
Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2007 
 

2007 Paper No.7116 Page 1 of 11 
 

An Optimized Synthetic Environment Representation Developed for 
OneTESS Live Training 

 
Steven Borkman, Gregory Peele, Chuck Campbell 

Applied Research Associates 
Orlando, FL 

sborkman@ara.com, gpeele@ara.com, ccampbell@ara.com  

 

 

ABSTRACT 
 
When designing a synthetic environment terrain database format, developers face a tradeoff between 
physical storage, runtime performance, and data accuracy.  The context of the simulation and particularly 
its specialized requirements heavily influence how the tradeoffs are made.  One of the largest historical 
driving factors in how this balance has been struck has been the “domain” context.  The virtual and 
constructive training domains drove most of the modern terrain format development.  However, the 
requirements for live training are often significantly different.  For example, the OneTESS player units 
allow minimal storage, require a small memory footprint, and necessitate a high degree of ground truth 
accuracy.  The requirements satisfied by existing terrain formats fail to meet these requirements. 
 
OneTESS requires terrain resolution far beyond anything handled by previous “high end” simulations.  
However, OneTESS requires far fewer terrain services than traditional virtual and constructive systems.  
This duality makes OneTESS’s extreme representation requirements attainable - the tradeoffs between 
time, space, and accuracy is balanced in the context of a single, high-importance function.  Furthermore, 
OneTESS must execute on a handheld player unit possessing highly limited resources and performance 
capability compared to current desktop workstations. 
 
In this paper, we discuss the OneTESS terrain requirements and the rationale for needing its own 
representation.  We introduce a new terrain format specifically targeting the OneTESS live training and test 
domains.  We describe its design and implementation and report the preliminary performance benchmarks 
of terrain services developed for this new terrain format.  We conclude with ongoing efforts and future 
directions. 
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BACKGROUND 
 
Synthetic natural environment (SNE) requirements 
vary based on training system function.  
Simulation systems can run the gamut from a 
command staff trainer, which may require a low 
resolution but cover an extremely large geographic 
area; to an individual combatant virtual trainer, 
which may require a very high fidelity 
environment representation that correlates to the 
real world.  Feature data such as building interiors, 
underground structures, and weather models may 
also be needed. 
 
Systems tailor their environment requirements 
based on available physical resources.  Limited 
resources lead to the traditional trade off between 
data storage, complexity, and accuracy.  In a 
perfect world where time and storage space are not 
an issue, designers could use the most complex, 
highest fidelity terrain and reasoning services for 
their synthetic environment.  Of course, such 
systems do not exist.  This causes compromises on 
data complexity and model resolution in order to 
meet storage, accuracy, and performance 
requirements.  The target simulation domain - live, 
virtual, and constructive - also greatly affects the 
requirements of a system. 
 
Often space, time, and accuracy trade-offs are 
fairly straightforward when considered in the 
context of a single functional requirement.  
However, modern semi-automated forces (SAF) 
systems must support a wide range of services and 
functionality. And in some cases (e.g. CCTT) the 
same SNE services must support applications 
beyond SAF (manned simulators, user 
workstations, etc.).  The need to support services 
as diverse as height of terrain, line of sight, and 
cover/concealment complicates trade offs, quite 
often to the extent that multiple terrain formats are 
created within the context of a single system.  
ModSAF/OTB, CCTT SAF, and OneSAF all use 
multiple on-disk formats to handle specialized 

functions (e.g. OOS stores route planning 
networks separate from the file containing terrain 
polygons). 
 
Terrain reasoning services tend to dominate a 
simulation’s CPU use.  Consequently, SNE 
services and their underlying databases are often 
highly optimized for specialized needs.  SNE 
developers place a high premium on performance 
specializations. Note that two of the major formats 
presently in use by Army simulations, CTDB 
(“Compact” Terrain Database) and MrTDB 
(“Model Reference” Terrain Database), are named 
for the primary specialization or “improvement” 
made for those formats. Optimization seen in 
applications such as CCTT and OTB SNE 
representations are not casual “point” 
improvements, but systemic and systematic 
specializations that permeate the code. The sheer 
complexity of the code and underlying formats 
required for these specializations illustrates how 
critical the optimizations were to the developers, 
as they sacrificed maintainability for performance 
and space improvements. 
 
The synthetic environment requirements for live 
training systems signify a complete paradigm shift 
from the virtual and constructive systems.  High 
resolution data is no longer a luxury but a 
necessity.  Live trainers blur the line between 
simulation and reality in such a way that real 
world and virtual world correlation are paramount.  
To compound the problem, real time terrain 
reasoning functionality is essential.  For the most 
part, live training systems have to execute on more 
complex, higher resolution data in a smaller 
performance allocation than their virtual and 
constructive counterparts. 
 
Fortunately, whereas live trainers have more 
stringent requirements for line-of-sight (LOS) 
algorithms, they often have much less need for 
other terrain reasoning services.  Since entities in 
the constructive domain and automated forces in 
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virtual simulations are computer controlled, they 
rely on artificial intelligence to make decisions.  
The synthetic environment must provide the 
pertinent data, such as soil types and route 
networks, to support the decision making process.  
These systems must also provide advanced terrain 
reasoning algorithms to interpret the data.  Human 
players in live simulations use their own senses to 
infer this information, allowing the environment to 
prioritize its effort on LOS. 
 
In order to meet the specific needs for a simulation 
system, a “one size fits all” mentality generally 
does not work.  Each simulation domain requires 
different data and services from a synthetic 
environment.  Beyond that, each system architect 
needs to strike a balance between available 
resources and their system’s particular 
requirements.  A live trainer may have no need for 
soil types, functional regions, or route networks, 
but these may be essential to a constructive or 
virtual system.  However, the live trainer may 
require precise correlation between the real and 
virtual world, which is not necessary for a 
constructive trainer. 
 
The following paper addresses the SNE 
requirements of the OneTESS training system.  It 
then gives an overview of common terrain 
representations present today in the simulation 
community.  It addresses each representation’s 
strength and weaknesses and their ability to meet 
OneTESS requirements.  Finally, it presents the 
new LTF format and describes the design of the 
system. 
 

ONETESS TERRAIN REQUIREMENTS 
 
Live training has historically relied on systems that 
simulate weapons fire and hits via active emitters 
and sensors. This approach has a number of 
weaknesses which OneTESS is addressing through 
their concept of geometric pairing.  Geometric 
pairing couples a shooter with a specific target to 
algorithmically determine if the shooter’s munition 
intersects its target.  This is in contrast to the 
MILES system, which uses laser beams for 
pairing. In addition, geometric pairing can model 
Non/Beyond Line of Sight (NLOS/BLOS) 
whereas lasers cannot.  Geometric pairing levies 
SNE requirements that fall far outside the design 
space of existing SNE representations, through a 
combination of requirements for extremely high-
resolution terrain representation on severely 
limited hardware. 
 

For OneTESS to meet its operational objectives, 
the terrain databases must correlate with the real 
world.  For example, if an individual combatant 
seeks cover behind a ridge the simulated 
environment must accurately represent that ridge.  
The terrain traversal algorithm must precisely 
calculate the “electronic bullet” flight path. 
 
This also applies to the terrain features.  Some 
natural and man made features can provide cover.  
These features include trees, buildings, ditches, 
and foxholes.  These features must also correlate 
to the real world to achieve an accurate simulation. 
 
The following section highlights the major terrain 
requirements for OneTESS: 
• To support OneTESS geometric paring 

functionality, the OneTESS SNE data must be 
on the order of 0.1 meter accuracy in x, y, and 
z for terrain elevation and feature data.   

• In order to meet accuracy requirements, the 
objective resolution for the OneTESS SNE 
database is a 1 meter elevation grid. 

• To support the small storage footprint of the 
OneTESS player unit, the OneTESS SNE 
database must be a compact format - 
Milestone C limitation is 5.5 gigabytes. 

• To support the small memory footprint of the 
OneTESS player unit, the OneTESS SNE 
software must execute within a small memory 
footprint – Milestone C limitation is 55 
megabytes. 

• The OneTESS SNE must support real time 
calculations to support engagements while 
using an embedded CPU that has a fraction of 
the computing power of a desktop unit. 

In order to meet its terrain requirements, OneTESS 
must run on a SNE capable of supporting real time 
terrain calculations, such as line of sight, over an 
extremely high resolution database.  To complicate 
the issue, the terrain must possess a small form 
factor in both memory and on hard drive.   The 
following section describes some typical terrain 
representations and the systems that use these 
representations. 

 
 
 

 
TRADITIONAL TERRAIN 

REPRESENTATIONS 
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Elevation grids and triangulated irregular networks 
(TIN) are the two major terrain representations 
found in most modern simulators.  Both 
representations have evolved over time to support 
a simulator’s unique requirements and feature 
representations. 
 
Gridded Terrain Representation 
 
Early constructive databases tended to use gridded 
data as they come in source, a two dimensional set 
of elevation values, usually stored as fixed-point 
integers. Historically, gridded data from the 
National Geospatial-Intelligence Agency (NGA) 
was available at roughly 100m spacing.  Because 
of the sparse terrain data, the gridded 
representation proved to be sufficient for some 
higher level command staff trainers, but not for 
high-fidelity lower-echelon training. Earlier SAF 
systems (e.g. ModSAF through the mid-90s and 
CCTT SAF to this day), used gridded terrain 
representations because they provided constant 
time look up, and early image generators 
correlated well this representation in the general 
case. 
 

 
Figure 1. Gridded terrain elevation data. 

 
The major flaw of the gridded terrain format is 
data accuracy with respect to feature placement.  
Microterrain was created to alleviate this issue.  
Microterrain is a set of smaller, irregularly shaped 
triangles used to characterize terrain topography 
that regular grids cannot represent. For example, 
draping a road over the terrain can lead to steep 
sections of road or unrealistic side slopes.  Raising 
the road above the terrain or lowering it beneath 
the terrain leaves gaps between the road surface 
and the surrounding terrain surface. Microterrain 
fills the gap, creating a continuous surface over 
which entities can traverse. This is sometimes 
referred to as “cut and fill”.  While microterrain 
increases the accuracy of the database over a 
gridded representation, it requires greater storage 
due to increased triangle density and the need to 
explicitly store x and y location values. 
Microterrain also impacts runtime algorithms and 
performance because the areas containing irregular 
triangles require special handling. 
 

 
Figure 2. An example of the use of microterrain 

with a regularly spaced grid. 
 
Triangulated Irregular Network (TIN) 
Representation 
 
Triangulated irregular terrain networks (TIN) use 
triangles of any size and shape to represent the 
terrain surface.  TINs are an extension of the 
microterrain representation, applied to the entire 
database area. The theory behind TINs is to 
provide a best fit to the original terrain data with a 
minimum amount of triangles. TINs (and the 
ITINs described below) typically explicitly store 
connected topology between triangles to reduce 
special case code and increase algorithm 
performance.  This approach improves correlation 
to the source data, but typically suffers a 
performance penalty because terrain services 
cannot leverage the regular nature of a gridded or 
right-triangulated representation. For high 
resolution data, it can also require additional 
memory space since the irregularity forces explicit 
storage of all three components (x, y, and z) of 
each vertex in the TIN. 
 
Integrated Triangulated Irregular Network 
(ITIN) Representation 
 
An integrated TIN (ITIN) uses terrain feature 
borders as constraints to the TIN generation 
process.  Features are typically stored separately 
from the terrain surface.  By integrating feature 
boundaries into the TIN each triangle has an exact 
mapping to the feature covering it, whether it be a 
road, lake, or grassland area.  ITINs typically 
require more triangles, due to the feature 
integration, but may increase performance by 
combining the elevation and surface material 
lookups into a single query. ITINs also have the 
secondary effect of a more complex terrain 
generation process. 
 
The impact of ITINS to the terrain skin 
representation is an increase in the number of 
triangles generated. Instead of simply computing a 
best fit of triangles to the original source elevation 
data, ITINs must incorporate the vertices of 
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integrated feature break lines during the TIN 
process. The resultant TIN must contain every 
point of each integrated feature, in addition to the 
triangles generated by fitting the triangles to the 
source elevations. An increase in triangles equates 
to an increase in storage requirements. This 
increase in triangles negatively impacts 
performance of terrain services that traverse the 
triangles. 
 

   
Figure 3. Road feature integrated into the 

terrain skin to create an ITIN. 
 

 
STORAGE AND PERFORMANCE FACTORS 
 
Round Earth Representation 
 
Unfortunately for terrain simulations, the Earth is 
not flat.  One driving factor for storage and 
performance is the trade-off on how to accurately 
model the curvature of the Earth without suffering 
a significant performance penalty.  For small 
geographic areas, a Cartesian coordinate system 
based on a plane tangent to the earth’s surface will 
suffice.  The resultant error is relatively small and 
typically acceptable for training. The error 
increases the further one travels from the tangent 
point, and so becomes impractical when the area 
represented gets too large. 
 
For performance reasons, a flat earth 
representation has several advantages over a round 
earth representation. On a flat earth, the same 
direction always represents up. Line of sight 
calculations benefit from this by projecting the ray 
onto the terrain surface and testing height values at 
intersections to determine whether or not the 
terrain blocks the ray in 3D.  Also, since the 
curvature of the earth is not taken into 
consideration, algorithms can take advantage of 
simple culling techniques to quickly eliminate a 
ray that is completely above a terrain area.  In a 
round earth model, the calculations become much 
more complex. 

 
Training simulators commonly use geodetic or 
geocentric coordinates to represent round earth 
terrain databases. Geodetic coordinates provide 
efficient point location lookup since each latitude-
longitude pair maps to a unique location on the 
surface of the earth. Unfortunately, many 
calculations required by SAF behaviors, such as 
Euclidean distance between two points, are 
computationally expensive using geodetic 
coordinates. The reverse is true in geocentric 
coordinates. For this reason, many simulators, 
such as the OneSAF Objective System and 
WARSIM, use both. 
 
However, there is a sizeable storage cost 
associated with storing the terrain in a round earth 
representation.  The round earth model requires 
double-precision floats (64 bits) to achieve the 
precision required to perform accurate operations 
on the earth’s surface using a geocentric or 
geodetic coordinate system.  This means each 
coordinate requires a minimum of 24 bytes of 
storage; 48 bytes for both representations. For very 
dense or complex terrain, this can add up very 
quickly.  
 
Data Resolution 
 
At the period of design for most current terrain 
representations, coarse data at 100 meter post 
spacing was the best widely available source data. 
While the NGA had defined higher resolution 
levels of digital terrain source data (DTED), they 
had limited availability and coverage.  Fortunately, 
virtual and constructive systems usually do not 
have as great of a need for such high fidelity 
terrain data.    
 

 
Figure 4. A visual comparison of 100m (left), 
30m (middle), and 10m (right) elevation data. 

 
However, live trainers such as OneTESS need 
much higher fidelity source than 100 meter data, to 
correlate to the real world.  Fortunately, high 
resolution data is more readily available today.  
LIDAR data collection that supplies imagery and 
elevation data at meter or sub-meter resolution is 
becoming more commonplace.  This data often 
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overwhelms current systems and formats.  To use 
such high-fidelity data, current terrain formats 
generally must perform considerable down 
sampling during the TIN generation process to 
meet their memory and storage requirements. 
 
 

THE LTF TERRAIN FORMAT 
 
The typical terrain representations have various 
strong and weak points.  Programs have 
specialized each of these to meet virtual and 
constructive simulator requirements.  The unique 
OneTESS requirements demand a new solution.  
The live terrain format (LTF) was designed from 
the ground up to meet the specific needs of the 
OneTESS system, and the live training community 
in general.  The design for the LTF borrows 
heavily from current industry standard terrain 
representations while incorporating design 
principles from other external industries, such as 
computer graphics and gaming.  The major design 
goals for LTF are: 

• A layered/scalable solution 
• Small memory/storage footprint 
• Optimized LOS performance 
• Dynamic environment 

 
Layered/Scalable Solution 
 
Many of the current synthetic environments store 
all of the terrain data together in one encompassing 
terrain data format.  When executing terrain 
reasoning methods on the environment, all of the 
data is processed together.  For instance, in OOS, 
the terrain features are integrated into the TIN.  In 
this model, the terrain triangles and features are 
stored together and related.  When a line of sight 
query occurs, a single algorithm processes both the 
terrain traversal and feature intersection check. 
 
This “one size fits all” solution prohibits creating 
algorithms optimized specifically for a certain data 
type.  In LTF, disparate data types are separated 
into their own storage and functional layers.  This 
approach allows the development of specialized 
algorithms for each data type. 
 
The layered architecture allows for a scalable and 
composable system.  Currently, LTF is composed 
of the terrain and volumetric feature layers.  In the 
future, developers could add new layers to enhance 
the system.  For example, a system may require 
road networks to support automated route 
planning.  Storing the road network in its own 

layer allows for the design of a specific, optimized 
route planning solution. 
 
The layered architecture also enables users to 
compose their own system.  In the above road 
network example, an individual live trainee has no 
use for the routing layer.  The layered format will 
allow the trainee to configure their system to 
execute without it.  Omitting the unneeded road 
network layer reduces the storage required on the 
resource-limited player unit. 
 
Terrain Pages/Round Earth 
 
LTF stores the terrain data in pages that are one 
square kilometer in size.  Each page has its own 
local tangent plane (LTP) coordinate system.  The 
small size of the page minimizes the effects of 
earth curvature to within the 0.1 meter elevation 
error tolerance.  Also the small page size allows 
the use of 32-bit floating point coordinates, which 
significantly reduces the memory requirements of 
the system. 
 
A line of sight ray that overlaps multiple database 
pages is transformed into each page’s coordinate 
space before checking for blockage in that page.  
Since each page has its own coordinate system, the 
database can fully represent a round earth.  
 
Terrain Elevation Layer 
 
To meet database size and performance 
requirements, the regular grid terrain surface 
representation has proven to be the best solution.  
The small 1-km2 terrain page size and the “flat 
earth, 'Z' vector is always up” representation in 
each page gives suitable accuracy with regards to 
curvature of the earth while providing major 
storage space and runtime computation reductions 
compared to a geodetic or geocentric 
representation.  The terrain surface is stored in a 
one-meter spaced grid, with each post representing 
the terrain surface height in decimeters as a 16-bit 
integer.  The elevation grid for a single page only 
occupies 2,000,000 bytes of memory - roughly 2 
MB.   
 
In order to optimize the line-of-sight processing, 
the terrain is stored in a hierarchical tree.  The 
terrain tree is composed of culling grids which 
contain the highest elevation of a 10 post by 10 
post area.  The LTF terrain skin, in its default 
configuration, is represented by a three-level tree.  
The lowest level is the 1-meter spaced grid, the 
middle grid is a 100x100 cell culling grid, and the 
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top level is a 10x10 cell culling grid.  The number 
of culling grids and the post spacing of the grids 
are configurable by the user.  

 

 
Figure 5. Screen capture of 1 meter post spaced 

LTF terrain. 
 

 
Figure 6. Illustration of the culling grid 

hierarchy. 
 
The culling grids add minimal storage overhead to 
the tree structure.  Table 1, shows the default 
configuration of the culling grids and the amount 
of additional memory required.  The performance 
gain well justifies the slight increase in storage. 
 

Table 1. Memory requirements for a 1k x 1k 
elevation grid hierarchy. 

Post 
Spacing 
(meters) 

Number 
Posts 

Post 
Size 

(bytes) 

Total Size 
(bytes) 

1 1,000,000 2 2,000,000 

10 10,000 2 20,000 

100 100 2 200 

Total   2,020,200 
  

Terrain Elevation LOS Method 
The field of computer graphics has studied 
algorithms to deal with two-dimensional grids for 
decades – after all, the computer monitor is 
basically a two-dimensional grid of pixels.  All 
shape primitives drawn on the screen must be 
approximated as pixels.  Bresenham’s line drawing 
algorithm was created to approximate a line on the 
monitor.  It determines the start and stop locations 
of a line, and finds all of the pixels that must be 
drawn.  It has been highly optimized through the 
decades to make it as fast as possible. 
 

The act of conducting a line-of-sight on a terrain 
grid is very similar to the problem that Bresenham 
solved.  Basically, the LOS routine must know all 
of the grid “pixels” that the LOS ray overlaps, and 
check to see if the terrain in that grid blocks the 
ray.  Unfortunately, since Bresenham’s algorithm 
was created to approximate a line on the screen, it 
skips some pixels that the line overlaps to make 
the line appear straight.  . 
 
The 2DDDA (two-dimensional digital difference 
analyzer) algorithm is a derivative of Bresenham’s 
algorithm.  The major difference between it and 
Bresenham’s is that it identifies every pixel that 
the line overlaps.  The algorithm is highly 
optimized and traverses a regularly spaced grid 
quickly. 
 
The LOS routine works recursively on the terrain 
tree.  The routine starts on the top node of the tree 
and determines the start cell.  The ray is checked 
against the height of the current cell.  If the ray is 
lower than the height of that cell, the routine is 
called again on the child node of that cell.  
Otherwise, the routine traverses the grid to find the 
next cell in the current node to check.  This 
continues until the end of the line is reached or the 
ray is blocked. 
 
If a ray is close enough to the terrain skin, 
eventually it will work its way through the culling 
grids to the post grid.  Each post in the post grid 
represents the elevation on a point in the terrain.  
The exact height at a location between the posts 
must be interpolated.  Each cell of the post grid is 
conceptually represented by two right triangles.  
These triangles are created by drawing a line from 
the upper-left corner of a four post square to the 
lower right hand corner.  When a ray needs be 
checked against the terrain skin, it is checked 
against the two terrain triangles.  If the ray 
intersects either of the triangles, then the LOS 
routine is blocked.  If not, the LOS traversal 
continues. 
 
Feature Representation 
 
Features include any objects other than the terrain 
that are capable of blocking line-of-sight.  They 
are typically small in spatial size and quite 
numerous, which creates a significant challenge in 
using them efficiently.   Examples of common 
features include trees, buildings, and street lights. 
 
Virtual and constructive terrain database formats 
often take shortcuts in representing features – for 
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example, OTF databases often represent entire 
forests as a single feature and use an attenuation 
model to simulate the probability of hitting 
individual trees.  These kinds of shortcuts are not 
available in the live domain, which must represent 
every feature explicitly.  In OneTESS, a feature is 
a solid object capable of blocking line-of-sight that 
is composed of a single material type. 
 
LTF represents features as leaf nodes in a 
bounding-volume hierarchy (BVH) tree, which is a 
spatial tree commonly used by graphics and 
gaming applications for ray-tracing and collision 
detection.  Each node in a BVH tree is a spatial 
volume that fully contains all of the volumes of its 
child nodes.  Intermediate “culling” nodes 
organize features that are spatially close to each 
other so that a quick intersection check on the 
culling node can potentially eliminate a large 
number of feature nodes from consideration in the 
line-of-sight algorithm.  BVH trees are somewhat 
slower for line-of-sight calculations than spatial-
partition trees such as kD-trees, but were chosen 
for their significantly better update performance to 
support dynamic terrain events. 
 
The LTF BVH tree supports using arbitrary 
geometry types for both intermediate “culling” 
nodes and feature geometry nodes through a 
common geometry interface.  Any geometry that 
implements the requirements of the interface can 
be used, enabling rapid development of new 
geometry types for features.  In the LTF prototype, 
only rectangular prisms and elliptical cylinders 
were implemented; a production version would 
also support ellipsoids, triangle meshes, and other 
common geometry types.  When possible, features 
should be represented using simple solid geometry 
primitives instead of full triangle meshes since 
they enable faster computations and reduce 
memory use.  Culling nodes should only use very 
simple solid geometry types like rectangular 
prisms since their intersection checks must be as 
fast as possible.  Both leaf and culling nodes 
support full three-dimensional rotation using 
quaternions; features are not required to be 
oriented along the local z-axis. 
 
Like other database formats, LTF supports the 
concept of attribution for features: any feature in 
the BVH tree can have a set of associated 
attributes.  The only attribute currently defined for 
OneTESS is the “Material” attribute, which 
specifies the material type for the feature.  Many 
properties that are commonly represented as 
attributes in other formats, such as feature length, 

width, and height, are instead explicitly 
represented by the feature's geometry in LTF. 
 
Feature LOS Algorithm 
The BVH tree used by LTF is optimized for 
attenuated line-of-sight computations.  The 
algorithm is reentrant, and individual BVH tree 
nodes can be processed without requiring that the 
entire algorithm be run at once.  The algorithm's 
state consists of a list of candidate BVH nodes that 
are known to intersect the line-of-sight ray, sorted 
by the distance of the intersection points from the 
ray's origin. 
 
The algorithm starts by checking to see if the root 
node in the BVH tree intersects the line-of-sight 
ray.  If so, it adds the root node to the candidate 
node list.  After that, each time the algorithm is 
called, it checks and removes the next node in the 
candidate node list.  If that node is a culling node, 
it performs an intersection query on each child of 
that node, and adds the child nodes that intersect 
the ray into the candidate node list.  If the node is a 
leaf feature node, it provides the feature 
intersection to the attenuation model and asks if 
the feature completely blocks the ray; if so, it 
reports the blockage to the caller.  The algorithm 
terminates when a blockage is detected or when no 
more nodes are left in the candidate node list. 
 

  
Figure 7. Screen capture of LTF running a LOS 

against both terrain and features. 
 
The algorithm makes no assumptions about the 
attenuation model being used – attenuation is 
calculated through a generic interface that makes it 
possible to use completely different models for 
different runs of the algorithm.  In OneTESS, the 
attenuation models will depend on the weapon and 
ammunition used for the bullet trajectory that the 
line-of-sight query represents. 
 
Feature Layer Construction 
The most difficult – and most crucial – part of 
constructing the feature layer is creating a good 
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BVH tree.  The layout of the tree is the largest 
factor in the performance of the line-of-sight 
algorithm, since it determines how many nodes 
must be traversed for a query. 
 
There are many heuristics used in BVH tree 
construction.  The most challenging part is 
choosing the proper parent node for any particular 
leaf feature node.  The goal is to group together 
features that are spatially close, and to minimize 
overlaps of sibling culling nodes.  Overlaps 
destroy the culling efficiency of the tree since they 
often require two or more deep tree traversals to 
conduct checks on nodes that should have been 
grouped together. 
 
The naïve approach is to only consider culling 
nodes that do not need to be enlarged to contain 
the inserted feature node, but this approach led to 
extremely large numbers of overlaps on the data 
sets.  While culling nodes that already contain the 
feature should have priority over culling nodes that 
require enlargement, there are many heuristics to 
choose good parents when enlargement is 
required.  Some of the more common include 
choosing the parent node that would require the 
least volume increase to use, choosing the parent 
node that would require the least surface area 
increase to use, and choosing the parent node that 
is spatially closest to the feature.  LTF currently 
uses the minimum-volume-increase heuristic, but 
more research must be conducted to determine 
whether this is the best approach.   
 
Other questions involve when to subdivide culling 
nodes that have too many children, and when to 
create new culling nodes rather than reuse existing 
ones.  Currently, LTF caps each culling node to 
four children, subdividing if a fifth child is added.  
It also chooses to create new culling nodes at the 
root level if the best candidate parent's volume 
increase is above a threshold.  These choices are 
fairly arbitrary, and should be studied in more 
detail to determine what the proper decisions 
should be. 
 
Dynamic Terrain Representation 
 
A live training system needs to be able to represent 
changes in the real environment that may occur 
during the exercise.  These changes could include 
cratering, destruction of terrain features, and the 
creation of man made fortifications, such as berms, 
ditches and foxholes.  These changes can 
potentially affect all of the LTF layers.  For 
instance, a tree being knocked over would be 

feature change, while a crater from a shell would 
affect the terrain skin.   
 
However, the current representation of the grid 
using one meter post spaced grids does not allow 
the needed resolution to properly integrate these 
terrain changes. A foxhole can be dug into the 
terrain in any location, not just on post boundaries.  
As stated previously, it is paramount to correlate 
with the dynamic events in the real world.  The 
terrain grid has been designed to allow higher 
resolution grids in small areas.  However, due to 
the size constraints of the player unit, this 
currently is not feasible.  Therefore, all of the 
current dynamic terrain functionality is modeled 
with terrain features. 
 
As previously discussed, the BVH structure is 
designed to be used with dynamic changes.  The 
performance costs to create, modify, or delete a 
feature are less for it than with other tree 
structures.  When a new feature is created, the 
correct bounding volume is identified and the 
feature is inserted.  If needed, the containing 
volume will either have to be modified or created.  
If a feature is deleted or modified very minimal 
changes need to occur. 
 
Since the terrain skin cannot handle dynamic 
events, all dynamic changes that alter the terrain 
skin must be modeled with features.  Subtractive 
features are a special feature type which represents 
a volume where there is no terrain.  Basically, 
when conducting an LOS query, if a ray intersects 
the terrain skin which is contained in a subtractive 
feature, then the ray is considered not blocked and 
continues.  The subtractive features are a design 
for the future and are not currently implemented. 
 
Terrain Manager 
 
Even though OneTESS training will take place 
over relatively small geographic areas, the 
OneTESS player unit cannot accommodate the 
entire database in memory.  The LTF runtime must 
be capable of efficiently swapping terrain tiles in 
and out of memory, caching them in a way that 
minimizes the number of swaps.  OneTESS 
intends to keep at least 16 km2 of terrain in 
memory, derived through consideration of typical 
line of sight distances and the memory constraints 
of the player unit. 
 
The LTF Terrain Manager is responsible for 
properly loading tiles into memory when needed 
and determining which tiles to discard if too many 
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tiles have been loaded.  To do so, it uses a simple 
“Least Recently Used” (LRU) cache with a hard 
limit on memory use.  This simple caching 
strategy should be sufficient for dismounts since 
their weaponry has a relative short range, they 
move relatively slowly, and most line-of-sight 
queries they conduct would occur within a 2 km 
radius of their location.   
 
The Terrain Manager also acts as the top-level 
manager for line-of-sight queries: it determines 
which terrain tiles might intersect the line-of-sight 
ray and forwards the query to each tile in the 
proper sequence.  The tiles are responsible for 
converting the ray into their local coordinate 
system and all further processing, and report 
whether the ray was clear or blocked in that tile. 
 
 

PRELIMINARY RESULTS 
 
The prototype's results have been very 
encouraging.  We developed a series of automated 
performance tests to simulate the expected types of 
line-of-sight queries in the OneTESS environment, 
and profiled the memory and disk use of the LTF 
runtime.  All tests were conducted on the same 
workstation with the following specs: 
CPU Intel Pentium D EM64T 
CPU Speed 3.00 Ghz (HT on) 
RAM 2 GB DDR 
OS Kubuntu Linux 7.04 (i386) 
 
Two 9 km2 terrain databases were produced for 
testing purposes, both from Barstow, California.  
The grids were set to one meter post spacing, with 
10 and 100 meter culling grids.  A rectangular 
prism was generated for each building, and an 
elliptical prism was generated for each individual 
tree. 
 
The Representative Terrain covers an area similar 
to the one expected for OneTESS Build 0 
requirements, and has 1,255 volumetric features.  
 
The Dense Terrain covers a section of downtown 
Barstow and is representative of a low-to-
moderately dense urban area, with 8,714 
volumetric features. 

Storage Benchmarks 
Table 2- Uncompressed Disk Size 

Terrain DB Grid (MB) Features (KB) 
Representative 18 104 
Dense 18 808 

 
Table 3- Compressed Disk Size 

Terrain DB Grid (MB) Features (KB) 
Representative 1.7 104 
Dense 1.7 304 
 

Table 4- In-Memory Size 
Terrain DB Grid (MB) Features (KB) 
Representative 18 182 
Dense 18 1,290 
 
Line of Sight Performance Benchmarks 
 

Table 5-LOS Query Times 
Query 
Ray 
Length 

Actual 
Distance 
Traveled 

Rep. Terrain  
Query Time 

Dense Terrain 
Query Time 

150 m 76.8 m 12.5 μs 67.8 μs 

300 m 121 m 13.2 μs 70.9 μs 

500 m 160 m 14.6 μs 81.5 μs 

1000 m 235 m 16.9 μs 83.9 μs 

1800 m 348 m 18.0 μs 104.9 μs 

2000 m 375 m 18.4 μs 115.1 μs 

 
Table 6 – Linear Fit for LOS Query Times 

  
The linear curve fit shows that, in these databases, 
the cost of a line-of-sight query is directly 
proportional to the length of the section of the ray 
processed by the algorithm.  The intercept values 
show the overhead required on every query, and 
the slope value shows the processing cost per 
meter. 
 
The lengths of the query ray were selected based 
on an analysis of weapon ranges for OneTESS.  
The actual distances traveled by the algorithm are 
less due to blockage.  The provided actual 
distances come from the Dense Terrain; the 
corresponding distances for the Representative 
Terrain are higher since the ray is less likely to be 
blocked. 
 
10,000 different rays of each query distance were 
randomly generated for the terrain, and each ray 
was queried 1,000 times.  All query rays started 
and ended within 3 meters of the terrain surface. 

Terrain 
DB 

Intercept
(μs) 

Slope  
(μs / m) 

Correlation

Rep. 11.2 0.0148 0.985 
Dense 54.3 0.151 0.960 
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ADAPTING TO CONSTRUCTIVE / 

VIRTUAL DOMAINS 
 
Virtual and constructive simulations can benefit 
from LTF for certain exercises where high fidelity 
environments are needed. The detail and 
performance are particularly suitable for urban 
operations. The accuracy LTF provides can 
capture ground truth specifics where source data is 
available to provide accurate detail needed for 
mission rehearsal.  
 
To support virtual and constructive simulations, 
LTF would need extensions to include data not 
needed for live training. Examples include earth 
surface characteristics (soil type, vegetation 
coverage) for mobility, material composition for 
weapons effects and sensors, road and river 
networks for navigation, etc. The LTF design 
naturally supports these types of extensions as 
additional layers. This reinforces the underlying 
principle of optimizing the representation and 
algorithms for each layer of source data. 
 
LTF could represent lower resolution terrain areas 
for virtual and constructive simulation. The 
gridded nature of the terrain surface is not locked 
into any specific spacing. Thus, the LTF 
accommodates 10-meter or other uniform spacing 
without modifications to the format or runtime 
services. Some simulations, such as CCTT, require 
reasonable slopes roads and flat lake surfaces. The 
LTF is designed to be able to support higher-
resolution nested grids within the larger post 
spacing to capture additional detail in a similar 
manner to CCTT’s cut-and-fill, substituting 
elevation posts for triangles. Simulations would 
realize the benefit of higher accuracy and greater 
run-time performance while using less storage. 

CONCLUSION 
 
Live training in general, and OneTESS 
specifically, have the need for a high resolution 
environment to be able to correlate with the real 
world.  Also, OneTESS has to operate on a 
handheld player unit with limited resources and 
processing power compared to desktop systems. 
These requirements are nothing like the current 
requirements for most virtual and constructive 
domains.  Because of this there is no current 
format capable of meeting OneTESS's needs. 
 
A new environment had to be created to meet the 
needs of OneTESS.  This environment was built 
on common terrain representations along with 
technology from the graphics and gaming 
industries.  LTF is a composable, scalable system 
capable of processing line-of-sight quickly on high 
resolution data.  It has met its requirements in 
regards to both performance and resource 
utilization.  And although it was designed 
specifically for the live domain, it can be expanded 
in the future to meet the needs of the virtual and 
constructive communities. 
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