Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2007

An Optimized Synthetic Environment Representation Developed for
OneTESS Live Training

Steven Borkman, Gregory Peele, Chuck Campbell
Applied Research Associates
Orlando, FL

sborkman(@ara.com, gpeele(@ara.com, ccampbell@ara.com

ABSTRACT

When designing a synthetic environment terrain database format, developers face a tradeoff between
physical storage, runtime performance, and data accuracy. The context of the simulation and particularly
its specialized requirements heavily influence how the tradeoffs are made. One of the largest historical
driving factors in how this balance has been struck has been the “domain” context. The virtual and
constructive training domains drove most of the modern terrain format development. However, the
requirements for live training are often significantly different. For example, the OneTESS player units
allow minimal storage, require a small memory footprint, and necessitate a high degree of ground truth
accuracy. The requirements satisfied by existing terrain formats fail to meet these requirements.

OneTESS requires terrain resolution far beyond anything handled by previous “high end” simulations.
However, OneTESS requires far fewer terrain services than traditional virtual and constructive systems.
This duality makes OneTESS’s extreme representation requirements attainable - the tradeoffs between
time, space, and accuracy is balanced in the context of a single, high-importance function. Furthermore,
OneTESS must execute on a handheld player unit possessing highly limited resources and performance
capability compared to current desktop workstations.

In this paper, we discuss the OneTESS terrain requirements and the rationale for needing its own
representation. We introduce a new terrain format specifically targeting the OneTESS live training and test
domains. We describe its design and implementation and report the preliminary performance benchmarks
of terrain services developed for this new terrain format. We conclude with ongoing efforts and future
directions.

ABOUT THE AUTHORS

Steven Borkman is a Senior Scientist at ARA with over 7 years of experience developing synthetic environment
software for the simulation community. Mr. Borkman is currently a lead developer of the OneTESS LTF project and
Principal Investigator for the OneSAF GPU Integration project. Mr. Borkman holds a Bachelor of Science degree in
Computer Science from the University of Central Florida.

Gregory Peele is a Staff Scientist at ARA with over 2 years of experience developing synthetic environment software
for the simulation community. Mr. Peele is currently a lead developer on the OneTESS LTF project. Mr. Peele holds
Bachelor of Science degrees in Computer Science and Mathematics from the University of Central Florida

Chuck Campbell is a Principal Computer Scientist at ARA. He has over seventeen years experience developing Semi-
Automated Forces (SAF) software. He has been a developer and technical lead for Synthetic Natural Environment
programs including CCTT, WARSIM, OneSAF Objective System, and the Rapid Unified Generation of Urban
Databases (RUGUD) database generation effort. Mr. Campbell holds a Bachelor of Science degree in Computer
Science from Indiana University and a Master of Science degree in Computer Science from the University of Central
Florida.

2007 Paper No.7116 Page 1 of 11

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2007

An Optimized Synthetic Environment Representation Developed for
OneTESS Live Training

Steven Borkman, Gregory Peele, Chuck Campbell

Applied Research Associates
Orlando, FL

sborkman(@ara.com, gpeele(@ara.com, ccampbell@ara.com

BACKGROUND

Synthetic natural environment (SNE) requirements
vary based on training system function.
Simulation systems can run the gamut from a
command staff trainer, which may require a low
resolution but cover an extremely large geographic
area; to an individual combatant virtual trainer,
which may require a very high fidelity
environment representation that correlates to the
real world. Feature data such as building interiors,
underground structures, and weather models may
also be needed.

Systems tailor their environment requirements
based on available physical resources. Limited
resources lead to the traditional trade off between
data storage, complexity, and accuracy. In a
perfect world where time and storage space are not
an issue, designers could use the most complex,
highest fidelity terrain and reasoning services for
their synthetic environment. Of course, such
systems do not exist. This causes compromises on
data complexity and model resolution in order to
meet storage, accuracy, and performance
requirements. The target simulation domain - live,
virtual, and constructive - also greatly affects the
requirements of a system.

Often space, time, and accuracy trade-offs are
fairly straightforward when considered in the
context of a single functional requirement.
However, modern semi-automated forces (SAF)
systems must support a wide range of services and
functionality. And in some cases (e.g. CCTT) the
same SNE services must support applications
beyond SAF (manned simulators, user
workstations, etc.). The need to support services
as diverse as height of terrain, line of sight, and
cover/concealment complicates trade offs, quite
often to the extent that multiple terrain formats are
created within the context of a single system.
ModSAF/OTB, CCTT SAF, and OneSAF all use
multiple on-disk formats to handle specialized

2007 Paper No.7116 Page 2 of 11

functions (e.g. OOS stores route planning
networks separate from the file containing terrain

polygons).

Terrain reasoning services tend to dominate a
simulation’s CPU use. Consequently, SNE
services and their underlying databases are often
highly optimized for specialized needs. SNE
developers place a high premium on performance
specializations. Note that two of the major formats
presently in use by Army simulations, CTDB
(“Compact” Terrain Database) and MrTDB
(“Model Reference” Terrain Database), are named
for the primary specialization or “improvement”
made for those formats. Optimization seen in
applications such as CCTT and OTB SNE
representations are not casual “point”
improvements, but systemic and systematic
specializations that permeate the code. The sheer
complexity of the code and underlying formats
required for these specializations illustrates how
critical the optimizations were to the developers,
as they sacrificed maintainability for performance
and space improvements.

The synthetic environment requirements for live
training systems signify a complete paradigm shift
from the virtual and constructive systems. High
resolution data is no longer a luxury but a
necessity. Live trainers blur the line between
simulation and reality in such a way that real
world and virtual world correlation are paramount.
To compound the problem, real time terrain
reasoning functionality is essential. For the most
part, live training systems have to execute on more
complex, higher resolution data in a smaller
performance allocation than their virtual and
constructive counterparts.

Fortunately, whereas live trainers have more
stringent requirements for line-of-sight (LOS)
algorithms, they often have much less need for
other terrain reasoning services. Since entities in
the constructive domain and automated forces in

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2007

virtual simulations are computer controlled, they
rely on artificial intelligence to make decisions.
The synthetic environment must provide the
pertinent data, such as soil types and route
networks, to support the decision making process.
These systems must also provide advanced terrain
reasoning algorithms to interpret the data. Human
players in live simulations use their own senses to
infer this information, allowing the environment to
prioritize its effort on LOS.

In order to meet the specific needs for a simulation
system, a “one size fits all” mentality generally
does not work. Each simulation domain requires
different data and services from a synthetic
environment. Beyond that, each system architect
needs to strike a balance between available
resources and their system’s particular
requirements. A live trainer may have no need for
soil types, functional regions, or route networks,
but these may be essential to a constructive or
virtual system. However, the live trainer may
require precise correlation between the real and
virtual world, which is not necessary for a
constructive trainer.

The following paper addresses the SNE
requirements of the OneTESS training system. It
then gives an overview of common terrain
representations present today in the simulation
community. It addresses each representation’s
strength and weaknesses and their ability to meet
OneTESS requirements. Finally, it presents the
new LTF format and describes the design of the
system.

ONETESS TERRAIN REQUIREMENTS

Live training has historically relied on systems that
simulate weapons fire and hits via active emitters
and sensors. This approach has a number of
weaknesses which OneTESS is addressing through
their concept of geometric pairing. Geometric
pairing couples a shooter with a specific target to
algorithmically determine if the shooter’s munition
intersects its target. This is in contrast to the
MILES system, which uses laser beams for
pairing. In addition, geometric pairing can model
Non/Beyond Line of Sight (NLOS/BLOS)
whereas lasers cannot. Geometric pairing levies
SNE requirements that fall far outside the design
space of existing SNE representations, through a
combination of requirements for extremely high-
resolution terrain representation on severely
limited hardware.

2007 Paper No.7116 Page 3 of 11

For OneTESS to meet its operational objectives,
the terrain databases must correlate with the real
world. For example, if an individual combatant
seeks cover behind a ridge the simulated
environment must accurately represent that ridge.
The terrain traversal algorithm must precisely
calculate the “electronic bullet” flight path.

This also applies to the terrain features. Some
natural and man made features can provide cover.
These features include trees, buildings, ditches,
and foxholes. These features must also correlate
to the real world to achieve an accurate simulation.

The following section highlights the major terrain
requirements for OneTESS:

e To support OneTESS geometric paring
functionality, the OneTESS SNE data must be
on the order of 0.1 meter accuracy in X, y, and
z for terrain elevation and feature data.

e In order to meet accuracy requirements, the
objective resolution for the OneTESS SNE
database is a 1 meter elevation grid.

e To support the small storage footprint of the
OneTESS player unit, the OneTESS SNE
database must be a compact format -
Milestone C limitation is 5.5 gigabytes.

e To support the small memory footprint of the
OneTESS player unit, the OneTESS SNE
software must execute within a small memory
footprint — Milestone C limitation is 55
megabytes.

e The OneTESS SNE must support real time
calculations to support engagements while
using an embedded CPU that has a fraction of
the computing power of a desktop unit.

In order to meet its terrain requirements, OneTESS
must run on a SNE capable of supporting real time
terrain calculations, such as line of sight, over an
extremely high resolution database. To complicate
the issue, the terrain must possess a small form
factor in both memory and on hard drive. The
following section describes some typical terrain
representations and the systems that use these
representations.

TRADITIONAL TERRAIN
REPRESENTATIONS

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2007

Elevation grids and triangulated irregular networks
(TIN) are the two major terrain representations
found in most modern simulators. Both
representations have evolved over time to support
a simulator’s unique requirements and feature
representations.

Gridded Terrain Representation

Early constructive databases tended to use gridded
data as they come in source, a two dimensional set
of elevation values, usually stored as fixed-point
integers. Historically, gridded data from the
National Geospatial-Intelligence Agency (NGA)
was available at roughly 100m spacing. Because
of the sparse terrain data, the gridded
representation proved to be sufficient for some
higher level command staff trainers, but not for
high-fidelity lower-echelon training. Earlier SAF
systems (e.g. ModSAF through the mid-90s and
CCTT SAF to this day), used gridded terrain
representations because they provided constant
time look wup, and early image generators
correlated well this representation in the general
case.

Figure 1. Gridded terrain elevation data.

The major flaw of the gridded terrain format is
data accuracy with respect to feature placement.
Microterrain was created to alleviate this issue.
Microterrain is a set of smaller, irregularly shaped
triangles used to characterize terrain topography
that regular grids cannot represent. For example,
draping a road over the terrain can lead to steep
sections of road or unrealistic side slopes. Raising
the road above the terrain or lowering it beneath
the terrain leaves gaps between the road surface
and the surrounding terrain surface. Microterrain
fills the gap, creating a continuous surface over
which entities can traverse. This is sometimes
referred to as “cut and fill”. While microterrain
increases the accuracy of the database over a
gridded representation, it requires greater storage
due to increased triangle density and the need to
explicitly store x and y location values.
Microterrain also impacts runtime algorithms and
performance because the areas containing irregular
triangles require special handling.

2007 Paper No.7116 Page 4 of 11

Figure 2. An example of the use of microterrain
with a regularly spaced grid.
Triangulated Network

Representation

Irregular (TIN)

Triangulated irregular terrain networks (TIN) use
triangles of any size and shape to represent the
terrain surface. TINs are an extension of the
microterrain representation, applied to the entire
database area. The theory behind TINs is to
provide a best fit to the original terrain data with a
minimum amount of triangles. TINs (and the
ITINs described below) typically explicitly store
connected topology between triangles to reduce
special case code and increase algorithm
performance. This approach improves correlation
to the source data, but typically suffers a
performance penalty because terrain services
cannot leverage the regular nature of a gridded or
right-triangulated ~ representation. ~ For high
resolution data, it can also require additional
memory space since the irregularity forces explicit
storage of all three components (x, y, and z) of
each vertex in the TIN.

Integrated Triangulated Irregular Network
(ITIN) Representation

An integrated TIN (ITIN) uses terrain feature
borders as constraints to the TIN generation
process. Features are typically stored separately
from the terrain surface. By integrating feature
boundaries into the TIN each triangle has an exact
mapping to the feature covering it, whether it be a
road, lake, or grassland area. ITINs typically
require more triangles, due to the feature
integration, but may increase performance by
combining the elevation and surface material
lookups into a single query. ITINs also have the
secondary effect of a more complex terrain
generation process.

The impact of ITINS to the terrain skin
representation is an increase in the number of
triangles generated. Instead of simply computing a
best fit of triangles to the original source elevation
data, ITINs must incorporate the vertices of

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2007

integrated feature break lines during the TIN
process. The resultant TIN must contain every
point of each integrated feature, in addition to the
triangles generated by fitting the triangles to the
source elevations. An increase in triangles equates
to an increase in storage requirements. This
increase in triangles negatively = impacts
performance of terrain services that traverse the
triangles.

=]
Figure 3. Road feature integrated into the
terrain skin to create an ITIN.

STORAGE AND PERFORMANCE FACTORS
Round Earth Representation

Unfortunately for terrain simulations, the Earth is
not flat. One driving factor for storage and
performance is the trade-off on how to accurately
model the curvature of the Earth without suffering
a significant performance penalty. For small
geographic areas, a Cartesian coordinate system
based on a plane tangent to the earth’s surface will
suffice. The resultant error is relatively small and
typically acceptable for training. The error
increases the further one travels from the tangent
point, and so becomes impractical when the arca
represented gets too large.

For performance reasons, a flat earth
representation has several advantages over a round
earth representation. On a flat earth, the same
direction always represents up. Line of sight
calculations benefit from this by projecting the ray
onto the terrain surface and testing height values at
intersections to determine whether or not the
terrain blocks the ray in 3D. Also, since the
curvature of the earth is not taken into
consideration, algorithms can take advantage of
simple culling techniques to quickly eliminate a
ray that is completely above a terrain area. In a
round earth model, the calculations become much
more complex.

2007 Paper No.7116 Page 5 of 11

Training simulators commonly use geodetic or
geocentric coordinates to represent round earth
terrain databases. Geodetic coordinates provide
efficient point location lookup since each latitude-
longitude pair maps to a unique location on the
surface of the earth. Unfortunately, many
calculations required by SAF behaviors, such as
Euclidean distance between two points, are
computationally expensive using geodetic
coordinates. The reverse is true in geocentric
coordinates. For this reason, many simulators,
such as the OneSAF Objective System and
WARSIM, use both.

However, there is a sizeable storage cost
associated with storing the terrain in a round earth
representation. The round earth model requires
double-precision floats (64 bits) to achieve the
precision required to perform accurate operations
on the earth’s surface using a geocentric or
geodetic coordinate system. This means each
coordinate requires a minimum of 24 bytes of
storage; 48 bytes for both representations. For very
dense or complex terrain, this can add up very
quickly.

Data Resolution

At the period of design for most current terrain
representations, coarse data at 100 meter post
spacing was the best widely available source data.
While the NGA had defined higher resolution
levels of digital terrain source data (DTED), they
had limited availability and coverage. Fortunately,
virtual and constructive systems usually do not
have as great of a need for such high fidelity
terrain data.

Figure 4. A visual comparison of 100m (left),
30m (middle), and 10m (right) elevation data.

However, live trainers such as OneTESS need
much higher fidelity source than 100 meter data, to
correlate to the real world. Fortunately, high
resolution data is more readily available today.
LIDAR data collection that supplies imagery and
elevation data at meter or sub-meter resolution is
becoming more commonplace. This data often

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2007

overwhelms current systems and formats. To use
such high-fidelity data, current terrain formats
generally must perform considerable down
sampling during the TIN generation process to
meet their memory and storage requirements.

THE LTF TERRAIN FORMAT

The typical terrain representations have various
strong and weak points. Programs have
specialized each of these to meet virtual and
constructive simulator requirements. The unique
OneTESS requirements demand a new solution.
The live terrain format (LTF) was designed from
the ground up to meet the specific needs of the
OneTESS system, and the live training community
in general. The design for the LTF borrows
heavily from current industry standard terrain
representations ~ while incorporating design
principles from other external industries, such as
computer graphics and gaming. The major design
goals for LTF are:

e A layered/scalable solution

e Small memory/storage footprint

e Optimized LOS performance

e Dynamic environment

Layered/Scalable Solution

Many of the current synthetic environments store
all of the terrain data together in one encompassing
terrain data format. When executing terrain
reasoning methods on the environment, all of the
data is processed together. For instance, in OOS,
the terrain features are integrated into the TIN. In
this model, the terrain triangles and features are
stored together and related. When a line of sight
query occurs, a single algorithm processes both the
terrain traversal and feature intersection check.

This “one size fits all” solution prohibits creating
algorithms optimized specifically for a certain data
type. In LTF, disparate data types are separated
into their own storage and functional layers. This
approach allows the development of specialized
algorithms for each data type.

The layered architecture allows for a scalable and
composable system. Currently, LTF is composed
of the terrain and volumetric feature layers. In the
future, developers could add new layers to enhance
the system. For example, a system may require
road networks to support automated route
planning. Storing the road network in its own

2007 Paper No.7116 Page 6 of 11

layer allows for the design of a specific, optimized
route planning solution.

The layered architecture also enables users to
compose their own system. In the above road
network example, an individual live trainee has no
use for the routing layer. The layered format will
allow the trainee to configure their system to
execute without it. Omitting the unneeded road
network layer reduces the storage required on the
resource-limited player unit.

Terrain Pages/Round Earth

LTF stores the terrain data in pages that are one
square kilometer in size. Each page has its own
local tangent plane (LTP) coordinate system. The
small size of the page minimizes the effects of
earth curvature to within the 0.1 meter elevation
error tolerance. Also the small page size allows
the use of 32-bit floating point coordinates, which
significantly reduces the memory requirements of
the system.

A line of sight ray that overlaps multiple database
pages is transformed into each page’s coordinate
space before checking for blockage in that page.
Since each page has its own coordinate system, the
database can fully represent a round earth.

Terrain Elevation Layer

To meet database size and performance
requirements, the regular grid terrain surface
representation has proven to be the best solution.
The small 1-km? terrain page size and the “flat
earth, 'Z' vector is always up” representation in
each page gives suitable accuracy with regards to
curvature of the earth while providing major
storage space and runtime computation reductions
compared to a geodetic or geocentric
representation. The terrain surface is stored in a
one-meter spaced grid, with each post representing
the terrain surface height in decimeters as a 16-bit
integer. The elevation grid for a single page only
occupies 2,000,000 bytes of memory - roughly 2
MB.

In order to optimize the line-of-sight processing,
the terrain is stored in a hierarchical tree. The
terrain tree is composed of culling grids which
contain the highest elevation of a 10 post by 10
post area. The LTF terrain skin, in its default
configuration, is represented by a three-level tree.
The lowest level is the 1-meter spaced grid, the
middle grid is a 100x100 cell culling grid, and the

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2007

top level is a 10x10 cell culling grid. The number
of culling grids and the post spacing of the grids
are configurable by the user.

Figure 5. Screen capture of 1 meter post spaced
LTF terrain.

Figure 6. Illustration of the culling grid
hierarchy.

The culling grids add minimal storage overhead to
the tree structure. Table 1, shows the default
configuration of the culling grids and the amount
of additional memory required. The performance
gain well justifies the slight increase in storage.

Table 1. Memory requirements for a 1k x 1k
elevation grid hierarchy.

S;;(::Si;g NIl)meer };?ZS; Total Size
(meters) osts (bytes) (pizs)
1 1,000,000 2 2,000,000
10 10,000 2 20,000
100 100 2 200
Total 2,020,200

Terrain Elevation LOS Method

The field of computer graphics has studied
algorithms to deal with two-dimensional grids for
decades — after all, the computer monitor is
basically a two-dimensional grid of pixels. All
shape primitives drawn on the screen must be
approximated as pixels. Bresenham’s line drawing
algorithm was created to approximate a line on the
monitor. It determines the start and stop locations
of a line, and finds all of the pixels that must be
drawn. It has been highly optimized through the
decades to make it as fast as possible.

2007 Paper No.7116 Page 7 of 11

The act of conducting a line-of-sight on a terrain
grid is very similar to the problem that Bresenham
solved. Basically, the LOS routine must know all
of the grid “pixels” that the LOS ray overlaps, and
check to see if the terrain in that grid blocks the
ray. Unfortunately, since Bresenham’s algorithm
was created to approximate a line on the screen, it
skips some pixels that the line overlaps to make
the line appear straight. .

The 2DDDA (two-dimensional digital difference
analyzer) algorithm is a derivative of Bresenham’s
algorithm. The major difference between it and
Bresenham’s is that it identifies every pixel that
the line overlaps. The algorithm is highly
optimized and traverses a regularly spaced grid
quickly.

The LOS routine works recursively on the terrain
tree. The routine starts on the top node of the tree
and determines the start cell. The ray is checked
against the height of the current cell. If the ray is
lower than the height of that cell, the routine is
called again on the child node of that cell.
Otherwise, the routine traverses the grid to find the
next cell in the current node to check. This
continues until the end of the line is reached or the
ray is blocked.

If a ray is close enough to the terrain skin,
eventually it will work its way through the culling
grids to the post grid. Each post in the post grid
represents the elevation on a point in the terrain.
The exact height at a location between the posts
must be interpolated. Each cell of the post grid is
conceptually represented by two right triangles.
These triangles are created by drawing a line from
the upper-left corner of a four post square to the
lower right hand corner. When a ray needs be
checked against the terrain skin, it is checked
against the two terrain triangles. If the ray
intersects either of the triangles, then the LOS
routine is blocked. If not, the LOS traversal
continues.

Feature Representation

Features include any objects other than the terrain
that are capable of blocking line-of-sight. They
are typically small in spatial size and quite
numerous, which creates a significant challenge in
using them efficiently. = Examples of common
features include trees, buildings, and street lights.

Virtual and constructive terrain database formats
often take shortcuts in representing features — for

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2007

example, OTF databases often represent entire
forests as a single feature and use an attenuation
model to simulate the probability of hitting
individual trees. These kinds of shortcuts are not
available in the live domain, which must represent
every feature explicitly. In OneTESS, a feature is
a solid object capable of blocking line-of-sight that
is composed of a single material type.

LTF represents features as leaf nodes in a
bounding-volume hierarchy (BVH) tree, which is a
spatial tree commonly used by graphics and
gaming applications for ray-tracing and collision
detection. Each node in a BVH tree is a spatial
volume that fully contains all of the volumes of its
child nodes. Intermediate “culling” nodes
organize features that are spatially close to each
other so that a quick intersection check on the
culling node can potentially eliminate a large
number of feature nodes from consideration in the
line-of-sight algorithm. BVH trees are somewhat
slower for line-of-sight calculations than spatial-
partition trees such as kD-trees, but were chosen
for their significantly better update performance to
support dynamic terrain events.

The LTF BVH tree supports using arbitrary
geometry types for both intermediate “culling”
nodes and feature geometry nodes through a
common geometry interface. Any geometry that
implements the requirements of the interface can
be used, enabling rapid development of new
geometry types for features. In the LTF prototype,
only rectangular prisms and elliptical cylinders
were implemented; a production version would
also support ellipsoids, triangle meshes, and other
common geometry types. When possible, features
should be represented using simple solid geometry
primitives instead of full triangle meshes since
they enable faster computations and reduce
memory use. Culling nodes should only use very
simple solid geometry types like rectangular
prisms since their intersection checks must be as
fast as possible. Both leaf and culling nodes
support full three-dimensional rotation using
quaternions; features are not required to be
oriented along the local z-axis.

Like other database formats, LTF supports the
concept of attribution for features: any feature in
the BVH tree can have a set of associated
attributes. The only attribute currently defined for
OneTESS is the “Material” attribute, which
specifies the material type for the feature. Many
properties that are commonly represented as
attributes in other formats, such as feature length,

2007 Paper No.7116 Page 8 of 11

width, and height, are instead explicitly
represented by the feature's geometry in LTF.

Feature LOS Algorithm

The BVH tree used by LTF is optimized for
attenuated line-of-sight computations. The
algorithm is reentrant, and individual BVH tree
nodes can be processed without requiring that the
entire algorithm be run at once. The algorithm's
state consists of a list of candidate BVH nodes that
are known to intersect the line-of-sight ray, sorted
by the distance of the intersection points from the
ray's origin.

The algorithm starts by checking to see if the root
node in the BVH tree intersects the line-of-sight
ray. If so, it adds the root node to the candidate
node list. After that, each time the algorithm is
called, it checks and removes the next node in the
candidate node list. If that node is a culling node,
it performs an intersection query on each child of
that node, and adds the child nodes that intersect
the ray into the candidate node list. If the node is a
leaf feature node, it provides the feature
intersection to the attenuation model and asks if
the feature completely blocks the ray; if so, it
reports the blockage to the caller. The algorithm
terminates when a blockage is detected or when no
more nodes are left in the candidate node list.

Figure 7. Screen capture of LTF running a LOS
against both terrain and features.

The algorithm makes no assumptions about the
attenuation model being used — attenuation is
calculated through a generic interface that makes it
possible to use completely different models for
different runs of the algorithm. In OneTESS, the
attenuation models will depend on the weapon and
ammunition used for the bullet trajectory that the
line-of-sight query represents.

Feature Layer Construction
The most difficult — and most crucial — part of
constructing the feature layer is creating a good

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2007

BVH tree. The layout of the tree is the largest
factor in the performance of the line-of-sight
algorithm, since it determines how many nodes
must be traversed for a query.

There are many heuristics used in BVH tree
construction. The most challenging part is
choosing the proper parent node for any particular
leaf feature node. The goal is to group together
features that are spatially close, and to minimize
overlaps of sibling culling nodes. Overlaps
destroy the culling efficiency of the tree since they
often require two or more deep tree traversals to
conduct checks on nodes that should have been
grouped together.

The naive approach is to only consider culling
nodes that do not need to be enlarged to contain
the inserted feature node, but this approach led to
extremely large numbers of overlaps on the data
sets. While culling nodes that already contain the
feature should have priority over culling nodes that
require enlargement, there are many heuristics to
choose good parents when enlargement is
required. Some of the more common include
choosing the parent node that would require the
least volume increase to use, choosing the parent
node that would require the least surface area
increase to use, and choosing the parent node that
is spatially closest to the feature. LTF currently
uses the minimum-volume-increase heuristic, but
more research must be conducted to determine
whether this is the best approach.

Other questions involve when to subdivide culling
nodes that have too many children, and when to
create new culling nodes rather than reuse existing
ones. Currently, LTF caps each culling node to
four children, subdividing if a fifth child is added.
It also chooses to create new culling nodes at the
root level if the best candidate parent's volume
increase is above a threshold. These choices are
fairly arbitrary, and should be studied in more
detail to determine what the proper decisions
should be.

Dynamic Terrain Representation

A live training system needs to be able to represent
changes in the real environment that may occur
during the exercise. These changes could include
cratering, destruction of terrain features, and the
creation of man made fortifications, such as berms,
ditches and foxholes. These changes can
potentially affect all of the LTF layers. For
instance, a tree being knocked over would be

2007 Paper No.7116 Page 9 of 11

feature change, while a crater from a shell would
affect the terrain skin.

However, the current representation of the grid
using one meter post spaced grids does not allow
the needed resolution to properly integrate these
terrain changes. A foxhole can be dug into the
terrain in any location, not just on post boundaries.
As stated previously, it is paramount to correlate
with the dynamic events in the real world. The
terrain grid has been designed to allow higher
resolution grids in small areas. However, due to
the size constraints of the player unit, this
currently is not feasible. Therefore, all of the
current dynamic terrain functionality is modeled
with terrain features.

As previously discussed, the BVH structure is
designed to be used with dynamic changes. The
performance costs to create, modify, or delete a
feature are less for it than with other tree
structures. When a new feature is created, the
correct bounding volume is identified and the
feature is inserted. If needed, the containing
volume will either have to be modified or created.
If a feature is deleted or modified very minimal
changes need to occur.

Since the terrain skin cannot handle dynamic
events, all dynamic changes that alter the terrain
skin must be modeled with features. Subtractive
features are a special feature type which represents
a volume where there is no terrain. Basically,
when conducting an LOS query, if a ray intersects
the terrain skin which is contained in a subtractive
feature, then the ray is considered not blocked and
continues. The subtractive features are a design
for the future and are not currently implemented.

Terrain Manager

Even though OneTESS training will take place
over relatively small geographic areas, the
OneTESS player unit cannot accommodate the
entire database in memory. The LTF runtime must
be capable of efficiently swapping terrain tiles in
and out of memory, caching them in a way that
minimizes the number of swaps. OneTESS
intends to keep at least 16 km® of terrain in
memory, derived through consideration of typical
line of sight distances and the memory constraints
of the player unit.

The LTF Terrain Manager is responsible for
properly loading tiles into memory when needed
and determining which tiles to discard if too many

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2007

tiles have been loaded. To do so, it uses a simple
“Least Recently Used” (LRU) cache with a hard
limit on memory use. This simple caching
strategy should be sufficient for dismounts since
their weaponry has a relative short range, they
move relatively slowly, and most line-of-sight
queries they conduct would occur within a 2 km
radius of their location.

The Terrain Manager also acts as the top-level
manager for line-of-sight queries: it determines
which terrain tiles might intersect the line-of-sight
ray and forwards the query to each tile in the
proper sequence. The tiles are responsible for
converting the ray into their local coordinate
system and all further processing, and report
whether the ray was clear or blocked in that tile.

PRELIMINARY RESULTS

The prototype's results have been very
encouraging. We developed a series of automated
performance tests to simulate the expected types of
line-of-sight queries in the OneTESS environment,
and profiled the memory and disk use of the LTF
runtime. All tests were conducted on the same
workstation with the following specs:

Table 3- Compressed Disk Size

Terrain DB Grid (MB) Features (KB)
Representative 1.7 104
Dense 1.7 304

Table 4- In-Memory Size

Terrain DB Grid (MB) Features (KB)
Representative 18 182
Dense 18 1,290

Line of Sight Performance Benchmarks

Table 5-LOS Query Times

Query |Actual |Rep. Terrain [Dense Terrain|

Ray Distance |Query Time [Query Time

Length [Traveled
150m | 76.8m 12.5 ps 67.8 us
300 m 121 m 13.2 ps 70.9 ps
500 m 160 m 14.6 ps 81.5 us
1000 m | 235m 16.9 ps 83.9 us
1800 m | 348 m 18.0 us 104.9 ps
2000 m | 375m 18.4 us 115.1 ps

CPU Intel Pentium D EM64T
CPU Speed | 3.00 Ghz (HT on)

RAM 2 GB DDR

OS Kubuntu Linux 7.04 (i1386)

Two 9 km’ terrain databases were produced for
testing purposes, both from Barstow, California.
The grids were set to one meter post spacing, with
10 and 100 meter culling grids. A rectangular
prism was generated for each building, and an
elliptical prism was generated for each individual
tree.

The Representative Terrain covers an area similar
to the one expected for OneTESS Build 0
requirements, and has 1,255 volumetric features.

The Dense Terrain covers a section of downtown
Barstow and is representative of a low-to-
moderately dense wurban area, with 8,714
volumetric features.

Storage Benchmarks
Table 2- Uncompressed Disk Size

Terrain DB Grid (MB) Features (KB)
Representative 18 104
Dense 18 808

2007 Paper No.7116 Page 10 of 11

Table 6 — Linear Fit for LOS Query Times

Terrain | Intercept | Slope Correlation
DB (ps) (ps / m)

Rep. 11.2 0.0148 0.985
Dense 543 0.151 0.960

The linear curve fit shows that, in these databases,
the cost of a line-of-sight query is directly
proportional to the length of the section of the ray
processed by the algorithm. The intercept values
show the overhead required on every query, and
the slope value shows the processing cost per
meter.

The lengths of the query ray were selected based
on an analysis of weapon ranges for OneTESS.
The actual distances traveled by the algorithm are
less due to blockage. The provided actual
distances come from the Dense Terrain; the
corresponding distances for the Representative
Terrain are higher since the ray is less likely to be
blocked.

10,000 different rays of each query distance were
randomly generated for the terrain, and each ray
was queried 1,000 times. All query rays started
and ended within 3 meters of the terrain surface.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2007

ADAPTING TO CONSTRUCTIVE /
VIRTUAL DOMAINS

Virtual and constructive simulations can benefit
from LTF for certain exercises where high fidelity
environments are needed. The detail and
performance are particularly suitable for urban
operations. The accuracy LTF provides can
capture ground truth specifics where source data is
available to provide accurate detail needed for
mission rehearsal.

To support virtual and constructive simulations,
LTF would need extensions to include data not
needed for live training. Examples include earth
surface characteristics (soil type, vegetation
coverage) for mobility, material composition for
weapons effects and sensors, road and river
networks for navigation, etc. The LTF design
naturally supports these types of extensions as
additional layers. This reinforces the underlying
principle of optimizing the representation and
algorithms for each layer of source data.

LTF could represent lower resolution terrain areas
for virtual and constructive simulation. The
gridded nature of the terrain surface is not locked
into any specific spacing. Thus, the LTF
accommodates 10-meter or other uniform spacing
without modifications to the format or runtime
services. Some simulations, such as CCTT, require
reasonable slopes roads and flat lake surfaces. The
LTF is designed to be able to support higher-
resolution nested grids within the larger post
spacing to capture additional detail in a similar
manner to CCTT’s cut-and-fill, substituting
elevation posts for triangles. Simulations would
realize the benefit of higher accuracy and greater
run-time performance while using less storage.

2007 Paper No.7116 Page 11 of 11

CONCLUSION

Live training in general, and OneTESS
specifically, have the need for a high resolution
environment to be able to correlate with the real
world. Also, OneTESS has to operate on a
handheld player unit with limited resources and
processing power compared to desktop systems.
These requirements are nothing like the current
requirements for most virtual and constructive
domains. Because of this there is no current
format capable of meeting OneTESS's needs.

A new environment had to be created to meet the
needs of OneTESS. This environment was built
on common terrain representations along with
technology from the graphics and gaming
industries. LTF is a composable, scalable system
capable of processing line-of-sight quickly on high
resolution data. It has met its requirements in
regards to both performance and resource
utilization. And although it was designed
specifically for the live domain, it can be expanded
in the future to meet the needs of the virtual and
constructive communities.

References

Bresenham, J (1965) Algorithm for Computer
Control of a Digital Plotter, IBM Systems
Journal, 4(1):25-30

Lauterbach, Yoon, Tuft, Manocha (2006) RT-
DEFORM: Interactive Ray Tracing of Dynamic
Scenes using BVHs, In Proc. 2006 IEEE
Symposium on Interactive Ray Tracing

Hall, R.J. & Chludzinski, J (2007) Timely
Provision of Terrain Elevation Data for
Geometric Pairing Computations. In Proc. 2007
Intersercice/Industry Training, Simulation, and
Education Conf.

OneTess Program, Synthetic Natural Environment
OOS Reuse Report, 29 December 2006

