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ABSTRACT 

 
To exploit the explicit and implicit advantages of data parallelism and heavily threaded modern multi-core 
processors, specifically the NVIDIA family of general purpose graphic processing units (GPGPU), research 
efforts such as "Accelerating Line of Sight Computation Using GPUs" (Manocha 2005) and "Implementing 
a GPU-Enhanced Cluster for Large-Scale Simulations" (Lucas 2007) addressed various problems found in 
military simulations, yet other practical uses for the GPU in these types of simulation applications remain 
to be explored. An example application that has immediate use for a fast and large-scale graph-based 
construct is a route-planning algorithm found in complex urban conflict simulation, e.g. the Joint Semi-
Automated Forces (JSAF) simulation.  JSAF currently employs a heuristic A* search algorithm to do route 
planning for its millions of entities –- the algorithm is sequential and thus very computationally expensive. 
Using the GPU, the JSAF simulation can off-load the route-planning component to the GPU and remove 
one of its major bottlenecks.   
 
The objective of this research effort is to build a framework that utilizes all the features and raw 
computational power of the GPU architecture to solve the above challenge. Our research effort addresses 
the many challenges of parallel programming on the GPU:  data locality, massive thread counts, and race 
conditions, to name a few.  Our project will greatly benefit the modeling and simulation community facing 
issues specific to route planning and of particular interest are those simulations dealing with dense urban 
environments, homeland security, and mass casualty and disaster simulations.  We achieve this goal by 
providing a practical and seemingly "endless" source of raw computing powers found in GPUs for 
massively large graph-based family of problems.  
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INTRODUCTION 

 
Problem Description 
 
The need for higher fidelity simulations is on the rise.  
Modern conflict space has shifted from open space 
theatre of conventional warfare to unconventional, and 
very often asymmetric, warfare that is carried out in 
dense urban settings.  The United States Joint Forces 
Command (USJFCOM) has conducted a series of 
complex experiments involving multi-force 
engagement in dense urban environments using the 
Joint Semi-Automated Synthetic Force (JSAF) 
simulators. Similarly, the Department of Homeland 
Securities shares similar interests in complex urban 
setting simulations, e.g. how to prepare for a mass 
disaster impacting densely populated US cities.   
Generally speaking, there are two possible ways to 
improve simulation fidelity: (a) by increasing entity 
counts (quantitatively) and (b) by increasing accuracy 
(qualitatively) of entity behaviors and resolution of the 
environment.  Numerous efforts have been made to 
increase the former, e.g. SF Express (Brunnet, et al. 
1998) and Noble Resolve (USJFCOM 2006).  These 
included the use of the Scalable Parallel Processors 
(SPP) or clusters of compute nodes (Wagenbreth, et al. 
2005).  As for the latter, JFCOM M&S teams have 
made great strides to improve entity behavior models 
(Ceranowicz, et al. 2002 and 2006) by adding 
intelligence to the simulation entity behaviors, and with 
these improvements entities behave in more realistic 
fashions. Because JSAF has been required to 
participate in more urban operations, the density of the 
road and trail networks has dramatically increased.  
This dictates an increase in computational costs (in 
terms of how entities relate to the environment), which 
is the heart of this research effort. 
 
Motivation 
 
The use of specialized hardware to solve complex 
problems is not a new phenomenon.  In fact, many 
scientific and research needs have driven computer 
technology innovations.  Graphics Processing Units 
(GPU) were designed and optimized for visualization 

in support of the video game industry.  They provide 
extremely fast floating-point operations1.  As the 
gaming industry expands the drive to mass-produce 
these powerful graphics boards, the production costs 
are brought down to the point where it is economically 
viable (if not, sensible) to consider the GPU for general 
purpose computing engines.    The High Performance 
Computing Modernization Program (HPCMP) Office 
recognizes the potentials behind the general-purpose 
graphics-processing unit (GPGPU) computing 
paradigm and has awarded a GPU-based cluster to 
USJFCOM/J9 (Figure 1). 

 

 
 

Figure 1.  Joshua cluster at JFCOM consisting of 
256 dual quad core Opteron processors and  

256 NVIDIA GTS8800 GPUs  
(Photo Source: Ed Aaron, USJFCOM). 

 
In addressing the various computational challenges 
JSAF developers face, we observe and propose some 
potential areas of improvements to the JSAF 
simulation.  One of these includes the use of GPU for 
the route-planning stage.  The general argument goes: 
given that during the route-planning stage for each of 
the tens of thousands of simulation entities throttles the 
route computation component of the software and 
virtually brings the simulation federations to a grinding 
halt, the computationally expensive code can be 
offloaded to the GPU.  This will address one of the 
goals in the overall attempt to increase simulation 
                                                             
1 Currently most of the graphics cards natively support 
only 32 bit floating point precisions. 
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fidelity and will help to support or detract from the 
view that this approach is useful. 
 

BACKGROUND 
 
Graphics Processing Units (GPU) 
 
The GPU or Graphics Processing Units are specialized 
hardware (traditionally in the form of a video card) and 
are now typically attached to the computer using a PCI-
Express bus.  GPUs are designed to have much higher 
arithmetic processing performance than their CPU host, 
which is necessary for the graphics’ niche for which 
they are designed.  They have more processors, each 
with more Arithmetic Logic Units (ALUs), explicit 
memory hierarchy, and all executing the same 
instruction sequence on parallel data.  The design of 
the GPU technology focuses on three important 
aspects: (1) The GPU promotes explicit and implicit 
parallelism, (2) effectively implements voluminous 
(billions of) computing instructions, and (3) throughput 
performance that more than offsets latency penalties. 
 

 
 

Figure 2. The SIMD Multiprocessor Model.  
(Source NVIDIA Corporation). 

 
To support the above design goals, GPUs utilize highly 
threaded instruction blocks.  The underlying motivation 
behind the GPU design is that there is lots of work to 
be done and it is far better to keep as many threads 

simultaneously busy as feasible.  This philosophy relies 
on the notion of data parallelism, which is a sharp 
contrasts with a typical CPU design goal, that of task 
parallelism.  The GPU achieves data parallelism with 
spatial division (as opposed to temporal division) 
(Owens, et al. 2008). 
 
Compute Unified Device Architecture (CUDA) 
 
The CUDA programming model is held to be a clean 
extension to the C programming language.   CUDA 
gives programmers the ability to the exploit SPMD 
(single program multiple data) programming model on 
the GPU.  CUDA programs are highly threaded. 
Access to shared memory space is achieved through 
gather and scatter operations.  As per nVidia, here are 
two notes concerning CUDA programs: (1) There is no 
explicit synchronization mechanism with CUDA 
programs, and (2) the wholesale executions in parallel 
are the real gain of GPU-based applications. 

 

 
 

Figure 3.  The CUDA Software Stack.  (Source 
NVIDIA Corporation). 

 
The CUDA compiler is a C pre-processor and 
specialized compiler that assists programmers with 
parallel programming.    Programmers write programs 
as normal. Computationally intensive sections are 
explicitly tagged for execution on the GPU and are 
executed on segments of data on the GPU concurrently 
by many threads (NVIDIA 2008). 
 
Graph Algorithm 
 
Route-finding 
 
Route finding is a class of algorithms that finds the 
“best” path, given a network of paths with N vertices 
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(or nodes), between any number of vertices N(i,j).  The 
criteria for determining these paths (roads or edges) is 
determined by a cost function F[N(i,j)].  The overall 
goal is to determine the min (or max) of all F’s of all of 
edges along the path. 
 
Table 1 below summarizes some of the route finding 
algorithms.  Note that the Floyd-Warshall (FW) exists 
both in the serial (CPU-based implementation) and 
parallel (GPU-based implementation) form 
(Micikevicius 2005 in GPU Gem 2).  The ASSP 
algorithm is the same as the SSSP algorithm, with the 
only difference being that it is implemented for all the 
of M paths in a particular network. 
 
Table 1.  Route-planning Algorithm Classifications 

 
Properties  

A B C D 
A* Serial Priority 

Queue 
N^2 N log N 

MM Serial & 
Parallel 

Adjacency 
Matrix 

N^2 N^3 log N 

FW Serial & 
Parallel 

Adjacency 
Matrix 

N^2 N^3 

SSSP Parallel Adjacency 
List 

N^2 N log N 

ASSP Parallel Adjacency 
List 

N^2 * M N^2 log N 

 
For the properties in Table 1, column A denotes the 
implementation model, B denotes the connectivity 
graph representation, C denotes the space (storage 
size), and D denotes the big O notation for time 
complexity. 
 
JSAF SIMs & A* Algorithm 
 
In its current implementation the JSAF simulator uses 
the serial A* search algorithm2 to compute the 
“optimal” path for its clutter entities.   The A* 
algorithm operates in O(N log N) time.  We used the 
following as bases for our approach: (1) JSAF is a 
distributed federated simulation platform, and (2) 
JSAF, in its current state, is coarse-grain scalable.    
The distributed federation per processor model implies 
that for every compute node, the JSAF load-balancer 
assigns a group of entities to its compute “basket.” Our 
design should restrict the computational space bound to 
these entities. Secondly, because JSAF is coarse-grain 
scalable, our design exploits the higher resolution 
                                                             
2 Described in great detail in: “A* Search Algorithm.” 
http://en.wikipedia.org/wiki/A*_search_algorithm  

simulation per node by speeding up the computational 
time for the same amount of work on each node. 
 
The A* algorithm is a heuristic implementation of the 
A algorithm first introduced by Hart, Nilsson, and 
Raphael in 1968 (Hart et al. 1968) and it works as 
followed:  
 
1. Given a starting point 
2. Searches all routes leading to the destination point 
3. Keep the minimum path based on a cost function 
 
A* involves the use of heuristics to improve 
performance over the traditionally greedy BFS (breadth 
first search) algorithm because the algorithm maintains 
a set of nodes (or vertices) already visited in a priority 
queue (Dechter and Pearl 1985).  The A* algorithm 
belongs to the class of single source single path family 
and it is by nature a serial algorithm since only one 
node or vertices is considered at a time. 
 

EXPERIMENTATION 
 
Hardware Platform 
 
For our experiment we developed the graph algorithms 
on an NVIDIA experimental board (on loan for 
research from NVIDIA) and conducted the timing on 
the Joshua cluster at J9.  Figure 4 details the cluster 
specifications : 
 
 
• CPU - 256 X  (2) AMD Santa Rosa 2220 2.8 

GHz dual-core processors, for a total of 4 
cores per node 

• GPU - 256 x (1) NVIDIA 8800 GTS video 
cards with 512MB 

• Memory - 256 x 16 GB DIMM DDR2 667 per 
node – 4 GB per processor core 

 
 

Figure 4.  Joshua Configuration 
 
Please note that for the current implementation, we use 
a single node for the experiment.  However, future 
work is planned that will expand to the entire cluster. 
 
Graph Algorithms 
 
The treatment of the various graph algorithms and 
CUDA implementation is discussed in detail in the 
Harish & Narayaman paper (Harish & Narayanan 
2007).  For the purpose of this paper, we employ two 
efficient network path graph algorithms and explore 
two methods for graph representations: (1) Matrix 
multiplication variant using adjacency matrix, and (2) 
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Dijkstra’s variant of the shortest path using adjacency 
list (implemented as an array).  These two algorithms 
and graph representations, are in our view, 
improvements to the JSAF implementation of the A* 
algorithm.  Table 1 provides a synopsis of the route-
finding algorithm and its classifications. 
 
Matrix-Multiplication 
 
One of the approaches to implementing an all-to-all 
(all-pairs) shortest path algorithm is a technique similar 
to matrix multiplication.  There are many advantages to 
this approach.  These include:  (1) a compact 
representation of connectivity graph using the 
adjacency matrix and (2) the efficient straightforward 
algorithm used for matrix multiplication on the GPU is 
easily modified to perform the all-to-all algorithm.  
Figure 5 illustrates a graph and its corresponding 
matrix representation.  Our implementation of this 
algorithm is straightforward and is taken directly from 
the Introduction to Algorithms (Cormen 2001) text and 
done with minimal changes to the matrix multiplication 
routine found in CUDA example library. 
 

 
 

Figure 5. Connectivity Graph and its Adjacency 
Matrix Representation 

 
Single Source Shortest Path (SSSP) 
 
The SSSP algorithm we developed for our experiment 
is based on Dijkstra’s shortest path algorithm. The 
CUDA implementation is similar to the Harish and 
Narayan implementation. We modified their 
implementation to efficiently address race conditions 
and synchronization. The algorithm iterates over node 
pairs keeping track of updated nodes for which better 
paths have been found. The algorithm terminates when 
no better paths have been found. A CUDA thread is 
used for each node. For each updated node, Harish and 
Narayan update all the node's neighbors. This can 
result in multiple threads simultaneously updating the 
same node. Our modification (listed below) is to have 
each thread update its own nodes if neighbors have 
been updated. A node is only updated by its own 
thread, perhaps multiple times per iteration. The race 

condition is avoided. 
 
 
1. while(anything changes) 
2. for every node 
3.  for every neighbor of node 
4.     if neighbor has been updated 
5.          nodedist = \ 
 min(nodedist,neigbordist+dist(node,neighbor)) 
 
Application to JSAF Simulations 
 
At time of writing, we are in the process of integrating 
the two GPU implementations of the shortest path code 
with the JSAF simulations.  We are working with a 
number of constraints: (1) the system must be able to 
support 10 to 20 thousand vertices, (2) the time spent 
building and copying graphs between the CPU and 
GPU, (3) the current JSAF interactions with the route 
planning subsystem is stored and processed vis-à-vis 
the a MySQL DBMS. 
 
Integration with MySQL DBMS 
 
Recently in conjunction with Nobel Resolve 2008 the 
need arose for a routing algorithm to support traversal 
of a network maintained within a MySQL database.  
The A* algorithm utilized by the JSAF program was 
readily adaptable to the situation given the similarities 
in network representation. 
 
The basic algorithm was implemented in three different 
ways.  The first was an external MySQL client.  This 
client queries the MySQL database at startup for the 
network maintaining its own local network 
representation.  The second was as a MySQL UDF 
(User Defined Function).  A UDF is implemented in C 
and C++ as a shared library which when installed on 
the MySQL server machine can be called from 
standard MySQL queries.  This version requires the 
database to be loaded from the database into its own 
local representation.  The final version was 
implemented as a MySQL stored procedure.  This  
implements the priority queue as a MySQL temporary 
table.  There is no need to maintain a separate network 
since this version can directly access the database when 
needed. 
 
The first two versions both require a local copy of the 
network.  However, once the network is loaded they 
can process potential routes very efficiently.  A major 
drawback is that some external process must update 
their copies if anything changes.  The final approach 
has the advantage of direct access to the network, but 
suffers from reduced performance.  The performance 
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might be offset by the fact that this method can be 
directly used in the MySQL cluster environment. 
 

FINDINGS AND ANALYSIS 
 
Our findings are summarized in Table 2.  A number of 
conclusions can be drawn from the preliminary results.   
 
For practical consideration, the matrix-multiplication 
approach, although yielding excellent results, is not 
practical for real application implementation for two 
reasons: (1) the large memory footprint, and (2) the 
cost of copying the connectivity graph between the 
GPU and CPU can be very expensive.   Because of the 
first drawback, we do not see the MM algorithm to be 
practical for use in the JSAF environment, as the 
problem size can exceed 20k nodes. 
 
Although we did not have a chance to implement the 
MM route finding algorithm on the GPU, the 
performance gain between the GPU implementation 
and the CPU implementation of a standard matrix-
multiplication application is measured at 30 times (we 
tested this locally).  We project this performance gain 
to be comparable with an implementation of the MM 
route finding algorithm. 
 
We find the SSSP approach to be more appropriate 
(Figure 6).  The measured gain between the GPU over 

the CPU is two times and this is based on an optimized 
implementation of the route finding SSSP algorithm.  
For ASSP, we would only need to run the algorithm M 
times (one for each of the nodes in consideration).  

 
Figure 6. Timing Comparison between the SSSP 

route finding algorithm of a lattice grid on the GPU 
against the CPU. 

 
Note that we did not integrate the GPU implementation 
into the actual JSAF system. As such, we cannot 
provide side-by-side comparison between the serial and 
parallel version for the JSAF route finding component. 

 
 

Table 2.  Comparison of performance findings for our early timing results 
 

 Practical Performance 

GPU – Not practical 
N is capped at 20k 

GPU – O(N^3)/C  
C = 128 

All-to-All (MM) 
CPU – Not practical 
N is capped at 20k 

CPU – (N^3)/C 
C = 4 

GPU – Practical 
N is 1 Million 

N log(N)/C 
C = 128 

One-to-All (SSSP) CPU – Practical 
N is 1 Million 

N log(N)/C 
C = 4 

GPU = yes practical 
N = 1M * # GPU 

GPU - N^2 log(N)/C 
C = number core * 128 

All-to-All (ASSP) CPU = yes not efficient 
however 

CPU – N^2 log(N)/C 
C = number core 
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CONCLUSIONS AND FUTURE WORK 

 
The findings observed are very encouraging in that we 
can see visible and tractable improvement in using GPU 
for computationally intensive routines.    For the GPU 
case, we have 128 cores dedicated for parallel 
computations.  This is in comparison to the CPU, where 
we have 4 cores. Furthermore, these cores also share 
processing time with other OS-related tasks.  
 
We will focus our future work in three areas.  First is to 
fully couple the GPU routines with the JSAF 
applications in a production environment.  Our goal is 
to have the code automatically detects the presence of 
GPU(s) and use them as needed.  Second, we see our 
implementation as extending to fit the cluster 
environment in which JSAF currently operates.  The 
end result would be to have a cluster of GPU(s) 
available to support scalable coarse- and fine-grain 
application routines. Finally, we are interested in 
providing to programmers a generic black-box interface 
that would encapsulate the GPU as a sophisticated 
algorithmic co-processor.  In doing so, we would be 
able to hide the many complicated implementation 
details associated with GPU programming, e.g. data-
locality, memory coalescing, and synchronization. 
 

ACKNOWLEDGEMENTS 
 
The authors wish to acknowledge the following for 
their support: NVIDIA Corporation, the United States 
Joint Forces Command, Andy Ceranowicz, Edwin 
Aaron, and our birddog Tom Stanzione.  This material 
is based on research sponsored by the Air Force 
Research Laboratory under agreement number FA8750-
05-2-0204.  The U.S. Government is authorized to 
reproduce and distribute reprints for Governmental 
purposes notwithstanding any copyright notation 
thereon.  The views and conclusions contained herein 
are those of the authors and should not be interpreted as 
necessarily representing the official policies or 
endorsements, either expressed or implied, of the Air 
Force Research Laboratory or the U.S. Government.  
 
 

REFERENCES  
 
Brunnet, S., Davis, D., Gottschalk, T., Messina, P., & 

Kesselman, C. (1998). “Implementing Distributed 
Synthetic Forces Simulations in Metacomputing 
Environments.” Proceedings of the Seventh 
Heterogeneous Computing Workshop, IEEE 
Computer Society. 

 
Ceranowicz, Andy, Torpey, M., Helfinstine, B., Evans, 

J., & Hines, J. (2002) "Reflections on building the 
joint experimental federation," 
Interservice/Industry Training, Simulation, and 
Education Conference Proceedings. 

 
Ceranowicz, Andy, Torpey, M., & Hines, J. (2006) 

“Sides, Force, and ROE for Asymmetric 
Environments,” Interservice/Industry Training, 
Simulation, and Education Conference 
Proceedings. 

 
Cormen, Thomas M., Leiserson, Charles E., Rivest, 

Ronald L., and Stein, Cliff (2001). Introduction to 
Algorithms, 2nd Ed.  MIT Press, 2001. 

 
Dechter, Rina; Judea Pearl (1985). "Generalized best-

first search strategies and the optimality of A*". 
Journal of the ACM 32 (3): pp. 505–536 

 
Hart, P.E., Nilsson, N.J., & Raphael, B. (1968) “A 

Formal Basis for the Heuristic Determination of 
Minimum Cost Paths.”  IEEE Transaction on 
Systems Science and Cybernetics SSC4 (2). 

 
Lucas, Robert F., Wagenbreth, G., & Davis, Dan M.  

(2007) Implementing a GPU-Enhanced Cluster for 
Large-Scale Simulations. Interservice/Industry 
Training, Simulation, and Education Conference 
Proceedings.  

 
Harish, Pawan Narayanan, P.J. (2007) “Accelerating 

large graph algorithms on the GPU using CUDA” 
Proceedings of the IEEE International Conference 
on High Performance Computing (HiPC 2007). 
Goa. 

 
NVIDIA (2008). NVIDIA CUDA Programming Guide.  

http:// 
developer.download.nvidia.com/compute/cuda/1_0
/NVIDIA_CUDA_Programming_Guide_1.0.pdf. 

 
Manocha, Dinesh.  (2005) “General-purpose 

computations Using Graphics Processor. “ IEEE 
Computer Society.   

 
Owens, John D., Mike Houston, David Luebke, Simon 

Green, John E. Stone, and James C. Phillips.  GPU 
Computing. Proceedings of the IEEE.  96(5), May 
2008. 

 
Pharr, Matt, Ed. (2008) GPU Gems 2: Programming 

Techniques for High-Performance Graphics and 



 
 
 

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2008 

2008 Paper No. 8293 Page 9 of 9 

General-Purpose Computation. Addison-Wesley 
Professional. 

 
USJFCOM.  Noble Resolve. Taken from 

http://www.jfcom.mil/about/experiments/noblereso
lve.html 

 
Wagenbreth, G., Yao, K-T, Davis, D., & Lucas, R.  

(2005) “Enabling 1,000,000-Entity Simulations on 
Distributed Clusters.”  Proceedings of the 2005 
Winter Simulation Conference  

 




