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ABSTRACT

To exploit the explicit and implicit advantages of data parallelism and heavily threaded modern multi-core
processors, specifically the NVIDIA family of general purpose graphic processing units (GPGPU), research
efforts such as "Accelerating Line of Sight Computation Using GPUs" (Manocha 2005) and "Implementing
a GPU-Enhanced Cluster for Large-Scale Simulations" (Lucas 2007) addressed various problems found in
military simulations, yet other practical uses for the GPU in these types of simulation applications remain
to be explored. An example application that has immediate use for a fast and large-scale graph-based
construct is a route-planning algorithm found in complex urban conflict simulation, e.g. the Joint Semi-
Automated Forces (JSAF) simulation. JSAF currently employs a heuristic A* search algorithm to do route
planning for its millions of entities — the algorithm is sequential and thus very computationally expensive.
Using the GPU, the JSAF simulation can off-load the route-planning component to the GPU and remove
one of its major bottlenecks.

The objective of this research effort is to build a framework that utilizes all the features and raw
computational power of the GPU architecture to solve the above challenge. Our research effort addresses
the many challenges of parallel programming on the GPU: data locality, massive thread counts, and race
conditions, to name a few. Our project will greatly benefit the modeling and simulation community facing
issues specific to route planning and of particular interest are those simulations dealing with dense urban
environments, homeland security, and mass casualty and disaster simulations. We achieve this goal by
providing a practical and seemingly "endless" source of raw computing powers found in GPUs for
massively large graph-based family of problems.
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INTRODUCTION
Problem Description

The need for higher fidelity simulations is on the rise.
Modern conflict space has shifted from open space
theatre of conventional warfare to unconventional, and
very often asymmetric, warfare that is carried out in
dense urban settings. The United States Joint Forces
Command (USJFCOM) has conducted a series of
complex experiments involving multi-force
engagement in dense urban environments using the
Joint Semi-Automated Synthetic Force (JSAF)
simulators. Similarly, the Department of Homeland
Securities shares similar interests in complex urban
setting simulations, e.g. how to prepare for a mass
disaster impacting densely populated US cities.
Generally speaking, there are two possible ways to
improve simulation fidelity: (a) by increasing entity
counts (quantitatively) and (b) by increasing accuracy
(qualitatively) of entity behaviors and resolution of the
environment. Numerous efforts have been made to
increase the former, e.g. SF Express (Brunnet, et al.
1998) and Noble Resolve (USJFCOM 2006). These
included the use of the Scalable Parallel Processors
(SPP) or clusters of compute nodes (Wagenbreth, et al.
2005). As for the latter, JFCOM M&S teams have
made great strides to improve entity behavior models
(Ceranowicz, et al. 2002 and 2006) by adding
intelligence to the simulation entity behaviors, and with
these improvements entities behave in more realistic
fashions. Because JSAF has been required to
participate in more urban operations, the density of the
road and trail networks has dramatically increased.
This dictates an increase in computational costs (in
terms of how entities relate to the environment), which
is the heart of this research effort.

Motivation

The use of specialized hardware to solve complex
problems is not a new phenomenon. In fact, many
scientific and research needs have driven computer
technology innovations. Graphics Processing Units
(GPU) were designed and optimized for visualization
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in support of the video game industry. They provide
extremely fast floating-point operations'. As the
gaming industry expands the drive to mass-produce
these powerful graphics boards, the production costs
are brought down to the point where it is economically
viable (if not, sensible) to consider the GPU for general
purpose computing engines.  The High Performance
Computing Modernization Program (HPCMP) Office
recognizes the potentials behind the general-purpose
graphics-processing  unit (GPGPU)  computing

paradigm and has awarded a GPU-based cluster to
USJFCOM/J9 (Figure 1).

Figure 1. Joshua cluster at JFCOM consisting of
256 dual quad core Opteron processors and
256 NVIDIA GTS8800 GPUs
(Photo Source: Ed Aaron, USJFCOM).

In addressing the various computational challenges
JSAF developers face, we observe and propose some
potential areas of improvements to the JSAF
simulation. One of these includes the use of GPU for
the route-planning stage. The general argument goes:
given that during the route-planning stage for each of
the tens of thousands of simulation entities throttles the
route computation component of the software and
virtually brings the simulation federations to a grinding
halt, the computationally expensive code can be
offloaded to the GPU. This will address one of the
goals in the overall attempt to increase simulation

! Currently most of the graphics cards natively support
only 32 bit floating point precisions.
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fidelity and will help to support or detract from the
view that this approach is useful.

BACKGROUND
Graphics Processing Units (GPU)

The GPU or Graphics Processing Units are specialized
hardware (traditionally in the form of a video card) and
are now typically attached to the computer using a PCI-
Express bus. GPUs are designed to have much higher
arithmetic processing performance than their CPU host,
which is necessary for the graphics’ niche for which
they are designed. They have more processors, each
with more Arithmetic Logic Units (ALUs), explicit
memory hierarchy, and all executing the same
instruction sequence on parallel data. The design of
the GPU technology focuses on three important
aspects: (1) The GPU promotes explicit and implicit
parallelism, (2) effectively implements voluminous
(billions of) computing instructions, and (3) throughput
performance that more than offsets latency penalties.

Figure 2. The SIMD Multiprocessor Model.
(Source NVIDIA Corporation).

To support the above design goals, GPUs utilize highly
threaded instruction blocks. The underlying motivation
behind the GPU design is that there is lots of work to
be done and it is far better to keep as many threads
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simultaneously busy as feasible. This philosophy relies
on the notion of data parallelism, which is a sharp
contrasts with a typical CPU design goal, that of task
parallelism. The GPU achieves data parallelism with
spatial division (as opposed to temporal division)
(Owens, et al. 2008).

Compute Unified Device Architecture (CUDA)

The CUDA programming model is held to be a clean
extension to the C programming language. CUDA
gives programmers the ability to the exploit SPMD
(single program multiple data) programming model on
the GPU. CUDA programs are highly threaded.
Access to shared memory space is achieved through
gather and scatter operations. As per nVidia, here are
two notes concerning CUDA programs: (1) There is no
explicit synchronization mechanism with CUDA
programs, and (2) the wholesale executions in parallel
are the real gain of GPU-based applications.

Figure 3. The CUDA Software Stack. (Source
NVIDIA Corporation).

The CUDA compiler is a C pre-processor and
specialized compiler that assists programmers with
parallel programming. Programmers write programs
as normal. Computationally intensive sections are
explicitly tagged for execution on the GPU and are
executed on segments of data on the GPU concurrently
by many threads (NVIDIA 2008).

Graph Algorithm
Route-finding

Route finding is a class of algorithms that finds the
“best” path, given a network of paths with N vertices
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(or nodes), between any number of vertices N(i,j). The
criteria for determining these paths (roads or edges) is
determined by a cost function F[N(i,j)]. The overall
goal is to determine the min (or max) of all F’s of all of
edges along the path.

Table 1 below summarizes some of the route finding
algorithms. Note that the Floyd-Warshall (FW) exists
both in the serial (CPU-based implementation) and
parallel (GPU-based implementation) form
(Micikevicius 2005 in GPU Gem 2). The ASSP
algorithm is the same as the SSSP algorithm, with the
only difference being that it is implemented for all the
of M paths in a particular network.

Table 1. Route-planning Algorithm Classifications

simulation per node by speeding up the computational
time for the same amount of work on each node.

The A* algorithm is a heuristic implementation of the
A algorithm first introduced by Hart, Nilsson, and
Raphael in 1968 (Hart er al. 1968) and it works as
followed:

1. Given a starting point
2. Searches all routes leading to the destination point
3. Keep the minimum path based on a cost function

Properties
A B C D
A* Serial Priority N~2 Nlog N
Queue
MM Serial & | Adjacency N~2 N~3 log N
Parallel Matrix
FW Serial & | Adjacency N~2 N~3
Parallel Matrix
SSSP Parallel | Adjacency N~ 2 Nlog N
List
ASSP Parallel | Adjacency | N*2*M | N”2 log N
List

For the properties in Table 1, column A denotes the
implementation model, B denotes the connectivity
graph representation, C denotes the space (storage
size), and D denotes the big O notation for time
complexity.

JSAF SIMs & A* Algorithm

In its current implementation the JSAF simulator uses
the serial A* search algorithm’ to compute the
“optimal” path for its clutter entities. The A¥*
algorithm operates in O(N log N) time. We used the
following as bases for our approach: (1) JSAF is a
distributed federated simulation platform, and (2)
JSAF, in its current state, is coarse-grain scalable.
The distributed federation per processor model implies
that for every compute node, the JSAF load-balancer
assigns a group of entities to its compute “basket.” Our
design should restrict the computational space bound to
these entities. Secondly, because JSAF is coarse-grain
scalable, our design exploits the higher resolution

? Described in great detail in: “A* Search Algorithm.”
http://en.wikipedia.org/wiki/A* search algorithm
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A* involves the use of heuristics to improve
performance over the traditionally greedy BFS (breadth
first search) algorithm because the algorithm maintains
a set of nodes (or vertices) already visited in a priority
queue (Dechter and Pearl 1985). The A* algorithm
belongs to the class of single source single path family
and it is by nature a serial algorithm since only one
node or vertices is considered at a time.

EXPERIMENTATION
Hardware Platform

For our experiment we developed the graph algorithms
on an NVIDIA experimental board (on loan for
research from NVIDIA) and conducted the timing on
the Joshua cluster at J9. Figure 4 details the cluster
specifications :

* CPU-256 X (2) AMD Santa Rosa 2220 2.8
GHz dual-core processors, for a total of 4
cores per node

* GPU - 256 x (1) NVIDIA 8800 GTS video
cards with 512MB

* Memory - 256 x 16 GB DIMM DDR2 667 per
node — 4 GB per processor core

Figure 4. Joshua Configuration

Please note that for the current implementation, we use
a single node for the experiment. However, future
work is planned that will expand to the entire cluster.

Graph Algorithms

The treatment of the various graph algorithms and
CUDA implementation is discussed in detail in the
Harish & Narayaman paper (Harish & Narayanan
2007). For the purpose of this paper, we employ two
efficient network path graph algorithms and explore
two methods for graph representations: (1) Matrix
multiplication variant using adjacency matrix, and (2)
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Dijkstra’s variant of the shortest path using adjacency
list (implemented as an array). These two algorithms
and graph representations, are in our view,
improvements to the JSAF implementation of the A*
algorithm. Table 1 provides a synopsis of the route-
finding algorithm and its classifications.

Matrix-Multiplication

One of the approaches to implementing an all-to-all
(all-pairs) shortest path algorithm is a technique similar
to matrix multiplication. There are many advantages to
this approach.  These include: (1) a compact
representation of connectivity graph using the
adjacency matrix and (2) the efficient straightforward
algorithm used for matrix multiplication on the GPU is
easily modified to perform the all-to-all algorithm.
Figure 5 illustrates a graph and its corresponding
matrix representation. Our implementation of this
algorithm is straightforward and is taken directly from
the Introduction to Algorithms (Cormen 2001) text and
done with minimal changes to the matrix multiplication
routine found in CUDA example library.
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Figure 5. Connectivity Graph and its Adjacency
Matrix Representation
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Single Source Shortest Path (SSSP)

The SSSP algorithm we developed for our experiment
is based on Dijkstra’s shortest path algorithm. The
CUDA implementation is similar to the Harish and
Narayan implementation. =~We  modified their
implementation to efficiently address race conditions
and synchronization. The algorithm iterates over node
pairs keeping track of updated nodes for which better
paths have been found. The algorithm terminates when
no better paths have been found. A CUDA thread is
used for each node. For each updated node, Harish and
Narayan update all the node's neighbors. This can
result in multiple threads simultaneously updating the
same node. Our modification (listed below) is to have
each thread update its own nodes if neighbors have
been updated. A node is only updated by its own
thread, perhaps multiple times per iteration. The race
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condition is avoided.

1. while(anything changes)

2. for every node

3. for every neighbor of node

4. if neighbor has been updated

5. nodedist =\
min(nodedist,neigbordist+dist(node,neighbor))

Application to JSAF Simulations

At time of writing, we are in the process of integrating
the two GPU implementations of the shortest path code
with the JSAF simulations. We are working with a
number of constraints: (1) the system must be able to
support 10 to 20 thousand vertices, (2) the time spent
building and copying graphs between the CPU and
GPU, (3) the current JSAF interactions with the route
planning subsystem is stored and processed vis-a-vis
the a MySQL DBMS.

Integration with MySQL DBMS

Recently in conjunction with Nobel Resolve 2008 the
need arose for a routing algorithm to support traversal
of a network maintained within a MySQL database.
The A* algorithm utilized by the JSAF program was
readily adaptable to the situation given the similarities
in network representation.

The basic algorithm was implemented in three different
ways. The first was an external MySQL client. This
client queries the MySQL database at startup for the
network maintaining its own local network
representation. The second was as a MySQL UDF
(User Defined Function). A UDF is implemented in C
and C++ as a shared library which when installed on
the MySQL server machine can be called from
standard MySQL queries. This version requires the
database to be loaded from the database into its own
local representation. The final version was
implemented as a MySQL stored procedure. This
implements the priority queue as a MySQL temporary
table. There is no need to maintain a separate network
since this version can directly access the database when
needed.

The first two versions both require a local copy of the
network. However, once the network is loaded they
can process potential routes very efficiently. A major
drawback is that some external process must update
their copies if anything changes. The final approach
has the advantage of direct access to the network, but
suffers from reduced performance. The performance
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might be offset by the fact that this method can be
directly used in the MySQL cluster environment.

FINDINGS AND ANALYSIS

Our findings are summarized in Table 2. A number of
conclusions can be drawn from the preliminary results.

For practical consideration, the matrix-multiplication
approach, although yielding excellent results, is not
practical for real application implementation for two
reasons: (1) the large memory footprint, and (2) the
cost of copying the connectivity graph between the
GPU and CPU can be very expensive. Because of the
first drawback, we do not see the MM algorithm to be
practical for use in the JSAF environment, as the
problem size can exceed 20k nodes.

Although we did not have a chance to implement the
MM route finding algorithm on the GPU, the
performance gain between the GPU implementation
and the CPU implementation of a standard matrix-
multiplication application is measured at 30 times (we
tested this locally). We project this performance gain
to be comparable with an implementation of the MM
route finding algorithm.

We find the SSSP approach to be more appropriate
(Figure 6). The measured gain between the GPU over

the CPU is two times and this is based on an optimized
implementation of the route finding SSSP algorithm.
For ASSP, we would only need to run the algorithm M
times (one for each of the nodes in consideration).

x10°
12

= = =CPU time ’

GPU time .

time (ms)

Figure 6. Timing Comparison between the SSSP
route finding algorithm of a lattice grid on the GPU
against the CPU.

Note that we did not integrate the GPU implementation
into the actual JSAF system. As such, we cannot
provide side-by-side comparison between the serial and
parallel version for the JSAF route finding component.

Table 2. Comparison of performance findings for our early timing results

Practical Performance
GPU — Not practical GPU - O(N"3)/C
N is capped at 20k C=128

All-to-All (MM
© ( ) CPU — Not practical

CPU - (N"3)/C

N is capped at 20k C=4

GPU - Practical N log(N)/C

N is 1 Million C=128
One-to-All (SSSP) CPU - Practical N log(N)/C

N is 1 Million C=4

GPU = yes practical
N = 1M * # GPU

GPU - N*2 log(N)/C
C = number core * 128

All-to-All (ASSP)

however

CPU = yes not efficient

CPU — N"2 log(N)/C
C = number core
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CONCLUSIONS AND FUTURE WORK

The findings observed are very encouraging in that we
can see visible and tractable improvement in using GPU
for computationally intensive routines.  For the GPU
case, we have 128 cores dedicated for parallel
computations. This is in comparison to the CPU, where
we have 4 cores. Furthermore, these cores also share
processing time with other OS-related tasks.

We will focus our future work in three areas. First is to
fully couple the GPU routines with the JSAF
applications in a production environment. Our goal is
to have the code automatically detects the presence of
GPU(s) and use them as needed. Second, we see our
implementation as extending to fit the cluster
environment in which JSAF currently operates. The
end result would be to have a cluster of GPU(s)
available to support scalable coarse- and fine-grain
application routines. Finally, we are interested in
providing to programmers a generic black-box interface
that would encapsulate the GPU as a sophisticated
algorithmic co-processor. In doing so, we would be
able to hide the many complicated implementation
details associated with GPU programming, e.g. data-
locality, memory coalescing, and synchronization.
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