolve this simultaseou
RTI support need. To mitigate implementation risks,
they were first proven using a prototype to ensure
they solved the problem of a single process using
multiple RTIs. A proxy library was then created to
wrap the DMSO RTI 1.3 NG v4. One of the ways the
proxy library was tested was by using the RTI's lUse
Test Suite (UTS), a battery of 275 tests used tifyve
the RTI is working properly. The UTS was modified
to use the proxy library instead of the RTI dirgctl
Tests were then executed to ensure that the behavio
of the proxy library was equivalent to the behawbr
the RTI itself.

The processing overhead of the proxy library needed
to be ascertained. A simple program was created to
compare using the RTI directly versus using the RTI
via a proxy library. This program was designed to
provide a reasonable but worst-case situationter t
overhead incurred while using the proxy library to
perform an update. An “update” is defined as the
complete process of instantiating an attribute heand
value pair set, populating it with attributes, seqdt,

and destroying the attribute handle value pairBe.
program performed the following algorithm for both
the RTI and the proxy library:

» Capture the system timg,
e Do the following 1,000,000 times:
o Create an attribute handle value pair set
0 Put 10 attributes in the attribute handle
value pair set, each with a payload of 64
bytes
o Call updat eAttri but eval ues
using the attribute handle value pair set
o Delete the attribute handle value pair set
e Capture the system timp,

Notice that each loop of the algorithm makes 13 RTI
API calls (or their proxy library equivalents). The
authors found that the delta betwedemandt, was 50
seconds for the RTI and 60 seconds for the proxy
library. This results in the RTI being able to pres

an update in 50 microseconds, and the proxy library

being able to process an update in 60 microseconds.

The overhead incurred for using a proxy librantis
microseconds per update, which is less than 1

2007 Paper No. 7216 Page 6 of 10

microsecond of additional processing time per proxy
library RTI API call. This experiment was performed
on an IBM Thinkpad laptop with a 2 GHz Intel
Centrino processor and 1 GB of RAM. The operating
system was Windows XP, and the proxy library
architecture was as depicted in Figure 4.

The proxy library’s performance could be improved
if it utilized a caching strategy for the attributandle
value pair set. This would eliminate the additional
memory allocation/de-allocation per iteration oé th
loop.

In short, applying these techniques to the F/A-18
federation bridge was enormously successful. There
were no issues attributable to the use of the proxy
library or the run-time library modification of the
RTI. Furthermore, there were no detrimental side-
effects with using these approaches. It was orilgina
believed that there might be the risk that the tiome
library modification for one RTI LRC would cause it
to become not operationdHowever, the federation
bridge was able to participate in both federations
seamlessly. Pilots in trainers on one federatiorewe
able to perform a large set of common procedures
with pilots on trainers in the other federation aiak
versa. This resulted in greatly increased capgiioit
training at a very low cost for the U.S. Navy. As a
final note, the U.S. Navy specifically requiredtttize
federation bridge be completely removed with zero
footprint on either federation within 10 minutes.
Because these solutions were external to the
federations, removing the federation bridge was a
matter of shutting down the federation bridge’s
software. This took less than one minute.

NASM P Interoper ability I nterfaces

These techniques have been used on several other
projects. Many of these projects are related to
building and customizing federates to participate i
Navy Aviation Simulator Master Plan (NASMP)
federations. “NASMP-compliant” federates adhere to
a specific FOM and federation agreements document
(FAD). Many current and future training systems
achieve NASMP-compliance via a NASMP
Interoperability Interface (NII), a NASMP-compliant
federate that communicates NASMP federation data
to and from the training device.

One challenge in creating an NIl for a trainerhatt
the latest version (1. of the NASMP FAD requires
use of data-distribution management (DDM) in a
specific way. To facilitate this, the engineersalved
used the proxy library technique. Since all RTI API

Interservice/Industry Training, Smulation, and Education Conference (I/ITSEC) 2007

calls are made through a proxy library, it becoraes
convenient location in the system to implement the
required DDM functionality. This effectively
leverages the adapter design pattern (Gamma, Helm,
Johnson, & Vlissides, 1995). The proxy
implementation for this purpose is straightforward:
for each non-DDM RTI API call, determine the
appropriate region to use and invoke the DDM analog
of that API call using the determined region.

One benefit of this approach is that the proxyaliigr

is also reusable among NIIs or other NASMP-
compliant federates. Furthermore, extensive design
and development work is not necessary for each
federate that uses this approach to participata in
NASMP 1.4x federation using this proxy library. As

a corollary, if a federate is ever upgraded totarla
version, the changes to re-add the proxy librag/ ar
smaller than the re-engineering that would be
required to re-fit the federate with the new DDM
solution. Conversely, if the federate requires
compliance to a newer version of the NASMP FAD,
all of the changes to support the DDM portion a$ th
change are confined to the proxy library. Parnas
(1972) points out other advantages of decoupling in
this manner.

This technique has been used in other contexts as
well. For instance, many trainers are unable to
internally support the number of entities that may
exist on a NASMP federation. In these cases, Nlls
make use of a proxy library to filter entities bégm
proximity to the simulated trainer entity, amongent
factors. Implementing filtering functionality cldgeéo

the RTI also makes sense for performance reasons.

In the above scenarios, the run-time library
modification technique is not used because it iy on
necessary when using multiple RTIs. However,
trainers often use different mechanisms to
communicate between their different subsystems. One
such case used HLA-based communication via the
STOW RTI. In addition to using the proxy library
technique to implement DDM and filtering
capabilities, this particular NIl had to simultansty

use two different RTIs from two different vendors
(the STOW RTI to communicate to the trainer and
the Raytheon VTC NG Pro RTI to participate in the
NASMP federation). The run-time library
modification technique was used to support this.

The two techniques in this paper have been used
together on other smaller projects and in other
situations. These situations are discussed more
generally in the next section.

2007 Paper No. 7216 Page 7 of 10

APPLICABILITY

Table 1 captures and summarizes the different
situations in which a proxy library and run-time

library modification may be required. Each column

merits an explanation: the ‘Case’ column serves to
label the rows of the table so that they may be
referenced.

The second column, ‘MultipleRTI anbassador
Instances,” and the third column, ‘Different RTI
Versions,” determine how mari§T| anbassador s

are required in a federate implementation and to
which RTI each belongs. It is possible to have
multiple RTI anbassador instances from one RTI.

It is also possible to have multiple
RTIl anbassador instances, each from a different
RTI. The second column denotes whether there is
simply more than oneRTl anbassador in the
federate, while the third column determines if cl
the RTI anbassador s are from the same RTI or are
from different RTls.

The ‘RID File Conflict’ column denotes whether each
RTI implementation requires its own
RTI _RI D FILE environment variable setting.
Cases where the multiple RID files are not necgssar
when multiple RTI anbassador instances are
present from different RTIs can occur when one or
more of the RTIs do not make use of the
RTI _RI D_FI LE environmental variable.

The ‘Symbolic Ambiguity’ column addresses whether
the different RTI versions use the same symbols in
their RTI APIs. A “yes” in this column indicatesath
the federate code will be unable to determine which
RTI it is using when it makes calls to the RTI. A0”
indicates that this is not a problem.

The ‘Library Name Collision’ column denotes
whether the different RTI versions use different
library names that are loaded at runtime. A “yas” i
this column indicates that the two different vensio
of the RTI use the same name for their libraryavrd
dependency library. A “no” specifies that different
library names are used.

The ‘Is Proxy Library Required?’ and ‘Is Run-time
Library Modification Required?’ columns answer
whether one or both techniques presented in this
paper are required to support the federate based on
the entries in the previous columns.

Next, each case is considered. Most federatekdit t
profiles of case 1 in that they only require one

Interservice/Industry Training, Smulation, and Education Conference (I/ITSEC) 2007

Table 1. Summary of Applicability

Case Multiple Different RID File | Symbolic Library IsProxy IsRun-time
RTI anbassador RTI Conflict | Ambiguity | Name Library Library
I nstances Versions Collison | Required? | Modification
Required?
1 No N/A N/A N/A N/A No No
2 Yes No No No No No No
3 Yes No Yes Yes Yes Yes Yes
4 Yes Yes No No No No No
5 | Yes Yes No No Yes No Yés
6 Yes Yes No Yes No Yes Depehds
7 Yes Yes No Yes Yes Yes Yes
8 | Yes Yes Yes No No No Yés
9 | Yes Yes Yes No Yes Yes Yes
10 Yes Yes Yes Yes No Yes Yes
11 Yes Yes Yes Yes Yes Yes Yes
1. On systems that use ELF, a proxy delegate jihsamot necessary due to the lack of symbol anityigu
2. No for Windows systems, but required for Linurdather systems that use ELF
3. Only to modify the RID file environment variable
4. On Windows systems, only to modify the RID #levironment variable. On systems that use ELFettiee library disambiguation process is

required.

RTI ambassador instance, through which they
communicate with other federates. As this case
involves only oneRTI anbassador instance, the
problems associated with having multiple RTIs in a
single software process are not applicable.

Federates in case 2 are uncommon but nonetheless
possible. The ModelEngine (Geyer, Glintz, Thomas,
& Luebke, 2004) is an example of one such federate.
This federate enables multiple models (such as
mission computers, radars, etc.) to be loaded
simultaneously. Each model has an associated
RTI anbassador, all of which are used in the same
federation. Neither a proxy library nor run-time
library modification is required for this case, tigh a
proxy library could be used to add additional
functionality as described in the previous section.

Case 3 encompasses the situation in which a
federation bridge spans two federations. These
federations use the same version of the RTI but are
using two different RTI executives (perhaps on two
different networks) or are running in connectiosles
mode with different settings for each federation.
Support for this situation requires different Rliz$

for eachRTl anbassador instance.

Unfortunately, this seemingly small problem regsire

both a proxy library and a run-time library
maodification. It is worth mentioning that copyindR

2007 Paper No. 7216 Page 8 of 10

files around in a controlled way while the federiste
initializing or making calls toset env may be a
viable alternative. However, this may not work &ir
RTIs due to the caching of environment variables by
their underlying libraries or the way the operating
system performs library loading.

Case 4 includes instances when two RTIs are
different enough to avoid the problems in this pape
Neither a proxy library nor run-time library
modification is required if the two RTIs have naCRI

file conflict, no symbolic ambiguity, and no libyar
name collision. The authors are not aware of a gfair
COTS RTIs existing today that fall into these
categories, though cases when one of the RTIs is a
“home-grown” RTI implementation very well might.

Case 5 covers situations when two RTIs share the
same library names but do not suffer from using the
same API. The RTIs also have different mechanisms
for loading RID files or otherwise configuring the
RTI. In this case, run-time library modification is
necessary to change the names of one of the RTI's
library files (and possibly its dependencies asl)wel
However, on systems that use ELF, a proxy library
delegate is not necessary since the RTIs have no
symbols in common.

Situations involving two RTIs with different
mechanisms for RID configuration, different library
names, but that use the same symbols for their APIs

Interservice/Industry Training, Smulation, and Education Conference (I/ITSEC) 2007

fall into case 6. If the operating system is Windopw
the problem can be resolved by using a proxy librar
to merely wrap the API. This is the only case where
proxy library is necessary but run-time library
modification is not. On operating systems using ELF
the problem requires both techniques due to the way
symbols are loaded from the libraries at run-time.

Case 7 is basically the same as case 6 excephthat
additional issue of a library name collision is g@et.
In addition to a proxy library, this issue requires-
time library modification to overcome.

If a bridge federate uses two RTIs that differ otth
API and choice of library names, but still confliot
their use of theRTI _RI D FILE environment
variable in order to load a RID file (case 8), tlame
of the RTIS' run-time libraries can be modified to
change that symbol.

Case 9, like case 5, covers instances where the RTI
share library names but do not have a symbolic
ambiguity problem. Unlike case 5, the RTIs in c@se
both use the sam®&TlI _RI D FI LE environment
variable. The approach is the same as in those
previous cases, except that as a final step in
modifying the run-time library of one of the RTthe
name of the environment variable used to locate the
RID file is also changed. The bridge federate ia th
previous section that uses the STOW RTI and the
Raytheon VTC RTI-NG Pro is a good example of this
case, as the STOW RTI uses slightly modified header
files that replace théRTl enclosing class with the
rti 13 namespace.

The next case (10) encompasses situations where the
bridge federate uses different RTI versions that us
the same API and RID file loading mechanism, but
use different library names and thus have no dofiis

in that regard. On a Windows system, the issuébean
resolved by wrapping the RTI's APl and making the
change to the library's RTI_RI D FILE
environment variable via a binary modification. On
systems using ELF, the entire library disambigumatio
binary modification process is required.

Case 11, best illustrated by the F/A-18 Federation
Bridge, makes use of both a proxy library and run-
time library modification in order to span two
federations on two networks using two different RTI

ALTERNATIVE APPROACHES

A seemingly viable alternative to the solutions
presented in this paper is to avoid the issue eltey

2007 Paper No. 7216 Page 9 of 10

and change one or both federations so that they use
the same RTI. As mentioned previously, this
approach is unlikely to be feasible due to coginre

and money. This is especially true in the military
training systems community, where such a change
would require full regression testing and revalioiat

of the training device(s). Furthermore, this apploa

is merely a point solution; it is possible that eath
federations may need to bridge later as well. This
would require that the whole testing and revalitati
process be repeated. Granowetter (2003) points out
other challenges, both technical and otherwiseh wit
this approach.

In some cases, it may be acceptable to modify the
source code and build processes of the RTI itgelf t
overcome this obstacle. This is the approach Bé&hol
and Siron (2003) used. They controlled the source
code of one of the RTIs in use. For example, the
STOW RTI is an open-source HLA implementation.
It would be straightforward to change its relevant
symbols and library names and build a private copy
for use with a federation bridge. One caveat o thi
approach in general is that the library dependsrafie
the RTIs may also need to be addressed. The DMSO
RTI and Raytheon VTC NG Pro RTIs, for instance,
are built on top of ACE (Schmidt, 2007). In many
cases they may use different and incompatible
versions of it. This approach would prevent RTkiin
compatibility; however the techniques put forthtirs
paper also have that same drawback.

Another alternative is to split the federation kyed
into multiple processes that communicate via some
IPC mechanism. While this approach would work,
there are some significant disadvantages. First,
designing, implementing, and testing the mechanism
by which the processes communicate would be
significantly more expensive compared to the effort
required by the techniques presented in this paper.
second disadvantage is the performance penalty
associated with sending and receiving data between
the processes. This penalty varies depending on the
mechanism on which the IPC is based and the way it
is used. In any case, the overhead falls into two
categories: the additional processing required to
package and transmit data (including the overhdad o
copying data if applicable) and the delay inhetent
the transmission itself. In contrast, the perforogan
penalty of using a proxy library is typically an
additional method call per RTI API call on Windows
and typically two additional method calls per RTI
API call on Linux and other operating systems using
ELF.

Interservice/Industry Training, Smulation, and Education Conference (I/ITSEC) 2007

CONCLUSION

The two techniques discussed in this paper, wrappin
the RTI using a proxy library and run-time library
modification, provide a simple, straightforward
solution in linking multiple disparate RTIs into a
single software process. The use of these two
techniques is a low-cost alternative that due $o it
simplicity of concept and code lends itself well to
lifecycle support. The techniques can be broadly
applied, though there are subtleties and cavedls wi
each one on Windows and Linux/UNIX-based
operating systems. These solutions are not tied to
single set of HLA products; rather, the same
techniques can be used for any RTIs. This approach
has the potential of being applied in many more
federation bridging engagements with very low risk
incurred.

REFERENCES

Braudaway, W., & Little, R. (1997). The High Level
Architecture’s Bridge Federate. Rroceedings
fromthe Fall 1997 Smulation Interoperability
Workshop, September 1997, 97F-SIW-078.

Bréholée, B., & Siron, P. (2003). Design and
Implementation of a HLA Inter-federation
Bridge. InProceedings of the 2003 Euro
Smulation Interoperability Workshop, June
2003, 03E-SIW-054.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J.

(1995). DesigrPatterns: Elements of Reusable
Object-Oriented Software, Addison-Wesley.

2007 Paper No. 7216 Page 10 of 10

Geyer, D., Glintz, S., Thomas, N., & Luebke, W.
(2004). ModelEngine: An Application
Framework for Integrating Simulation Models
into HLA Federations. I#roceedings from
Soring 2004 Smulation Interoperability
Workshop, April 2004, 04S-SIW-107.

Granowetter, L. (2003). RTI Interoperability Issues
API Standards, Wire Standards, and RTI
Bridges. InProceedings of the 2003 Euro
Smulation Interoperability Workshop, June
2003, 03E-SIW-077.

Parnas, D. (1972). On the Criteria to be Used in
Decomposing Systems into Modules.
Communications of the ACM, 15(12), 1053-
1058.

Schmidt, D. (2007)The ADAPTIVE Communication
Environment (ACE). Retrieved June 3, 2007
from
http://www.cs.wustl.edu/~schmidt/ACE.html

SISO (2004)Dynamic Link Compatible HLA API
Sandard for the HLA Interface Specification
Version 1.3. SISO-STD-004-2004,
http://mwww.sisostds.org.

SISO (2004)Dynamic Link Compatible HLA API
Sandard for the HLA Interface Specification
(IEEE 1516.1 Version), SISO-STD-004.1-2004,
http://www.sisostds.org.

