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ABSTRACT

The simulation community has often been hampered by constraints in computing: not enough resolution, not enough
entities, not enough behavioral variants. Higher performance computers can ameliorate those constraints. The use of
Linux Clusters is one path to higher performance; the use of Graphics Processing Units (GPU) as accelerators is
another. Merging the two paths holds even more promise. The authors were the principal architects of a successful
proposal to the High Performance Computing Modernization Program (HPCMP) for a new 512 CPU (1024 core),
GPU-enhanced Linux Cluster for the Joint Forces Command’s Joint Experimentation Directorate (J9). In this paper,
the basic theories underlying the use of GPUs as accelerators for intelligent agent, entity-level simulations are laid
out, the previous research is surveyed and the ongoing efforts are outlined. The simulation needs of J9, the direction
from HPCMP and the careful analysis of the intersection of these are explicitly discussed. The configuration of the
cluster and the assumptions that led to the conclusion that GPUs might increase performance by a factor of two are
carefully documented. The processes that led to that configuration, as delivered to JFCOM, will be specified and
alternatives that were considered will be analyzed. Planning and implementation strategies are reviewed and justi-
fied. The presentation will then report in detail about the execution of the actual installation and implementation of
the JSAF simulation on the cluster in August 2007. Issues, problems and solutions will all be reported objectively,
as guides to the simulation community and as confirmation or rejection of early assumptions. Lessons learned and
recommendations will be set out. Original performance projections will be compared to actual benchmarking results
using LINPACK and simulation performance. Early observed operational capabilities of interest are proffered in
detail herein.

ABOUT THE AUTHORS

Robert F. Lucas is the Director of the Computational Sciences Division of the University of Southern California's
Information Sciences Institute (ISI). There he manages research in computer architecture, VLSI, compilers and
other software tools. He has been the principal investigator on the JESPP project since its inception in 2002. Prior to
joining ISI, he was the Head of the High Performance Computing Research Department for the National Energy
Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory, the Deputy Director of
DARPA's Information Technology Office, and a member of the research staff of the Institute for Defense Analysis's
Center for Computing Sciences. From 1979 to 1984 he was a member of the Technical Staff of the Hughes Aircraft
Company. Dr. Lucas received his BS, MS, and PhD degrees in Electrical Engineering from Stanford University in
1980, 1983, and 1988 respectively.

Gene Wagenbreth is a Systems Analyst for Parallel Processing at the Information Sciences Institute at the Univer-
sity of Southern California, doing research in the Computational Sciences Division. Prior positions have included
Vice President and Chief Architect of Applied Parallel Research and Lead Programmer of Pacific Sierra Research,
where he specialized in tools for distributed and shared memory parallelization of Fortran programs. He has also
been active in benchmarking, optimization and porting of software for private industry and government labs. He has
programmed on CRAY, SGI, Hitachi, Fujitsu, NEC, networked PCs, networked workstations, IBM SP2, as well as
conventional machines. He received a BS in Math/Computer Science from the University of Illinois in 1971

Dan M. Dauvis is the Director, JESPP Project, Information Sciences Institute (ISI), University of Southern Califor-
nia, and has been active in large-scale distributed simulations for the DoD. While he was the Assistant Director of
the Center for Advanced Computing Research at Caltech, he managed Synthetic Forces Express, a major simulation
project. He was a lead in the proposal to take over the Maui High Performance Computing Center, where he subse-
quently served as the Director of Finance and Contracts. Prior to that, he was a Software Engineer on the All Source
Analysis System project at the Jet Propulsion Laboratory and worked on a classified project at Martin Marietta,
Denver. An active duty Marine Cryptologist, he recently retired as a Commander, USNR, Cryptologic Specialty. He
has served as the Chairman of the Coalition of Academic Supercomputing Centers and the Coalition for Academic
Scientific Computation. He received a B.A. and a J.D., both from the University of Colorado in Boulder.

2007 Paper No. 7437 Page 1 of 10


mailto:ddavis%7D@isi.edu

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2007

Implementing a GPU-Enhanced Cluster for Large-Scale Simulations

Robert F. Lucas, Gene Wagenbreth & Dan M. Davis
Information Sciences Institute, Univ. of So. Calif.
Marina del Rey, California
{rflucas, genew & ddavis} @isi.edu

INTRODUCTION

This paper addresses the background for, approach to
and the experience of the authors with the new GPU
accelerator-enhanced Linux Cluster at JFCOM. Re-
quirements, design considerations, configuration de-
cisions, and early experimental results are reported.

Joint Forces Command Mission and Require-
ments

Live, virtual and constructive simulations play a vital
role in DoD analysis, evaluation and training. The
Joint Forces Command (JFCOM) has the mission to
lead the transformation of the U.S. Armed Forces and
to enable broad-spectrum dominance as per Joint
Vision 2010 (CJCS, 1996) and 2020 (CJCS, 2000).
JFCOM?’s research arm is the Joint Experimentation
Directorate, J9. This leads to the nearly unique situa-
tion of having a research activity lodged within an
operation command, calling for experiments in which
warfighters in uniform are staffing the consoles dur-
ing interactive, HPC-supported simulations.

The complexities of urban warfare are modeled by J9
in a series of experiments using well-validated entity-
level simulations, e.g. Joint Semi-Automated Forces
(JSAF) and the Simulation of the Location and At-
tack of Mobile Enemy Missiles (SLAMEM). These
need to be run at a scale and resolution adequate for
modeling the complexities of urban combat.

The J9 code came from a long lineage of entity-level
battlefield codes. Terrain representations are popu-
lated with intelligent-agent friendly forces, enemy
personnel and civilian groups. These have compute
requirements in order to generate their behaviors. In
addition, a major computational load is imposed in
the performance of line-of-sight calculations for the
entities and route-finding algorithms for the movers.
This is a problem of some moment, especially in the
light of its inherently onerous “n-squared” growth
characteristics of such code (Brunett, 1998).

Consider a case of several thousand entities needing
to interact with each other in urban settings with
vegetation and buildings obscuring the lines of sight.
This situation has been successfully met by the use of
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innovative interest-managed communications (Bar-
rett, 2004).

JFCOM requires an enhanced Linux cluster of ade-
quate size, power, and configuration to support simu-
lations of more than 2,000,000 entities operating
within high-resolution insets on a global-scale terrain
database. This facility will be used occasionally to
interact with live exercises, but more often will be
engaged interactively with users and experimenters
while presenting virtual or constructive simulations.
(Ceranowicz, 2005) It must be robust, to reliably
support hundreds of personnel, and it must be scal-
able, to easily handle both small activities and large,
global-scale experiments with the participants dis-
tributed trans-continentally, as shown in below.

I

Figure 1 - JFCOM’s HPC Simulation Net

Joint Futures Lab (JFL)

The creation of a standing experimentation environ-
ment that can respond immediately to DoD time-
critical needs for analysis is the goal of the JFL. It
operates in a distributed fashion over the Defense
Research and Engineering Network (DREN), at a
scale and level of resolution that allows JFCOM and
its partners to conduct experimentation on issues of
concern to combat commanders, who often partici-
pate in the experiments themselves.

The Joint Futures Lab consists of extensive simula-
tion federations, software, and networks, joined into
one common infrastructure that supports experi-
ments. This capability includes quantitative and
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qualitative analysis, flexible plug-and-play standards,
and the opportunity for diverse organizations to par-
ticipate in experiments.

Joint Advanced Training and Tactics Laboratory
(JATTL)

Supporting mission rehearsal, training, operational
testing, and analysis is the JATTL’s raison d’etre.
The principal thrusts of the JATTL are developing
technologies that support the pre-computed products
required for joint training and mission rehearsal. This
is being explored under the Joint Rapid Distributed
Database Development Capability and support pro-
grams. The latter include phenomenology such as
environment, cultural assets, civilian populations,
and other effects necessary to represent real opera-
tions. The JATTL is connected nationally via both
DREN and the National Lambda Rail (NLR) to over
thirty Joint National Training Capability sites.

JFCOM’s JESPP

A scalable simulation code that has been shown ca-
pable of modeling more than 1,000,000 entities has
been designed and developed by the J9 team. This
effort is known as the Joint Experimentation on Scal-
able Parallel Processors (JESPP) project (Lucas,
2003.) This work builds on an earlier
DARPA/HPCMP project named SF EXxpress.
(Messina, 1997) The early JESPP experiments on the
University of Southern California Linux cluster
showed that the code was scalable, well beyond the
1,000,000 entities actually simulated, given the avail-
ability of additional nodes (Wagenbreth, 2005).

The current code has been successfully fielded and
reliably operated using JFCOM’s HPCMP-provided
compute assets hosted at ASC-MSRC, Wright Patter-
son AFB, and at the Maui High Performance Com-
puting Center (MHPCC) in Hawai’i. The J9 team has
been able to make the system suitable and robust for
day-to-day use, both unclassified and classified.

This HPC platform is needed in order to deliver a
state-of-the-art capability to military experimenters
so they can use it to easily initiate, control, modify,
and comprehend any size of a battlefield experiment.
It now additionally allows for the easy identification,
collection, and analysis of the voluminous data from
these experiments, all of which have been enabled by
the work of Dr. Ke-Thia Yao’s team (Yao, 2005).

A typical experiment would find the JFCOM person-
nel in Suffolk Virginia interfacing with a “Red
Team” in Fort Belvoir Virginia, a civilian control
group at SPAWAR San Diego California, and par-
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ticipants at Fort Knox Kentucky and Fort Leaven-
worth Kansas, all supported by the clusters on Maui
and in Ohio. The use of interest-managed routers on
the network has been successful in reducing inter-site
traffic to low levels.

Even using these powerful computers, the JFCOM
experimenters were constrained in a number of di-
mensions, e.g. number of entities, sophistication of
behaviors, realism of various environmental phe-
nomenology, etc. While the scalability of the code
would have made the use of larger clusters feasible, a
more effective, efficient, economical and elegant
solution was sought.

Broader Impacts for the HPCMP Community

The discipline of Forces Modeling and Simulation
(FMS) is unique to the DoD, compared to many of
the other standard science disciplines, e.g. CFD
(Computational Fluid Dynamics) and Weather. In a
similar way, interactive computing is a new frontier
being explored by the JESPP team for FMS, coordi-
nating with a few other user groups. Along these
lines, the newly enhanced Linux Cluster capability
will provide significant synergistic possibilities with
other computational areas such as visualization, ad-
vanced numerical analysis techniques, weather mod-
eling and other disciplines or computational sciences
such as SIP, CFD and CSM (Signals/Image Process-
ing, Computational Fluid Dynamics, and Computa-
tional Structural Mechanics).

The specific DoD goal is to enhance global-scale,
computer-generated support for experimentation by
sustaining more than 2,000,000 entities on appropri-
ate terrain, along with valid phenomenology. To ac-
complish this, the authors proposed a configuration
of a 512 CPU (1024 core), GPU-enhanced Linux
Cluster to be located at the JFCOM site in Suffolk
Virginia, with one NVIDIA 7950 GPU on each of
the dual CPU (Quad-core) nodes. GPUs should espe-
cially be of consequence in such algorithms as those
for the line-of-sight and route-planning calculations,
mentioned above. Early experiments have already
suggested that they are amenable to exploitation on
GPUs (Salmon et al. 2004) While the optimal mix of
GPUs to CPUs is as yet unknown, the authors
thought that space, heat dissipation, and other engi-
neering constraints mitigated in favor of one GPU
per node.

The quest to explore broader use of GPUs is often
called GPGPU, which stands for General Purpose
computation on GPUs (Lastra 2004). While the pro-
gramming of GPUs has been pursued for some time,
the newly released Compute Unified Device Archi-
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tecture (CUDA) programming language (Buck,
2007) has made that effort more accessible to jour-
neyman C programmers. For that reason, the HPCMP
accepted the desirability of upgrading the original
cluster configuration, which called for NVIDIA
7950s, to NVIDIA 8800, specifically to enable the
use of CUDA. This met with HPCMP’s long-
standing goal of providing operationally sound plat-
forms rather than experimental configurations that
could not be utilized easily by the wider DoD HPC
community.

RESEARCH APPROACH

The full conversion of the JSAF code to make use of
the GPU is considered infeasible. Instead, only com-
putational bottlenecks such as LOS can plausibly be
considered for the GPUs. To gain familiarity with
GPU programming the authors opted to implement a
code segment from another simulation community.
The code chosen was extracted from one of the well
known “crash codes.” A brief description of the
computational kernel and the methods employed will
assist the readers in analyzing applicability to their
own codes.

Sparse matrix factorization is a well-known impedi-
ment to fast computation in applications such as Me-
chanical Computer-Aided Engineering (MCAE),
making it an excellent target for GPU acceleration.
Factoring large sparse linear systems can be done via
many algorithms. Transforming the sparse matrix
factorization into a hierarchy of dense matrix factori-
zations, the multifrontal method (Duff 83), is particu-
larly attractive.

Multifrontal codes can effectively exploit the mem-
ory hierarchies of cache-based microprocessors, rou-
tinely going out-of-core to disk as needed. With the
right data structures, the vast majority of the floating
point operations can be performed with calls to
highly tuned Basic Linear Algebra Subprograms
(BLAS3) routines, such as the SGEMM (Single-
precision GEneral Matrix-Matrix) multiplication rou-
tine (Dongarra 1990), and near peak throughput
could be expected. All of the major commercial
MCAE applications use multifrontal solvers.

Very high levels of performance can be achieved on
GPUs, as has been shown in recent GPGPU work on
dense, single-precision linear algebra computations,
e.g., SGEMM, (Larson 2001, Fatahalian 2004, Go-
vindaraju 2007). This then leads to the query as to
whether such performance can be achieved in a mul-
tifrontal sparse solver. If so, then GPUs can be read-
ily and cost-effectively used to accelerate MCAE
codes. The following sections report on an experi-
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ment designed to test this hypothesis and its relation-
ship to an similar uses in FMS.

Overview of a Multifrontal Sparse Solver

The non-zero structure of a small sparse matrix is
depicted in Figure 2. An ‘X’ represents coefficients
that are initially non-zero, while an “*’ represents
those that fill-in during factorization. Choosing an
optimal order in which to eliminate these equations is
in general an NP-complete problem, so heuristics,
such as METIS (Karypis & Kumar 1995), are used to
try to reduce the storage and operations necessary.
The multifrontal method treats the factorization of
the sparse matrix as a hierarchy of dense sub-
problems.
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Figure 2 -Sparse matrix with symmetric non-zero
structure

Figure 3 below depicts the multifrontal view of the
matrix in Figure 2, above. The directed acyclic graph
of the order in which the equations are eliminated is
called the elimination tree. When each equation is
eliminated (i.e., used as the pivot), a small dense ma-
trix called the frontal matrix is assembled. The num-
bers to the left of each frontal matrix are its row indi-
ces in Figure 2. Frontal matrix assembly proceeds as
follows: the frontal matrix is cleared, it is loaded with
the initial values from the pivot column (and row if
it’s asymmetric), then any updates generated when
factoring the pivot equation’s children (in the elimi-
nation tree) are accumulated.

Once the frontal matrix has been assembled, the vari-
able is eliminated. Its Schur complement (the shaded
area in Figure 3) is computed as the outer product of
the pivot row and pivot column from the frontal ma-
trix. Finally, the pivot equation’s factor (a column of
L) is stored and its Schur complement placed where
it can be retrieved when needed for the assembly of
its parent’s frontal matrix. If a post-order traversal of
the elimination tree is used, the Schur complement
matrix can be placed on a stack of real values.
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Figure 3 — Multi-frontal view
of sparse matrix from figure 1

The cost of assembling frontal matrices is reduced by
exploiting super-nodes. A super-node is a group of
equations whose non-zero structures in the factored
matrix are indistinguishable. For example, zeros
filled-in during the factorization of the matrix in
Figure 2 turn its last four equations into a super-node.

The cost of assembling one frontal matrix for the
entire super-node is amortized over the factorization
of all the constituent equations, reducing the multi-
frontal matrices overhead. Furthermore, when multi-
ple equations are eliminated from within the same
frontal matrix, their Schur complement can be com-
puted very efficiently as the product of two dense
matrices.

Figure 4 illustrates the elimination tree for a matrix,
as ordered by METIS. This particular elimination tree
has 12,268 supernodes in it. There are thousands of
leaves and one root. The leaves are relative small,
0O(10) equations being eliminated from O(100). The
supernodes near the root are much bigger. Hundreds
of equations are eliminated from over a thousand.

Because dense factor operations scale as order N3,
approximately two dozen supernodes at the top of the
tree contain half of the total factor operations. The
objective of the work reported in the remainder of
this paper was to attempt to use GPUs as inexpensive
accelerators to factor the large supernodes near the
root of the elimination tree. This should in turn lead
to a significant and cost-effective increase in the
throughput in MCAE as well as familiarize the au-
thors with programming GPUs.
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Figure 4 — Supernodal elimination tree
(Courtesy Cleve Ashcraft)

GRAPHICS PROCESSING UNITS

The NVIDIA GeForce 8800 GPU architecture con-
sists of a set of multiprocessors. Each multiprocessor
has a set of Single Instruction Multiple Data (SIMD)
architecture processors. NVIDIA provided ISl with
an early model GTS card with eight multiprocessors.
The authors used the GTS card for code development
and benchmarking. The newer GTX card has 16 mul-
tiprocessors.

Each multiprocessor of both models has 8 SIMD
processors. The GPU supports single precision (32
bit) IEEE 754 (Arnold, 1992) formatted floating-
point operations. Each SIMD processor can perform
a multiply and an add instruction at every clock cy-
cle. The clock rate on the GTS card the authors used
is 675 MHz. Therefore, the peak performance is:

675 mhz * 2 results/op * 2 op/clock
* 8 SIMD/mp* 8 mp =172.8 GFLOP/s

The GTX card, with a slightly higher clock rate and
twice as many multiprocessors, has a peak perform-
ance of over 350 GFLOP/s.

Memory on the GTS GPU is organized into device
memory, shared memory and local memory. Device
memory is large (768 MBytes), is shared by all mul-
tiprocessors, is accessible from both host and GPU,
and has high latency (over 100 clocks). Each GTS
multiprocessor has a small (16 Kbytes) shared mem-
ory that is accessible by all the SIMD processors on
the multiprocessor.

Shared memory is divided into banks and, if accessed
so0 as to avoid bank conflicts, has a one-clock latency.
Shared memory can be thought of a user-managed
cache or buffer between device memory and the
SIMD processors. Local memory is allocated for
each thread. It is small and can be used for loop vari-
ables and temporary scalars, much as registers would
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be used. There is also a constant memory and a tex-
ture memory that were not used in this effort.

In our experience, there are two primary issues that
must be addressed to use the GPU efficiently: First
the code must use many threads, without condition-
als, operating on separate data to keep the SIMD
processors busy. Second code must divide data into
small sets, which can be cached in shared memory.

Once in shared memory, data must be used in many
(10 — 100) operations to mask the time spent transfer-
ring between shared and device memory. It is not
feasible to convert a large code such as JSAF or One-
SAF to execute on the GPU. Instead, compute-bound
subsets of the code must be identified that use a large
percentage of the execution time. Only those subsets
should be converted to run on the GPU. Their input
data is transferred from the host to the GPU’s device
memory before initiating computation on the GPU.
After the GPU computation is complete, the output
data is transferred back to the host from GPU device
memory.

To facilitate general-purpose computations on their
GPUs, NVIDIA announced a new Compute Unified
Device Architecture (CUDA) programming language
(Buck, 2007). CUDA is a minimal extension of the C
language and is loosely type-checked by the NVIDIA
compiler (and preprocessor), nvcc, which translates
CUDA programs (.cu) into C programs.

These are then compiled with the gcc compiler and
linked as an NVIDIA provided library. Within a
CUDA program, all functions have qualifiers to as-
sist the compiler with identifying whether the func-
tion belongs on the host or the GPU. For variables,
the types have qualifiers to indicate where the vari-
able lives, e.g., _ device_ or _ shared__. CUDA
does not support recursion, static variables, functions
with arbitrary numbers of arguments, or aggregate
data types.

CUDA supports the option of linking with an emula-
tion library to test GPU code while executing only on
the host. When emulated on the host, GPU code can
have PRINTFs for debugging. This was found to be
very convenient. There is also an option to create a
log file with timing and other statistics for each GPU
kernel execution. Using a simple PERL script for
aggregation of timings, this appeared very useful and
was used extensively for tuning and optimization.

The authors compared timings of the CUDA matrix
multiply routine with the highly optimized version
supplied in NVIDIA’s CUBLAS library of basic nu-
merical linear algebra functions. The CUDA version
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was within a factor of two of the library version.
Some of this difference is probably due to use of a
more efficient (and complex) algorithm in the library
version. This demonstrated that it is possible to write
reasonably efficient code using CUDA.

GPU Frontal Matrix Factorization Performance

Performance results using the GPU to factor a variety
of model frontal matrices are presented below in
Table 1.

Table 1 GPU frontal matrix
factorization kernel Performance

Size De- Secs FLOPS
gree

512 1024 0.204E+00 0.417E+10
1024 1024 0.256E+00 0.980E+10
1536 1024 0.334E+00 0.157E+11
2048 1024 0.437E+00 0.213E+11

512 2048 0.272E+00 0.101E+11
1024 2048 0.367E+00 0.185E+11
1536 2048 0.490E+00 0.255E+11
2048 2048 0.653E+00 0.307E+11

512 3072 0.386E+00 0.147E+11
1024 3072 0.535E+00 0.248E+11
1536 3072 0.752E+00 0.305E+11
2048 3072 0.934E+00 0.376E+11

512 4096 0.553E+00 0.176E+11
1024 4096 0.753E+00 0.290E+11
1536 4096 0.101E+01 0.364E+11
2048 4096 0.144E+01 0.378E+11

These range in the number of equations eliminated
from the frontal matrix (size) as well as the number
of equations left in the frontal matrix, i.e., its external
degree (degree). As expected, the larger the frontal
matrix gets, the more operations one has to perform
to factor it, and the higher the GPU performance.

The multifrontal code factors frontal matrices of vari-
ous sizes, ranging from very small to very large. For
small matrices the host is faster than the GPU. Tests
were run to determine when the relative performance
of the host and the GPU for a range of frontal matri-
ces. Figure 5 below is a plot of the performance for
various sizes and degrees, comparing the host and the
GPU.
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Figure 5 - Comparison of the frontal matrix fac-
torization performance of the GPU and its host

Ultimately the criteria that were chosen for deciding
to use the GPU to factor a frontal matrix were if its
size was greater than 127 or its leading dimension
(size plus degree) was greater than 1023. Perform-
ance for the GPU and host are very close near this
boundary. Small adjustments of the criteria or at-
tempts to tune it by adding complexity had little ef-
fect on performance.

Accelerated Multifrontal Solver Performance

The performance impact of the GPU on overall mul-
tifrontal sparse matrix factorization is examined here.
Three matrices were extracted from LSTC’s LS-
DYNA (Livermore Software DYNAmic finite ele-
ment code), one of the premier MCAE applications
extant. They were: hood, a two-dimensional problem;
ibeam, a three-dimensional structure built with two-
dimensional shells; and knee, a three-dimensional
solid, extracted from a model of a prosthetic knee.

To better understand the impact of the GPU on the
overall multifrontal factorization, a closer look at the
ibeam problem is advisable. The x-axis of Figure 6
represents different levels in the elimination tree of
the ibeam matrix. The root is to the right at level 19
and the leaves to the left. The red curve is the sum of
the number of frontal matrices at each level. It in-
creases exponentially until it peaks near 7000 at level
7. A few leaves of the tree appear even deeper. The
blue curve plots the sum of the floating point opera-
tions needed to factor the frontal matrices at each
level of the tree. The integral of this curve is ap-
proximately 101 billion, the total number of opera-
tions needed to factor the ibeam problem.

It is clear from the figure that the vast majority of the
operations are in the top five levels. In fact 60 frontal
matrices in the top six levels of the tree exceed the
threshold for use of the GPU. Together, they com-
prise 65% of the total factor operations.

Height Parameters for Sparse Matrix Factorization
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Figure 6 - Number of super-nodes and factor work at each level
of the ibeam elimination tree
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Figure 7 below depicts the sum of the time spent at
each level of the ibeam elimination tree. The red
curve represents the sum of the supernodes at each
level. The yellow curve is the time spent assembling
frontal matrices and stacking their Schur comple-
ments.

These are the overheads associated with using the
multifrontal method. The blue curve is the total time

000

Time/Height Parameters for Sparse Matrix Factorization

spent at each level of the tree when running on the
host. The difference between the blue and yellow
curves is the time spent factoring the frontal matrices.
The brown curve is the time spent at each level of the
elimination tree when using the GPU. The difference
between the brown curve and the yellow one is the
time spent on the GPU.
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Figure 7 - Number of Supernodes and time spent
factoring each level of the ibeam elimination tree

It is clear from looking at Figure 7 that the GPU is very
effective at reducing the time spent factoring the large
frontal matrices near the root of the elimination tree.
Factorization using the CPU alone took 109.08 sec-
onds; with the GPU: 56.14 seconds. The difference
between the brown and blue curves is the 52.94 sec-
onds by which the GPU accelerated the overall factori-
zation.

CONCLUSIONS

This research will provide warfighters with the new
capability to use Linux clusters in a way that will
simulate the required throngs of entities and suitably
global terrain. These are necessary to represent the
complex urban battlefield of the 21st Century. It will
enable experimenters to simulate the full range of
forces and civilians, all interacting in future urban
conflict zones. The use of GPUs as acceleration de-
vices in distributed cluster environments shows ap-
parent promise in any number of fields. Further ex-
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perimentation should extend the applicability of these
concepts. The CUDA code proved to be easily ex-
ploited by experienced C programmers.

The work reported herein has demonstrated that a
GPU can in fact be used to significantly accelerate
the throughput of a multi-frontal sparse symmetric
factorization code. The authors have demonstrated
speed-ups as high as 1.97 for factorization, and 1.86
overall when accounting for preprocessing of the
matrix and the triangular solves. This was done by
designing and implementing a symmetric factoriza-
tion algorithm for the GeForce 8800 in NVIDIA’s
new CUDA language and then offloading a small
number of large frontal matrices, containing over half
the total factor operations, to the GPU.

Having now familiarized themselves with the archi-
tecture and programming environment of the
NVIDIA G8800 GPU, the authors believe they are
now prepared to leverage GPUs to accelerate the
performance of JSAF and other JFCOM simulation
programs. Towards this end, they have designed a
512-node (1024 core) Linux cluster with 256
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NVIDIA G8800 GPUs. HPCMP has ordered such a
system and it is scheduled for installation at JFCOM
in the summer of 2007. The GPU-enhanced cluster
will be used to support training and experimentation
by J7 and J9.
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