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ABSTRACT 

 
The simulation community has often been hampered by constraints in computing: not enough resolution, not enough 
entities, not enough behavioral variants. Higher performance computers can ameliorate those constraints. The use of 
Linux Clusters is one path to higher performance; the use of Graphics Processing Units (GPU) as accelerators is 
another. Merging the two paths holds even more promise. The authors were the principal architects of a successful 
proposal to the High Performance Computing Modernization Program (HPCMP) for a new 512 CPU (1024 core), 
GPU-enhanced Linux Cluster for the Joint Forces Command’s Joint Experimentation Directorate (J9). In this paper, 
the basic theories underlying the use of GPUs as accelerators for intelligent agent, entity-level simulations are laid 
out, the previous research is surveyed and the ongoing efforts are outlined. The simulation needs of J9, the direction 
from HPCMP and the careful analysis of the intersection of these are explicitly discussed. The configuration of the 
cluster and the assumptions that led to the conclusion that GPUs might increase performance by a factor of two are 
carefully documented. The processes that led to that configuration, as delivered to JFCOM, will be specified and 
alternatives that were considered will be analyzed. Planning and implementation strategies are reviewed and justi-
fied. The presentation will then report in detail about the execution of the actual installation and implementation of 
the JSAF simulation on the cluster in August 2007. Issues, problems and solutions will all be reported objectively, 
as guides to the simulation community and as confirmation or rejection of early assumptions. Lessons learned and 
recommendations will be set out. Original performance projections will be compared to actual benchmarking results 
using LINPACK and simulation performance. Early observed operational capabilities of interest are proffered in 
detail herein. 
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INTRODUCTION  
 
This paper addresses the background for, approach to 
and the experience of the authors with the new GPU 
accelerator-enhanced Linux Cluster at JFCOM. Re-
quirements, design considerations, configuration de-
cisions, and early experimental results are reported.  
 
Joint Forces Command Mission and Require-
ments 
 
Live, virtual and constructive simulations play a vital 
role in DoD analysis, evaluation and training.  The 
Joint Forces Command (JFCOM) has the mission to 
lead the transformation of the U.S. Armed Forces and 
to enable broad-spectrum dominance as per Joint 
Vision 2010 (CJCS, 1996) and 2020 (CJCS, 2000). 
JFCOM’s research arm is the Joint Experimentation 
Directorate, J9. This leads to the nearly unique situa-
tion of having a research activity lodged within an 
operation command, calling for experiments in which 
warfighters in uniform are staffing the consoles dur-
ing interactive, HPC-supported simulations.  
 
The complexities of urban warfare are modeled by J9 
in a series of experiments using well-validated entity-
level simulations, e.g. Joint Semi-Automated Forces 
(JSAF) and the Simulation of the Location and At-
tack of Mobile Enemy Missiles (SLAMEM). These 
need to be run at a scale and resolution adequate for 
modeling the complexities of urban combat.  
  
The J9 code came from a long lineage of entity-level 
battlefield codes. Terrain representations are popu-
lated with intelligent-agent friendly forces, enemy 
personnel and civilian groups. These have compute 
requirements in order to generate their behaviors. In 
addition, a major computational load is imposed in 
the performance of line-of-sight calculations for the 
entities and route-finding algorithms for the movers. 
This is a problem of some moment, especially in the 
light of its inherently onerous “n-squared” growth 
characteristics of such code (Brunett, 1998).  
 
Consider a case of several thousand entities needing 
to interact with each other in urban settings with 
vegetation and buildings obscuring the lines of sight. 
This situation has been successfully met by the use of 

innovative interest-managed communications (Bar-
rett, 2004).  
  
JFCOM requires an enhanced Linux cluster of ade-
quate size, power, and configuration to support simu-
lations of more than 2,000,000 entities operating 
within high-resolution insets on a global-scale terrain 
database. This facility will be used occasionally to 
interact with live exercises, but more often will be 
engaged interactively with users and experimenters 
while presenting virtual or constructive simulations. 
(Ceranowicz, 2005) It must be robust, to reliably 
support hundreds of personnel, and it must be scal-
able, to easily handle both small activities and large, 
global-scale experiments with the participants dis-
tributed trans-continentally, as shown in  below. 
 

 
Figure 1 - JFCOM’s HPC Simulation Net  

 
Joint Futures Lab (JFL) 
 
The creation of a standing experimentation environ-
ment that can respond immediately to DoD time-
critical needs for analysis is the goal of the JFL. It 
operates in a distributed fashion over the Defense 
Research and Engineering Network (DREN), at a 
scale and level of resolution that allows JFCOM and 
its partners to conduct experimentation on issues of 
concern to combat commanders, who often partici-
pate in the experiments themselves.  
 
The Joint Futures Lab consists of extensive simula-
tion federations, software, and networks, joined into 
one common infrastructure that supports experi-
ments. This capability includes quantitative and 
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qualitative analysis, flexible plug-and-play standards, 
and the opportunity for diverse organizations to par-
ticipate in experiments.  
 
Joint Advanced Training and Tactics Laboratory 
(JATTL) 
 
Supporting mission rehearsal, training, operational 
testing, and analysis is the JATTL’s raison d’etre. 
The principal thrusts of the JATTL are developing 
technologies that support the pre-computed products 
required for joint training and mission rehearsal. This 
is being explored under the Joint Rapid Distributed 
Database Development Capability and support pro-
grams. The latter include phenomenology such as 
environment, cultural assets, civilian populations, 
and other effects necessary to represent real opera-
tions. The JATTL is connected nationally via both 
DREN and the National Lambda Rail (NLR) to over 
thirty Joint National Training Capability sites.  
 
JFCOM’s JESPP  
 
A scalable simulation code that has been shown ca-
pable of modeling more than 1,000,000 entities has 
been designed and developed by the J9 team. This 
effort is known as the Joint Experimentation on Scal-
able Parallel Processors (JESPP) project (Lucas, 
2003.) This work builds on an earlier 
DARPA/HPCMP project named SF Express. 
(Messina, 1997) The early JESPP experiments on the 
University of Southern California Linux cluster  
showed that the code was scalable, well beyond the 
1,000,000 entities actually simulated, given the avail-
ability of additional nodes (Wagenbreth, 2005). 
 
The current code has been successfully fielded and 
reliably operated using JFCOM’s HPCMP-provided 
compute assets hosted at ASC-MSRC, Wright Patter-
son AFB, and at the Maui High Performance Com-
puting Center (MHPCC) in Hawai’i. The J9 team has 
been able to make the system suitable and robust for 
day-to-day use, both unclassified and classified. 
 
This HPC platform is needed in order to deliver a 
state-of-the-art capability to military experimenters 
so they can use it to easily initiate, control, modify, 
and comprehend any size of a battlefield experiment. 
It now additionally allows for the easy identification, 
collection, and analysis of the voluminous data from 
these experiments, all of which have been enabled by 
the work of Dr. Ke-Thia Yao’s team (Yao, 2005).  
 
A typical experiment would find the JFCOM person-
nel in Suffolk Virginia interfacing with a “Red 
Team” in Fort Belvoir Virginia, a civilian control 
group at SPAWAR San Diego California, and par-

ticipants at Fort Knox Kentucky and Fort Leaven-
worth Kansas, all supported by the clusters on Maui 
and in Ohio. The use of interest-managed routers on 
the network has been successful in reducing inter-site 
traffic to low levels. 
 
Even using these powerful computers, the JFCOM 
experimenters were constrained in a number of di-
mensions, e.g. number of entities, sophistication of 
behaviors, realism of various environmental phe-
nomenology, etc. While the scalability of the code 
would have made the use of larger clusters feasible, a 
more effective, efficient, economical and elegant 
solution was sought. 
 
Broader Impacts for the HPCMP Community 
 
The discipline of Forces Modeling and Simulation 
(FMS) is unique to the DoD, compared to many of 
the other standard science disciplines, e.g. CFD 
(Computational Fluid Dynamics) and Weather. In a 
similar way, interactive computing is a new frontier 
being explored by the JESPP team for FMS, coordi-
nating with a few other user groups. Along these 
lines, the newly enhanced Linux Cluster capability 
will provide significant synergistic possibilities with 
other computational areas such as visualization, ad-
vanced numerical analysis techniques, weather mod-
eling and other disciplines or computational sciences 
such as SIP, CFD and CSM (Signals/Image Process-
ing, Computational Fluid Dynamics, and Computa-
tional Structural Mechanics). 
 
The specific DoD goal is to enhance global-scale, 
computer-generated support for experimentation by 
sustaining more than 2,000,000 entities on appropri-
ate terrain, along with valid phenomenology. To ac-
complish this, the authors proposed a configuration 
of a 512 CPU (1024 core), GPU-enhanced Linux 
Cluster to be located at the JFCOM site in Suffolk 
Virginia, with one NVIDIA 7950 GPU on each of 
the dual CPU (Quad-core) nodes. GPUs should espe-
cially be of consequence in such algorithms as those 
for the line-of-sight and route-planning calculations, 
mentioned above.  Early experiments have already 
suggested that they are amenable to exploitation on 
GPUs (Salmon et al. 2004)  While the optimal mix of 
GPUs to CPUs is as yet unknown, the authors 
thought that space, heat dissipation, and other engi-
neering constraints mitigated in favor of one GPU 
per node. 
 
The quest to explore broader use of GPUs is often 
called GPGPU, which stands for General Purpose 
computation on GPUs (Lastra 2004). While the pro-
gramming of GPUs has been pursued for some time, 
the newly released Compute Unified Device Archi-
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tecture (CUDA) programming language (Buck, 
2007) has made that effort more accessible to jour-
neyman C programmers. For that reason, the HPCMP 
accepted the desirability of upgrading the original 
cluster configuration, which called for NVIDIA 
7950s, to NVIDIA 8800, specifically to enable the 
use of CUDA. This met with HPCMP’s long-
standing goal of providing operationally sound plat-
forms rather than experimental configurations that 
could not be utilized easily by the wider DoD HPC 
community. 
 

RESEARCH APPROACH 
 
The full conversion of the JSAF code to make use of 
the GPU is considered infeasible.  Instead, only com-
putational bottlenecks such as LOS can plausibly be 
considered for the GPUs.  To gain familiarity with 
GPU programming the authors opted to implement a 
code segment from another simulation community. 
The code chosen was extracted from one of the well 
known “crash codes.”  A brief description of the 
computational kernel and the methods employed will 
assist the readers in analyzing applicability to their 
own codes. 
 
Sparse matrix factorization is a well-known impedi-
ment to fast computation in applications such as Me-
chanical Computer-Aided Engineering (MCAE), 
making it an excellent target for GPU acceleration.  
Factoring large sparse linear systems can be done via 
many algorithms. Transforming the sparse matrix 
factorization into a hierarchy of dense matrix factori-
zations, the multifrontal method (Duff 83), is particu-
larly attractive.  
 
Multifrontal codes can effectively exploit the mem-
ory hierarchies of cache-based microprocessors, rou-
tinely going out-of-core to disk as needed.  With the 
right data structures, the vast majority of the floating 
point operations can be performed with calls to 
highly tuned Basic Linear Algebra Subprograms 
(BLAS3) routines, such as the SGEMM (Single-
precision GEneral Matrix-Matrix) multiplication rou-
tine (Dongarra 1990), and near peak throughput 
could be expected.  All of the major commercial 
MCAE applications use multifrontal solvers. 
 
Very high levels of performance can be achieved on 
GPUs, as has been shown in recent GPGPU work on 
dense, single-precision linear algebra computations, 
e.g., SGEMM, (Larson 2001, Fatahalian 2004, Go-
vindaraju 2007). This then leads to the query as to 
whether such performance can be achieved in a mul-
tifrontal sparse solver. If so, then GPUs can be read-
ily and cost-effectively used to accelerate MCAE 
codes. The following sections report on an experi-

ment designed to test this hypothesis and its relation-
ship to an similar uses in FMS. 
 
Overview of a Multifrontal Sparse Solver 
 
The non-zero structure of a small sparse matrix is 
depicted in Figure 2. An ‘x’ represents coefficients 
that are initially non-zero, while an ‘*’ represents 
those that fill-in during factorization. Choosing an 
optimal order in which to eliminate these equations is 
in general an NP-complete problem, so heuristics, 
such as METIS (Karypis & Kumar 1995), are used to 
try to reduce the storage and operations necessary. 
The multifrontal method treats the factorization of 
the sparse matrix as a hierarchy of dense sub-
problems.  
  

1 X X   X    
3 XX     X
2 XXX   *X*
7 X XX  
9 XX  X
8 XXX*X*
4 X *X *XX* 
5 X  XXXX
6 X* X**XX

1 X X   X    
3 XX     X
2 XXX   *X*
7 X XX  
9 XX  X
8 XXX*X*
4 X *X *XX* 
5 X  XXXX
6 X* X**XX

 
Figure 2 -Sparse matrix with symmetric non-zero 

structure 
 

Figure 3 below depicts the multifrontal view of the 
matrix in Figure 2, above. The directed acyclic graph 
of the order in which the equations are eliminated is 
called the elimination tree. When each equation is 
eliminated (i.e., used as the pivot), a small dense ma-
trix called the frontal matrix is assembled. The num-
bers to the left of each frontal matrix are its row indi-
ces in Figure 2. Frontal matrix assembly proceeds as 
follows: the frontal matrix is cleared, it is loaded with 
the initial values from the pivot column (and row if 
it’s asymmetric), then any updates generated when 
factoring the pivot equation’s children (in the elimi-
nation tree) are accumulated.  
 
Once the frontal matrix has been assembled, the vari-
able is eliminated. Its Schur complement (the shaded 
area in Figure 3) is computed as the outer product of 
the pivot row and pivot column from the frontal ma-
trix. Finally, the pivot equation’s factor (a column of 
L) is stored and its Schur complement placed where 
it can be retrieved when needed for the assembly of 
its parent’s frontal matrix. If a post-order traversal of 
the elimination tree is used, the Schur complement 
matrix can be placed on a stack of real values. 
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Figure 3 – Multi-frontal view  
of sparse matrix from figure 1 

 
The cost of assembling frontal matrices is reduced by 
exploiting super-nodes. A super-node is a group of 
equations whose non-zero structures in the factored 
matrix are indistinguishable. For example, zeros 
filled-in during the factorization of the matrix in 
Figure 2 turn its last four equations into a super-node.  
 
The cost of assembling one frontal matrix for the 
entire super-node is amortized over the factorization 
of all the constituent equations, reducing the multi-
frontal matrices overhead. Furthermore, when multi-
ple equations are eliminated from within the same 
frontal matrix, their Schur complement can be com-
puted very efficiently as the product of two dense 
matrices.  
 
Figure 4 illustrates the elimination tree for a matrix, 
as ordered by METIS. This particular elimination tree 
has 12,268 supernodes in it. There are thousands of 
leaves and one root. The leaves are relative small, 
O(10) equations being eliminated from O(100). The 
supernodes near the root are much bigger. Hundreds 
of equations are eliminated from over a thousand.  
 
Because dense factor operations scale as order N3, 
approximately two dozen supernodes at the top of the 
tree contain half of the total factor operations.  The 
objective of the work reported in the remainder of 
this paper was to attempt to use GPUs as inexpensive 
accelerators to factor the large supernodes near the 
root of the elimination tree. This should in turn lead 
to a significant and cost-effective increase in the 
throughput in MCAE as well as familiarize the au-
thors with programming GPUs. 
 

 
Figure 4 – Supernodal elimination tree  

(Courtesy Cleve Ashcraft) 
 
 

GRAPHICS PROCESSING UNITS 
 
The NVIDIA GeForce 8800 GPU architecture con-
sists of a set of multiprocessors. Each multiprocessor 
has a set of Single Instruction Multiple Data (SIMD) 
architecture processors. NVIDIA provided ISI with 
an early model GTS card with eight multiprocessors. 
The authors used the GTS card for code development 
and benchmarking. The newer GTX card has 16 mul-
tiprocessors.  
 
Each multiprocessor of both models has 8 SIMD 
processors. The GPU supports single precision (32 
bit) IEEE 754 (Arnold, 1992) formatted floating-
point operations. Each SIMD processor can perform 
a multiply and an add instruction at every clock cy-
cle. The clock rate on the GTS card the authors used 
is 675 MHz. Therefore, the peak performance is: 
 

675 mhz * 2 results/op * 2 op/clock  
* 8 SIMD/mp* 8 mp = 172.8 GFLOP/s 

 
The GTX card, with a slightly higher clock rate and 
twice as many multiprocessors, has a peak perform-
ance of over 350 GFLOP/s. 
 
Memory on the GTS GPU is organized into device 
memory, shared memory and local memory. Device 
memory is large (768 MBytes), is shared by all mul-
tiprocessors, is accessible from both host and GPU, 
and has high latency (over 100 clocks). Each GTS 
multiprocessor has a small (16 Kbytes) shared mem-
ory that is accessible by all the SIMD processors on 
the multiprocessor.  
 
Shared memory is divided into banks and, if accessed 
so as to avoid bank conflicts, has a one-clock latency. 
Shared memory can be thought of a user-managed 
cache or buffer between device memory and the 
SIMD processors. Local memory is allocated for 
each thread. It is small and can be used for loop vari-
ables and temporary scalars, much as registers would 
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be used. There is also a constant memory and a tex-
ture memory that were not used in this effort.  
 
In our experience, there are two primary issues that 
must be addressed to use the GPU efficiently: First 
the code must use many threads, without condition-
als, operating on separate data to keep the SIMD 
processors busy. Second code must divide data into 
small sets, which can be cached in shared memory.  
 
Once in shared memory, data must be used in many 
(10 – 100) operations to mask the time spent transfer-
ring between shared and device memory. It is not 
feasible to convert a large code such as JSAF or One-
SAF to execute on the GPU. Instead, compute-bound 
subsets of the code must be identified that use a large 
percentage of the execution time. Only those subsets 
should be converted to run on the GPU. Their input 
data is transferred from the host to the GPU’s device 
memory before initiating computation on the GPU. 
After the GPU computation is complete, the output 
data is transferred back to the host from GPU device 
memory.  
 
To facilitate general-purpose computations on their 
GPUs, NVIDIA announced a new Compute Unified 
Device Architecture (CUDA) programming language 
(Buck, 2007). CUDA is a minimal extension of the C 
language and is loosely type-checked by the NVIDIA 
compiler (and preprocessor), nvcc, which translates 
CUDA programs (.cu) into C programs.  
 
These are then compiled with the gcc compiler and 
linked as an NVIDIA provided library. Within a 
CUDA program, all functions have qualifiers to as-
sist the compiler with identifying whether the func-
tion belongs on the host or the GPU. For variables, 
the types have qualifiers to indicate where the vari-
able lives, e.g., __device__ or __shared__. CUDA 
does not support recursion, static variables, functions 
with arbitrary numbers of arguments, or aggregate 
data types. 
 
CUDA supports the option of linking with an emula-
tion library to test GPU code while executing only on 
the host. When emulated on the host, GPU code can 
have PRINTFs for debugging. This was found to be 
very convenient. There is also an option to create a 
log file with timing and other statistics for each GPU 
kernel execution. Using a simple PERL script for 
aggregation of timings, this appeared very useful and 
was used extensively for tuning and optimization.  
 
The authors compared timings of the CUDA matrix 
multiply routine with the highly optimized version 
supplied in NVIDIA’s CUBLAS library of basic nu-
merical linear algebra functions. The CUDA version 

was within a factor of two of the library version. 
Some of this difference is probably due to use of a 
more efficient (and complex) algorithm in the library 
version. This demonstrated that it is possible to write 
reasonably efficient code using CUDA. 
 
GPU Frontal Matrix Factorization Performance 
 
Performance results using the GPU to factor a variety 
of model frontal matrices are presented below in 
Table 1.  

Table 1 GPU frontal matrix  
factorization kernel Performance 

 
Size De-

gree 
Secs FLOPS 

 512 1024  0.204E+00   0.417E+10 
1024 1024  0.256E+00   0.980E+10 
1536 1024  0.334E+00   0.157E+11 
2048 1024  0.437E+00   0.213E+11 
 512 2048  0.272E+00   0.101E+11 

1024 2048  0.367E+00   0.185E+11 
1536 2048  0.490E+00   0.255E+11 
2048 2048  0.653E+00   0.307E+11 
 512 3072  0.386E+00   0.147E+11 

1024 3072  0.535E+00   0.248E+11 
1536 3072  0.752E+00   0.305E+11 
2048 3072  0.934E+00   0.376E+11 
 512 4096  0.553E+00   0.176E+11 

1024 4096  0.753E+00   0.290E+11 
1536 4096  0.101E+01   0.364E+11 
2048 4096  0.144E+01   0.378E+11 

 
 

These range in the number of equations eliminated 
from the frontal matrix (size) as well as the number 
of equations left in the frontal matrix, i.e., its external 
degree (degree). As expected, the larger the frontal 
matrix gets, the more operations one has to perform 
to factor it, and the higher the GPU performance. 
 
The multifrontal code factors frontal matrices of vari-
ous sizes, ranging from very small to very large. For 
small matrices the host is faster than the GPU. Tests 
were run to determine when the relative performance 
of the host and the GPU for a range of frontal matri-
ces. Figure 5 below is a plot of the performance for 
various sizes and degrees, comparing the host and the 
GPU.  

2007 Paper No. 7437 Page 6 of 10 



 
 
 

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2007 

 
Figure 5 - Comparison of the frontal matrix fac-
torization performance of the GPU and its host 

Ultimately the criteria that were chosen for deciding 
to use the GPU to factor a frontal matrix were if its 
size was greater than 127 or its leading dimension 
(size plus degree) was greater than 1023. Perform-
ance for the GPU and host are very close near this 
boundary. Small adjustments of the criteria or at-
tempts to tune it by adding complexity had little ef-
fect on performance. 
 
Accelerated Multifrontal Solver Performance 
 

The performance impact of the GPU on overall mul-
tifrontal sparse matrix factorization is examined here. 
Three matrices were extracted from LSTC’s LS-
DYNA (Livermore Software DYNAmic finite ele-
ment code), one of the premier MCAE applications 
extant. They were: hood, a two-dimensional problem; 
ibeam, a three-dimensional structure built with two-
dimensional shells; and knee, a three-dimensional 
solid, extracted from a model of a prosthetic knee.  
 
To better understand the impact of the GPU on the 
overall multifrontal factorization, a closer look at the 
ibeam problem is advisable. The x-axis of Figure 6 
represents different levels in the elimination tree of 
the ibeam matrix. The root is to the right at level 19 
and the leaves to the left. The red curve is the sum of 
the number of frontal matrices at each level. It in-
creases exponentially until it peaks near 7000 at level 
7. A few leaves of the tree appear even deeper.  The 
blue curve plots the sum of the floating point opera-
tions needed to factor the frontal matrices at each 
level of the tree. The integral of this curve is ap-
proximately 101 billion, the total number of opera-
tions needed to factor the ibeam problem.  
 
It is clear from the figure that the vast majority of the 
operations are in the top five levels. In fact 60 frontal 
matrices in the top six levels of the tree exceed the 
threshold for use of the GPU.  Together, they com-
prise 65% of the total factor operations. 

 

Figure 6 - Number of super-nodes and factor work at each level  
of the ibeam elimination tree 
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Figure 7 below depicts the sum of the time spent at 
each level of the ibeam elimination tree. The red 
curve represents the sum of the supernodes at each 
level. The yellow curve is the time spent assembling 
frontal matrices and stacking their Schur comple-
ments.  
 
These are the overheads associated with using the 
multifrontal method.  The blue curve is the total time 

spent at each level of the tree when running on the 
host. The difference between the blue and yellow 
curves is the time spent factoring the frontal matrices. 
The brown curve is the time spent at each level of the 
elimination tree when using the GPU. The difference 
between the brown curve and the yellow one is the 
time spent on the GPU. 

 

 
 

Figure 7 - Number of Supernodes and time spent  
factoring each level of the ibeam elimination tree 

 

It is clear from looking at Figure 7 that the GPU is very 
effective at reducing the time spent factoring the large 
frontal matrices near the root of the elimination tree. 
Factorization using the CPU alone took 109.08 sec-
onds; with the GPU: 56.14 seconds. The difference 
between the brown and blue curves is the 52.94 sec-
onds by which the GPU accelerated the overall factori-
zation. 

 
 

CONCLUSIONS 
 

This research will provide warfighters with the new 
capability to use Linux clusters in a way that will 
simulate the required throngs of entities and suitably 
global terrain. These are necessary to represent the 
complex urban battlefield of the 21st Century. It will 
enable experimenters to simulate the full range of 
forces and civilians, all interacting in future urban 
conflict zones. The use of GPUs as acceleration de-
vices in distributed cluster environments shows ap-
parent promise in any number of fields. Further ex-

perimentation should extend the applicability of these 
concepts. The CUDA code proved to be easily ex-
ploited by experienced C programmers. 
 
The work reported herein has demonstrated that a 
GPU can in fact be used to significantly accelerate 
the throughput of a multi-frontal sparse symmetric 
factorization code. The authors have demonstrated 
speed-ups as high as 1.97 for factorization, and 1.86 
overall when accounting for preprocessing of the 
matrix and the triangular solves. This was done by 
designing and implementing a symmetric factoriza-
tion algorithm for the GeForce 8800 in NVIDIA’s 
new CUDA language and then offloading a small 
number of large frontal matrices, containing over half 
the total factor operations, to the GPU. 
 
Having now familiarized themselves with the archi-
tecture and programming environment of the 
NVIDIA G8800 GPU, the authors believe they are 
now prepared to leverage GPUs to accelerate the 
performance of JSAF and other JFCOM simulation 
programs.  Towards this end, they have designed a 
512-node (1024 core) Linux cluster with 256 
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NVIDIA G8800 GPUs.  HPCMP has ordered such a 
system and it is scheduled for installation at JFCOM 
in the summer of 2007.  The GPU-enhanced cluster 
will be used to support training and experimentation 
by J7 and J9. 
 
 

ACKNOWLEDGEMENTS 
 
The authors are grateful for the unstinting support of 
the NVIDIA staff in this early foray into CUDA and 
GPU use, most especially Dr. Ian Buck and Norbert 
Juffa. Some of this material is based on research 
sponsored by the Air Force Research Laboratory 
under agreement number FA8750-05-2-0204. The 
U.S. Government is authorized to reproduce and dis-
tribute reprints for Governmental purposes notwith-
standing any copyright notation thereon. 
 

REFERENCES 
 
Ashcraft, C. and R. Grimes, (1989)The Influence of 

Relaxed Supernode Partitions on the Multifron-
tal Method, ACM Transactions in Mathematical 
Software, 15 1989, pp. 291-309 

Barrett, B. & Gottschalk, T.D., (2004), Advanced 
Message Routing for Scalable Distributed Simu-
lations, 2004 I/ITSEC Conference, Orlando, FL 

Brunett, S., & Gottschalk, T.D., (1998), A Large-
scale Meta-computing Framework for the Mod-
SAF Real-time Simulation, Parallel Computing:, 
V24:1873-1900, Amsterdam  

Buck, I., (2007), GPU Computing: Programming a 
Massively Parallel Processor, International Sym-
posium on Code Generation and Optimization, 
San José, California 

Buttari, A., J. Dongarra, J. Kurzak, P. Luszczek, and 
S. Tomov, (2007) Using Mixed Precision for 
Sparse Matrix Computations to Enhance the Per-
formance while Achieving 64-bit Accuracy, 
submitted to ACM Transactions on Mathemati-
cal Software, 2007. 

Ceranowicz, A. & Torpey, M., (2005), Adapting to 
Urban Warfare, Journal of Defense Modeling 
and Simulation, 2:1, January 2005, San Diego, 
Ca 

Charlesworth, A., & Gustafson, J., (1986), Introduc-
ing Replicated VLSI to Supercomputing: the 
FPS-164/MAX Scientific Computer, in IEEE 
Computer, 19:3, pp 10-23, March 1986 

CJCS, (2000), Joint Vision 2020, Director for Strate-
gic Plans and Policy, J5: Strategy Di-vision, 
Washington, D.C.: Government Printing Office 

CJWC, (1997), Concept for Future Joint Operations, 
Commander, Joint Warfighting Center, Fort 
Monroe, VA. 

Dongarra, J. J., J. Du Croz, S. Hammarling, and I. S. 
Duff (1990), A Set of Level 3 Basic Linear Al-
gebra Subprograms, , ACM Transactions on 
Mathematical Software 161):1-17, March 1990 

Dongarra, J., (1993), Linear algebra libraries for 
high-performance computers: a personal per-
spective, Parallel & Distributed Technology: 
Systems & Applications, IEEE, Feb. 1993, Vol-
ume: 1, Issue: 1, pp: 17 - 24 

Duff , I and J Reid,(1983) The Multifrontal Solution 
of Indefinite Sparse Symmetric Linear Systems, 
ACM Transactions on Mathematical Software, 9 
1983, pp 302-335 

Duff, Ian.(1986)Parallel Implementation of Multi-
frontal Schemes, Parallel Computing, 3 1986), 
pp 193-204. 

Fatahalian, K., J. Sugarman, and P. Hanrahan, (2004) 
Understanding the Efficiency of GPU Algo-
rithms for Matrix-Matrix Multiplication, In Pro-
ceedings of the ACM Sigraph/Eurographics 
Conference on Graphics hardware, pages 133-
138, Eurographics Association, 2004 

Fatahalian, K., Sugerman, .J. & Hanrahan, P., (2004), 
Understanding the efficiency of GPU algorithms 
for matrix-matrix multiplication, Workshop on 
Graphics Hardware, Eurographics/SIGGRAPH  

Govindaraju, N. and D. Manocha, (2007)Cache-
Efficient Numerical Algorithms Using Graphics 
Hardware, University of North Carolina Techni-
cal Report, 2007. 

Gustafson, J.L, (2006.)The Quest for Linear Equation 
Solvers and the Invention o Electronic Digital 
Computing, 2006 International Symposium on 
Modern Computing, Sofia, Bulgaria 

Joint Pub 1-02, (2000), Department of Defense Dic-
tionary of Military and Associated Terms, Chair-
man of the Joint Chiefs of Staff, Washington, 
D.C. 

Karypis G. and V. Kumar, (1995) A fast and high 
quality multilevel scheme for partitioning irregu-
lar graphs, International Conference on Parallel 
Processing, pp. 113-122, 1995 

Larson, E. S. and D. McAllister, (2001)Fast matrix 
multiplies using graphics hardware, In Proceed-
ings of the 2001 ACM/IEEE conference on Su-
percomputing, pages 55-55, ACM Press, 2001 

Lastra, A., Lastra, M. Lin, and D. Minocha, (2004), 
ACM Workshop on General Purpose Computa-
tions on Graphics Processors.  

Lucas, R., & Davis, D., (2003), Joint Experimenta-
tion on Scalable Parallel Processors, 2003 
I/ITSEC Conference, Orlando, FL 

Lucas, R.F., Wagenbreth, G., Tran, J.J., & Davis, D. 
M., (2007), Multifrontal Computations on 
GPUs, unpublished ISI White Paper, on line at: 
www.isi.edu/~ddavis/JESPP/2007_Papers/SC07/
mf2_gpu_v0.19a-nms.doc 

2007 Paper No. 7437 Page 9 of 10 



 
 
 

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2007 

Messina, P. C., Brunett, S., Davis, D. M., Gottschalk, 
T. D., (1997) Distributed Interactive Simulation 
for Synthetic Forces, In Mapping and Schedul-
ing Systems, International Parallel Processing 
Symposium, Geneva  

Pham, D. C., T. Aipperspach, D. Boerstler, M. Bol-
liger, R. Chaudhry, D. Cox, P. Harvey, P. M. 
Harvey, H. P. Hofstee, C. Johns, J. Kahle, A. 
Kameyama, J. Keaty, Y. Masubuchi, M. Pham, 
J. Pille, S. Posluszny, M. Riley, D. L. Stasiak, M. 
Suzuoki, O. Takahashi, J. Warnock, Stephen 
Weitzel, Dieter Wendel, and K. Yazawa, (2006) 
Overview of the Architecture, Circuit Design, 
and Physical Implementation of a First-
Generation Cell Processor, IEEE Journal of 
Solid State Circuits, Vol. 41, No. 1, January 
2006 

Salomon, B., Govindaraju, N. K., Sud, A., Gayle, R., 
Lin, M. C., & Manocha, D., “Accelerating Line 
of Sight Computation Using Graphics Process-
ing Units”, Proc. of Army Science Conference, 
2004 

Wagenbreth, G., Yao, K-T., Davis, D., Lucas, R., 
and Gottschalk, T., (2005), Enabling 1,000,000-
Entity Simulations on Distributed Linux Clus-
ters, WSC05-The Winter Simulation Conference, 
Orlando, Florida,  

Whaley, R.C. & Dongarra, J.J., (1998), Automati-
cally Tuned Linear Algebra Software, 
IEEE/ACM Conference on Supercomputing, 
SC98., pp.:38 - 38  

Wilkinson, J. H., (1965) The Algebraic Eigenvalue 
Problem, Oxford University Press, Oxford, UK, 
1965 

Yao, K-T., Ward, C. & Wagenbreth, G., (2006), Ag-
ile Data Logging and Analysis, 2003 I/ITSEC 
Conference, Orlando, FL (Arnold 1992) Arnold, 
M.G., T.A. Bailey, J.R. Cowles & M.D. Winkel, 
Applying Features of IEEE 754 to 
Sign/Logarithm Arithmetic, IEEE Transactions 
on Computers, August 1992, Vol. 41, No. 8, pp. 
1040-1050 

Yozo H, X. S. Li and D. H. Bailey, (2001) Algo-
rithms for Quad-Double Precision Floating Point 
Arithmetic, 15th IEEE Symposium on Computer 
Arithmetic, IEEE Computer Society, 2001, pg. 
155-162 

 
 

2007 Paper No. 7437 Page 10 of 10 


	ABSTRACT
	ABOUT THE AUTHORS
	INTRODUCTION 
	Joint Forces Command Mission and Requirements
	Joint Futures Lab (JFL)
	Joint Advanced Training and Tactics Laboratory (JATTL)
	JFCOM’s JESPP 
	Broader Impacts for the HPCMP Community

	RESEARCH APPROACH
	Overview of a Multifrontal Sparse Solver

	GRAPHICS PROCESSING UNITS
	GPU Frontal Matrix Factorization Performance
	Accelerated Multifrontal Solver Performance

	CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES

