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ABSTRACT 
 
Highly advanced sensor technologies give our military commanders a significant command and control (C2) 
advantage over our enemies during conflicts, particularly with respect to situation awareness (SA). The use of 
advanced sensor technology models in synthetic battlespace gives war fighters parallel advantages. Two accepted 
simulation methodologies for analyzing the impact of sensor technologies are through Human-in-the-Loop (HITL) 
experiments, such as Joint Urban Operations (JUO), which utilize sensor capabilities to assist human participants 
during the experiments, and Monte Carlo Constructive (MCC) simulations, which can be used to model human 
performance. In HITL experiments using Joint Semi-Automated Forces (JSAF), participants describe their SA using 
Situation Awareness Objects (SAOs) which then can be reconstructed using Endsley’s (1995) three levels of SA 
(perception, comprehension, and prediction). MCC experiments, which are dominated by algorithmically 
determined behaviors, can be used to model SA. Sensor measurements currently can be fused to perceive individual 
entities, but do not have the capability to recognize groupings of entities, resulting only in partial perceptual SA. 
Furthermore, current sensor data fusion models do not produce the second and third levels of SA, comprehension 
and prediction. 

 
This paper will report research efforts to utilize both methodologies to expand the use of SAOs beyond player 
declarations to the automatic generation of SAOs.  We develop a method to organize events drawn from scenarios 
taken from HITL experiments using SAOs in order to develop situation awareness algorithms for the MCC runs.  
These model-generated synthetic SAOs (SSAOs) can be compared to SAOs generated by human players to identify 
the accuracy of the models as well as be used to identify strengths and weaknesses in player performance. 
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INTRODUCTION 
This paper focuses on building a foundation for a 
research effort on modeling situation awareness (SA) 
in synthetic theater of war (STOW). We present a 
relevant research problem, and a description of how it 
can be modeled. We focus on SA because it has 
widespread relevancy throughout the military 
community and at all levels of the command hierarchy. 
We are also interested in SA because, as a complex 
mental state that is composed of numerous cognitive 
processes, it is a particularly challenging modeling 
problem. Being able to successfully model SA will 
have at least a two-pronged benefit, in our view. First, 
it would validate our assumptions of the results of 
Human-in-the Loop (HITL) exercises in which human 
participants are a part of the simulation. Second, our 
approach is applicable to SA-related issues, including 
command and control (C2) and training.  
 
Motivation  
 
There are two accepted experimental methods for 
evaluating sensors technology: HITL experimentation 
and Monte Carlo Constructive (MCC) experiments, 
which are statistic-based constructive experimentation 
of sensor models. For HITL experiments, SA output is 
a function of human behavior. The use of constructive 
runs, up to this point, in sensor modeling and 
simulation experiments has been conducted 
independently of consideration for human interactions 
and attempts to model situation awareness have been 
limited to its more perceptual aspects.  HITL 
experiments yield a wealth of data and if the MCC 
methodology can be used to develop tools to give 
analysts a synthesized encapsulation of events akin to 
the information provided by the HITL players, they can 
make better use of resources (time and personnel) to 
make better decisions.  

Our approach is directly tied to ongoing HITL 
experimentation by the Forces and Modeling 
Simulation (FMS) Group in the J9 Directorate at the 
US Joint Forces Command (JFCOM), the evolving 
sensor modeling technology by Toyon Research 
Corporation, and the research and support in synthetic 
battlespace by Alion Science and Technology.  

 
General Overview  

Our proposed SA analysis framework, in the context of 
STOW, specifically in Joint Semi-Automated Forces 
(JSAF) simulation software, can be summarized as 
follows. The experiment consists of a game that is 
played among two or more potentially adversarial 
forces (i.e., blue, red, and green cells).  The objective 
of the red and blue cells is to tactically outmaneuver 
the adversary. These experiments operate on the 
assumption that complete and superior SA, relying on 
the aid of sensor technology, is the key to success. In 
these experiments, players demonstrate SA when they 
detect and accurately interpret sensor data.  

For our purposes, Figure 1 illustrates the flow of 
information from sensor data (input to player) to SA 
interpretations (output from player): sensor data and 
other simulation information are fed into a proverbial 
cognitive black box, resulting in SA. In the case of the 
HITL experiments, the black box represents the human 
players’ cognitive processes involved in updating their 
mental model of the situation based on information 
from sensor data, prior knowledge, and their previous 
SA. The outputs of these processes are the SA 
products. In the case of constructive simulations, as 
there are no human interactions, the formulation of 
these processes is algorithmic.  

cognitive 
processes

sensor data

SA Level 1 (signature)

SA Level 2 (+ pattern recognition, kinematics)

SA Level 3 (+learning behavior)  
Figure 1.  Information Flow from Sensor to SA 

PROBLEM DESCRIPTION 

The research problem considered here focuses on 
developing a situation template of emplacement to be 
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used for future MCC experimentation. We first define 
situation awareness and its use in HITL 
experimentation. We then describe the sensor 
simulation platform and software and the possible way 
in which the algorithms are implemented. Finally, we 
will consider a case study of SA using data collected 
from human players.  

 
Situation Awareness Defined  

There tends to be widespread agreement as to when 
good and poor SA is observed, but the numerous 
definitions of SA illustrate the difficulty of precisely 
defining SA. Many of these definitions are not useful 
for our purposes because they do not provide a 
sufficient framework for specifying the variables that 
are likely to influence SA. Perhaps the most widely 
accepted view is that of Endsley’s (1998) multi-level 
approach. This view has come to be adopted by the 
military community for research, training, operations, 
and other purposes, and provides a framework suitable 
for our purposes.  

According to Endsley, SA can be described as 
consisting of perception, comprehension, and 
projection (see Figure 2). These levels represent the 
products of separate cognitive processes, yet the 
products from one level are influenced by those of 
other levels.  

The perceptual level involves the detection, 
recognition, and identification of elements that define a 
specific situation. Perceptual SA relies on available 
sensory information, (e.g., from sensors in the case of a 
player in a HITL experiment) and the player’s prior 
knowledge (e.g., object patterns/schemas activated in 
memory) to identify individual situation elements and 
object groups and their characteristics. Level 1A 
perception corresponds to the identification of 
individual entities (e.g., a tank); Level 1B perception 
corresponds to the identification of a grouping of 
entities (e.g., a mechanized brigade). The sensor fusion 
processes that are involved in associating tracks from 
different sensor sources or in grouping entities reflect 
perception.  

The comprehension level (Level 2) reflects an 
understanding of the current situation, mapping 
perception to function. In battlespace, comprehension 
involves identifying the enemy’s current activities.  

Finally, the projection level (Level 3) reflects 
predictions about the trajectory of the situation based 
on the products of the lower levels of SA and prior 
knowledge. In battlespace, projection corresponds to 
intent: what will the enemy do? Our contribution to this 
paper focuses on how MCC experimentation can 
accomplish the mapping of perception to function thus 
involving both Level 1 and 2 SA. 

 
 

Figure 2. Endsley’s (1998) Multi-Level Approach to Situation Awareness 
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HITL Experiments  

USJFCOM conducts Joint Urban Operation (JUO) 
series of exercises in synthetic domains using human-
directed computer simulation tools, such as JSAF, to 
explore and analyze current and future Joint war-
fighting capabilities. HITL actions and interactions are 
important components of these experiments, where 
humans control the activity and influence the outcome 
of the exercises. Humans control simulated 
Intelligence, Surveillance, and Reconnaissance (ISR) 
sensors and use Situation Awareness Objects (SAOs) 
to declare and share their perceptions regarding model 
generated detections and track objects.  

Situation Awareness Objects (SAOs) in HITL  

In order to evaluate the effectiveness of game-play in 
the JUO exercises, we employ a novel tool called SAO, 
which is a method of recording information about red 
force entities that has only been used this series of 
experiments (Anhalt, 2006). The SAO is a compact 
package of information that players create and place on 
a shared terrain map that contains their thoughts, 
assumptions, and understanding about the enemy.  
Figure 3 is an example input screen in JSAF that 
allows puckers to annotate their SA state (create an 
SAO) during game play. SAOs are created by having 
players input information about the state of the entities. 

 

 
 

Figure 3. An Example Input Screen in JSAF 

 
Collect Data from JUO/HITL Experiments 

The data to be used for the model comes from 
JUO/HITL experiments, including electronic data that 
are captured and archived during each trial (e.g., 
ground-truth unit information of all enemy, friendly 
and neutral entities, enemy unit track locations as 
perceived by the sensors and players) and SOA 
information. SAOs are command and control tools 
designed for players to assess sensor results and share 
their findings. SAOs are key to evaluating the player's 

understanding of the battlespace and include player 
comments. 

SENSOR MODELING: URBAN RESOLVE 2015 

The vast developments in the fields of computer 
engineering and computer science have allowed for the 
efficient modeling of increasingly complex and 
computationally expensive sensor systems. As 
technical advances are made, additional resources 
become available for many problems that may have 
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strained computing resources in the past, if they were 
possible at all. One highly effective use of modeling 
and simulation is the rapid prototyping of future 
systems. This use has allowed researchers to 
implement and discover new ideas based on state-of-
the-art technological advances, as well as adapting to 
changing environments and current day military 
defense and defeat needs. 

For the last several years, JFCOM HITL experiments 
have focused on asymmetric threats and have explored 
advanced future sensor technologies as solutions to 
defeat these threats. In so doing, a paradigm shift has 
occurred whereby HITL player involvement was 
expanded to involve interpreting formerly incidental 
pieces of information, or otherwise insignificant 
simulation artifacts, and recognizing that those events 
play a formal part of understanding the enemy. For 
example, in Millennium Challenge 02 and Urban 
Resolve Phase 1 in 2004, only the graphical 
representation of an entity was relevant; events such as 
digging and loitering within a group were not 
significant or were simply not a capability that existed 
in the simulation. As implemented in the J9 
Directorate’s Urban Resolve 2015 (UR2015) 
experiment of 2006, interpreting these events was 
critical to understanding SA. HITL players were 
trained to expand the scope of SAO involvement as the 
primary means of capturing the new pieces of 
information. SAOs became the central component to 
threat identification and interdiction within the 
experiment. 

Description of SSAO  

This paradigm shift also had the affect of creating a 
larger separation between HITL and MCC results by 
enhancing the overall impact human interpretation of 
events had on the experiment outcome. With MCC 
based experimentation focused on Level 1 SA, our 
contribution in this paper will make an evaluation of 
official UR2015 trial run SAO data, and use that data 
as a means to facilitate generating higher-level SA in 
MCC runs. 
 
Our ultimate intent is to successfully bring together the 
most beneficial elements of HITL experiments, namely 
the unique perception abilities brought by players, and 
the scalability and efficiency of an MCC experiment. 
To effectively model patterns of player performance, 
the concept was developed to automatically generate 
SSAOs for MCC experiments. The SSAO is a generic 
construct that will facilitate capturing all three levels of 
SA in an MCC experiment in a manner parallel to the 
SAO in a HITL experiment. These objects encapsulate 

and automate the (1) detection of entities and the 
grouping of these detections, (2) identification of the 
activities of these entities, and (3) derivation of 
heuristic models for intent of the opposing force as 
represented by the entities. Figure 4 below 
demonstrates the three levels of SA that would be 
required to be encapsulated by an SAO/SSAO during 
HITL and MCC Experimentation.  
 

 
 

Figure 4. Three Levels of SA to be Captured by 
SAO/SSAO 

 
SLAMEM: The MCC Simulation Testbed 

JFCOM sponsored large scale HITL experimentation, 
including UR2015, has used the Simulation of the 
Location and Attack of Mobile Enemy Missiles 
(SLAMEM™) for simulating ISR capabilities in the 
JSAF federation. SLAMEM is an entity level, event 
based simulation that was developed for analyzing the 
performance of coordinated command, control, 
communications, intelligence, surveillance, 
reconnaissance (C4ISR) and targeting systems against 
time-critical mobile targets. SLAMEM has also been 
utilized in performing numerous MCC experiments on 
behalf of JFCOM. SLAMEM’s role in supporting 
surveillance and targeting activities includes analyzing 
advanced C4ISR architectures. SLAMEM analyses 
have several objectives, including: (1) quantifying the 
potential improvements in effectiveness provided by 
the advanced architecture; (2) deriving the performance 
required from the technologies to achieve specific 
mission-level goals; and (3) developing new CONOPS 
for using the technologies most effectively. As the 
threat environment evolves, it has become more 
important to consider human perception factors when 
making the above 3 assessments. 

MCC Experiments  

Monte Carlo based simulations are closed form 
constructive processes that have no human interaction 
during runtime. The results of MCC experiments are 
dependent on the scenario metrics and random 
statistical variations from run to run, and are initiated 
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with a unique random seed. These statistical variations 
can hinder meaningful results from MCC experiments 
if care is not taken to make sure a sufficient number of 
trial runs are completed (that is, random variations 
alone should not dictate the outcome of any run). This, 
however, is generally not a road block even when the 
number of trial runs is large. This is due to the fact that 
MCC runs do not require constant monitoring and lend 
themselves rather well to batch processing for this 
reason. The lack of the human component allows for 
greater scalability in the number of variables 
experiments can explore. 

A limitation of MCC runs is that only the most basic 
levels of perception are considered for evaluation. 
Specifically, for SA Level 1, the acquisition of entities 
in the environment, and ability to maintain persistent 
surveillance has been the main focus. This is primarily 
due to the fact that there are no human interactions, and 
thus no human providing insight into the problem. But 
for MCC experiments to maintain their relevance, they 
must adapt to the growing trends of enhanced 
perception requirements. 

Modeling SA in MCC with SSAO  

The HITL experiments place an emphasis on the 
importance of human interactions and the output of the 
experimentation is a function of human behavior, and 
is measured using the metrics of Situation Awareness 
(Curiel, Tran, Anhalt & Yao., 2005). On the other 
hand, up to this point, sensors modeling and simulation 
experiments in the context of constructive simulations, 
by definition, have been conducted independently of 
consideration for human interactions. Notably missing 
is the lack of focus on a situation model.  

Currently, MCC experimentation is developed with 
underlying fusion algorithms that can provide a means 
of synthesizing rudimentary components of SA. These 
components make up the first level of SA which 
answers the so-called “what” question.  In the case of 
the models that have been experimented, the “what” 
question answers the specific questions of what is 
being observed or detected by the sensor models. They 
also provide, with the use of various heuristic 
algorithms, the ability to aggregate the detections into 
composite units, also referred to as Level 1B SA (Tran, 
Yao & Curiel, 2004). For example, the detection of a 
group of “metal” vehicles by the sensors can be 
funneled through the Fusion Center and the output is 
classified as a mechanized brigade (Castleberg, Colon 
& Berger, 2006). The ability to extend the constructive 
experiment model to cover the second and third level 
of SA in MCC experiments would provide a more 

complete experimental framework that validates the 
effectiveness of sensor models – and doing so from a 
statistically relevant analysis standpoint.  

Automated Level 1 SA in UR2015 

The UR2015 HITL experiment explored a trade space 
containing a wide array of sensor technologies. Each 
sensor, depending on its underlying phenomenology as 
well as its quality, aided situation awareness to varying 
degrees. This variability was characterized by 
confusion matrices. Confusion matrices were defined 
to be unique for each sensor, and also to provide a 
perceived view of the entities within the environment 
based on 3 dimensions (quality, camouflage, and 
azimuth angle). Confusion matrices represent the 
exploitation processes, whether automated or human-
aided, which transform sensor data into detection and 
classification outcomes. Equation 1-1 (equation 
parameters are defined in Castleberg et al., 2006), 
commonly known as Johnson’s criteria (Johnson, 1958; 
O’Connor, 2003), was used to determine the 
probability of detection, correct classification and 
identification of entities in the environment. 
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The outcomes of using Johnson’s criteria per entity 
were used to populate the values of the confusion 
matrices. Figure 5 illustrates a generic example of a 
confusion matrix. 

SA is initiated through sensor tasking and is developed 
through outcomes of sensor-target interactions and 
subsequent confusion matrix draws. That is, if say 10 
entities fall into a single beam of a sensor, each of 
those 10 entities would be perceived separately and 
generate 10 distinct sensor-target interactions.  
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Figure 5. Example of the Format for a Confusion Matrix 
 

An important development in the field of modeling and 
simulation has been the change in focus from a strictly 
entity based visual perception of the enemy, to a more 
context-based perception of who is likely to be an 
enemy (Ceranowicz, Torpey, & Hines, 2006). This 
change in methodology has had a vast impact on the 
M&S sensor development community, and indeed on 
the players who control the sensors and interpret their 
output. The determination of who is likely to be an 
enemy is no longer based on what the entity looks like, 
but by viewing types of evidence such as the behavior 
of the entity at any given time, the accessories carried 
by the entity, and any actions the entity happens to be 
engaged in. The challenge of modeling and simulation 
is to make sure that each piece of evidence is 
sufficiently well modeled so that a HITL player has a 
chance to recognize the evidence, and discriminate 
with enough confidence targets of interest amongst the 
larger general population. 

The scope of UR2015 was defined to provide a 
solution of persistent surveillance unmanned aerial 
vehicles (UAVs) fitted with high resolution imagery 
and video capable of detecting on the highest zoom 
setting enough of the pieces of evidence to address the 
problem scope. UR2015, with all the advanced sensors 
available to the players, was still only automated to the 
players SA Level 1 perception. Using Johnson’s 
Criteria and assigning each piece of evidence a mean 
critical dimension, Equation 1-1 can be used to 
generate the probability of detection, correct 
classification, and identification for accessories and 
rudimentary actions, such as kneeling or loitering. 
When time is considered (i.e., an analyst reviewing 
sensor data over time), we may achieve recognition of 
behavior by utilizing the zoom feature of the video. It 

has been determined that to correctly classify small 
pieces of evidence, an image with resolution of better 
than 1cm is required (Castleberg et el., 2006). The 
UR2015 sensor solution required multiple looks in 
order to build sufficient confidence in a particularly 
small piece of evidence. The information provided over 
multiple looks was updated using Bayes’ rule, 
Equation 1-2,  
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and only when the belief in the truth identity of the 
evidence was reached (for UR2015 this threshold value 
was typically set to 0.80) a track was generated, 
containing information about the host entity’s location 
and velocity, as well as a list of recognized pieces of 
evidence. Players then were left with the assignment of 
determining if any given piece of evidence, or the 
evidence as a whole, constituted suspicious activity. 
These tracks, in addition to the steaming video, 
provided the players with the necessary information to 
recognize suspicious behavior and create SAOs to 
reflect their SA during game play. Table 1 shows a 
listing of available SAO types, as well as their relative 
frequency or appearance during game play. 

 

Ground 
Truth 

Perception 
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Table 1. UR2015 SAO Types and Frequencies 
 

SAO Types Frequency 
TerrorAct Other 42 
Terror Act Meeting 8.5 
TerrorAct Surveillance 1 
TerrorAct Suspicious 4 
TerrorAct Loitering 34 
TerrorAct Fleeing 2 
TerrorAct Event 8.5 

 

SAO CASE STUDY 

Of critical importance to today’s military is the threat 
of the improvised explosive devise (IED). For our 
consideration, we used data from actual events from 
UR2015 constituting an IED emplacement. The dataset 
was mined for TerrorAct SAOs where the players 
concluded that an IED placement was in progress or 
imminent based on one of several pieces of evidence. 
We define an IED emplacement scenario to be 
composed of the following: ingress of a vehicle to a 
location along the side of a sparsely populated road, 2-
man team emerges and loiters, 1 of the 2 proceeds to 
the center of the road and kneels with a shovel, an IED 
is left behind, individuals proceed to the car and mount 
for egress. The process in sum lasts for no more than 
30 minutes. The scenario also contains persistent high 
resolution imagery surveillance with one Predator 
viewing the area. Figure 6, a screen capture taken from 
the actual simulation tool used by players during 
UR2015, illustrates the scenario graphically. 

 

Figure 6. UR2015 IED Emplacement Scenario  

SAO Case Study Results 

The IED emplacement scenario was an important 
element of the UR2015 HITL trial runs, and players 
were trained on the indicators, or pieces of evidence, to 
look for to properly assess that situation. Figure 7 
shows the pieces of evidence that composed each event 
and the relative frequency that each appeared as part of 
the players’ decision-making process. For example, 
according to Figure 7, a player indicated that a “hot 
spot” was a relevant piece of evidence in 90% of SAO 
TerrorAct declarations. 
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Figure 7. UR2015 Evidence and Frequency for Determining IED Emplacement TerrorAct SAOs 
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The UR2015 experiment scenarios were defined to 
bring together many aspects of behavior and actions. 
For players to identify a threat, they would have to 
identify several pieces of evidence and correlate them 
with each other.  Figures 8 and 9 show the various 
pieces of evidence that players associated with IED 
emplacement events. Figure 8 shows that, on average, 
each IED emplacement SAO contained 4 distinct 
pieces of evidence.   

Figure 9 shows that that the 10 IED emplacement 
SAOs from UR2015 were composed of 10 distinct 
pieces of evidence in different proportions. This data 
shows that, for example, most IED activity happened 
within a predefined “hot spot”, in the presence of a 
single car parked next to a road, with a lone individual 
in the near vicinity. 

The data showed that at no time was a single piece of 
evidence sufficient to declare an IED Emplacement. In 
fact, on average, when a player designated an SAO, 
there were 4 pieces of evidence that contributed to it. 
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Figure 8. SAO Evidence Counts 
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Figure 9. Evidence proportions for 10 IED emplacement SAOs 

From SAO to SSAO 
As mentioned previously, MCC runs are able to use 
algorithms focused on kinematics and features to 
determine rudimentary levels of SA. But these 
algorithms are not sophisticated enough to evaluate 
distinct measurements and group them together based 

on known, or learned, patterns to assess higher levels 
of SA. By using SAO data, we can train the algorithms 
to watch for specific pieces of evidence, each 
depending on the mission or CONOPS. Specifically for 
our test case of an IED emplacement, we may populate 
Table 2 from the SAO player data. 
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Table 2. Table of Evidence of IED Emplacement, with Definitions 

Categories Type Specific Definition 

Actions Loitering Loitering Individual standing or kneeling in roughly 
same location for several minutes 

 Proximity To Road Proximity To Road Any action, location, or information 
located at roadside 

Counts Group Size Group Size = 1 Observed individual is acting alone 

   Group Size = 2 2 observed individuals close to one 
another 

 Vehicle count parked at roadside Vehicle Count = 1 Observed one vehicle parked along 
roadside 

   Vehicle Count = 2 2 observed vehicles parked along roadside 

Objects Tag Tag A person or vehicle with any type of tag 

 Object on Road IED/Clutter object An observed object laying on the road 
(either a roadside clutter or IED) 

Information Location Hot Spot Action or object observed in known area 
of interest 

 Tip Informant Tip White cell injection that suspicious 
activity is taking place. 

 
 
IED emplacements in the real world vary in every 
dimension, so we focus on the essential elements of an 
emplacement to keep the scenario tractable for 
analysis. A review of the SAO data suggests an a priori 
emplacement template for generating SSAOs in MCC 
runs, indicated by Figure 9. 

RESULTS AND DISCUSSION 

The research reported here is still in early 
developmental stages.  However, we feel that that the 
direction we are taking offers vast potential for 
improvement of human performance in SA.  One such 
example is the interplay between sensor development 
and human performance whereby behavior drives the 
technological requirements that contribute to sensor 
development. For example, looking at the evidence a 
player relies on is informative about the sensor 
technologies that are valuable. Being able to determine 
the physical attributes of the entities, as seen through 
stealth view, that were important to players discovering 
suspicious activity would lead us to conclude a need 
for high resolution cameras capable of detecting such 
attributes. When factoring in the need to have these 
cameras mounted on a UAV, aerostat, or towers 
operating at low light levels and at night etc. then 
player outcomes help define technology requirements. 

Other potential applications to our approach include the 
following: 

• Further refining SAOs to allow for automation 
between sensor and player output. 

• Training for SA, such as by identification 
player biases. 

CONCLUDING REMARKS 

Human-In-The-Loop (HITL) experimentation provides 
researchers with firsthand data of how sensors and 
sensor systems are utilized by the players. Through 
observation during trial executions, researchers and 
analysts can watch the players while they make 
important time critical decisions on how to improve 
their situational awareness through the use of one or 
more sensors in theater. SAO objects are the key data 
element for understanding the players’ choices at any 
given point in time. Analyses of these data can yield 
important information about how the sensors or sensor 
systems were employed, and what situations/scenarios 
were the most useful. Understanding this data better 
can illustrate operational needs more clearly, which can 
thus affect the design process of the sensors or systems. 
As for systems currently fielded, these data can provide 
insights on how to tune the sensors for better 
effectiveness during varying conditions. 
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Even with the benefits of human interactions and 
decision-making during sensor effectiveness studies, 
due to the fact that HITL experimentation requires a 
great deal of on-site personal support and financials 
resources, Monte Carlo constructive simulations are an 
attractive alternative. MCC runs require much less 
support than HITL experiments and are quite reliable at 
highlighting the capabilities of many sensors and 
sensor systems over a wide range of conditions. 
Currently, the lacking elements of Monte Carlo 
constructive simulation runs involve higher levels of 
situation awareness, such as the process of 
understanding incoming sensor data, associating tracks 
based on this data, and deducing enemy intent. By 
developing an algorithmic approximation to 
determining SAOs based on previous HITL data 
points, Monte Carlo constructive simulation runs can 
achieve a higher level of situational awareness that is 
not currently being obtained. Encapsulated within 
SAOs are keys to understanding the above mentioned 
process where a player takes sensor data and uses it to 
update the overall knowledge of the battle space. The 
outcome of the constructive runs can therefore expand 
upon the notion of sensor and sensor system 
capabilities to include new areas such as the usability 
of the sensors and sensor systems. 
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