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ABSTRACT 
 
When two or more combat simulations are federated, differences in the ways they represent and reason about the 
world and how they communicate state changes can provide artificial advantages that lead to unfounded outcomes.  
Simulations are simplified representations of the real world that preserve detail and data where necessary to support 
their intended purpose and use abstractions where data is unavailable or in secondary areas.  Such design decisions 
are valid when the simulations will be used as intended.  However, when multiple systems, each of which have a 
unique purpose and supporting design, are combined in novel uses, their simplifying assumptions can overlap in 
ways that are not complementary and may result in invalid system interactions.  Federated simulation events must 
minimize such occurrences to provide realistic results.  However, this is much easier said than done; invalid 
interactions are typically caused by factors that can be deeply ingrained within each individual simulation system. 
Differences between these fundamental elements often only become obvious when the internals of the individual 
simulations are contrasted with each other.  To achieve a fair fight, the simulations must be founded on compatible 
object models that preserve sufficient semantic equivalence between world models.  The algorithms that form the 
basis for individual system reasoning must provide equivalent results across the interacting systems.  The individual 
system environmental representations must be sufficiently correlated so that the potential for interaction between 
world objects is equivalent for all world objects.  This paper considers these three fundamental characteristics of 
simulation systems: object models, reasoning algorithms, and environmental representations, from the perspective of 
the cross-system equivalence required to enable valid interactions.  The general nature of the problem is defined, 
procedures to detect incompatibilities are developed, and strategies to prevent invalid interactions are proposed. 
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INTRODUCTION 
 
Large simulation federations, composed of multiple 
live, virtual, and constructive systems are important 
experimentation and training resources.  Federating 
provides a unique mechanism that can combine 
disparate systems to create wide-spectrum 
environments that are useful in many application 
domains.  But, what does it really mean when these 
different kinds of systems have been “composed” into 
a set of systems that can interact with each other during 
a simulation event?  Typically, the kinds of interactions 
that are allowed to occur are constrained to the subset 
thought to produce valid results (and which often, 
unintentionally, may still include some that lead to 
invalid results as well).  Experienced event designers 
understand that, even after a complete systems 
integration, the semantics of arbitrary system 
interactions may not be the same on the sender and 
receiver ends.  As an example, we will use a federation 
composed of the “Mars” and “Venus” simulations. 
Consider when an entity in the Mars simulation is 
within the engagement range of another entity in the 
Venus simulation. 
 
Several factors influence the potential for a Martian - 
Venusian engagement and its possible outcomes.  First, 
the two entities have to be aware of each other.  Once 
aware, each entity has to recognize the other as an 
adversary that should be engaged and that engagement 
is possible given the effective range of available 
weapons.  Since the Martians and Venusians are the 
original Hatfields and McCoys, an engagement 
follows, requiring each entity to repeat the cycle of 
calculating their own damage and understanding the 
other’s damage, until each determines that further 
engagement is no longer possible or necessary.  Each 
step in this engagement process has some potential for 
system-to-system inconsistencies leading to an invalid 
engagement result. 
 
Typically, the two entities become aware of each other 
when each applies internal line-of-sight (LOS) 
algorithms to their own internal representations of the 
physical environment.  Different LOS algorithms 
applied to the same database can provide different 

results.  The same LOS algorithm applied to different 
databases can provide different results.  But the likely 
situation is that different LOS algorithms are applied to 
different environmental databases, clearly a case where 
inconsistent results are possible.  Thus, even in cases 
where LOS should be reflexive, the Martian might see 
the Venusian while the Venusian is unaware of the 
Martian.  Thus, the Martian entity has been provided 
with an unfounded “Stealth” capability, based on 
algorithmic differences, database differences, or both. 
This will provide an unfair advantage to the Martian 
and leads to an invalid engagement result.  Further, the 
process of determining the need for engagement (a 
recognized adversary that is mission capable) requires 
each entity to correctly interpret the “entity state” 
information provided by the other.  Here, object model 
agreements and interpretations have to be consistent if 
invalid results are to be avoided. (What does the DIS 
entity state “Slightly Damaged” mean to an HLA entity 
when determining the need for continued 
engagement?) 
 
The example shows that invalid interactions can be 
caused by deeply ingrained factors within each 
individual simulation system. Differences between 
these foundational elements only become obvious 
when the internals of the individual simulations are 
contrasted with each other.  To achieve 
interoperability, the simulations must be founded on 
compatible object models that preserve sufficient 
semantic equivalence between world models.  The 
algorithms that form the basis for individual system 
reasoning must provide equivalent results across the 
interacting systems.  The individual system 
environmental representations must be sufficiently 
correlated so that the potential for interaction between 
world objects is equivalent for all world objects, 
irrespective of the system simulating them.  The 
following sections discuss these three fundamental 
characteristics of simulation systems: object models, 
environmental representations, and reasoning 
algorithms, from the perspective of the cross-system 
equivalence required to enable valid interactions.  In 
some cases, procedures to detect incompatibilities are 
developed and strategies to prevent invalid interactions 
are proposed. 
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OBJECT MODELING 
 
Incompatibilities among the object models of 
federation participants can be a fundamental source of 
both syntactic and semantic interoperability problems.  
Such incompatibilities can be felt at any of three levels.  
First, there are the object modeling issues that are 
introduced whenever different simulation architectures 
(e.g., DIS and HLA) are mixed within the same 
simulation environment.  Such issues are relatively 
easy to detect, and are based on differences in the way 
different architectures define their object modeling 
concepts and supporting constructs.  Aligning the 
names and structural relationships among all object 
model elements is the next level of object modeling 
issues.  As an example, there may be an object that is 
being modeled by two or more federates using 
semantically equivalent internal representations, but 
having different names in their external interfaces (e.g., 
aircraft, air vehicle).  Such issues are also relatively 
easy to detect, although verifying semantic equivalence 
can be rather difficult.  The final level of object 
modeling issues is essentially the opposite of the 
previous issue.  Here, there is a direct correspondence 
between the names and structure of elements in the 
object model, but the representations of these elements 
by the various federates are semantically inconsistent.  
These issues are the hardest to detect, and can have 
serious consequences for the overall validity of the 
simulation environment.  The following sections detail 
each of these three levels individually, and identify 
potential strategies for resolving the inherent 
compatibility issues. 
 
Mixed Architecture Object Modeling Issues 
 
There are many different simulation architectures in 
use today.   The architectures that currently dominate 
the Department of Defense (DoD) Modeling and 
Simulation (M&S) user community include the:  
 

• Distributed Interactive Simulation (DIS) 
• High Level Architecture (HLA) 
• Test and Training Enabling Architecture 

(TENA) 
 
In the DIS standard (IEEE 1278), there is no separate 
object model construct defined in the architecture.  
Rather, the DIS specifications define a set of data 
messages, called Protocol Data Units (PDU), that 
provide information concerning simulated entity states 
and the types of entity interactions that can take place 
in a DIS exercise.  The collective set of PDUs defined 
in the IEEE 1278 standard, along with the format and 
syntax of the various data structures, are generally 
considered as the "DIS object model" in the sense that 

together they define the shared attribute data of objects 
and interactions and the way this data is exchanged at 
runtime.   
 
In the HLA, (HLA v1.3 or IEEE 1516), object models 
define an agreement for runtime data exchange in a 
federation.   Unlike the concept of a software object as 
commonly understood in the Object-Oriented (OO) 
software development community, HLA objects are 
encapsulations of state data for software objects that 
are being modeled within the federates.  Runtime 
interplay among federates takes place through updates 
to such data (referred to as "attributes") and exchange 
of non-persistent action/event notifications (called 
"HLA interactions").  The specification of all such 
objects and interactions, with associated attributes and 
parameters, collectively defines the object model.  A 
component of the HLA (IEEE 1516.2) provides a 
template for documenting object models. 
 
In TENA, object models map much more closely to 
traditional software object models.  TENA objects, 
referred to as "Stateful Distributed Objects" in the 
TENA specification, support the traditional features of 
OO programming, such as inheritance, composition, 
and remote and local methods.  A standard object 
model is provided in the TENA specification, from 
which application-specific object models (referred to as 
"Logical Range Object Models") can be derived.   
 
Gateways are the most common mechanism for 
reconciling object models across different 
architectures.  Gateways are general purpose, non-
simulation-specific software applications that provide a 
variety of translation services across dissimilar 
simulations.  While some gateways are designed to 
support only a single, specific object model translation 
(e.g., Real-time Platform Reference Federation Object 
Model [RPR FOM] for DIS-HLA applications), others 
provide more "FOM agile" features for mapping 
between other object model representations.   
 
Although gateways can be highly effective in 
reconciling object model representations across the 
different architectures, gateways can add complexity to 
the distributed simulation architecture, can be an 
additional source of error, and can increase latency 
across the simulation environment.  For those reasons, 
the user communities associated with the various 
architectures have recently shown interest in reaching 
more generalized agreements on object model content.  
These agreements would reduce current dependence on 
gateways and reduce the time and effort necessary to 
implement future distributed simulation environments.  
Once such agreements are established, cross-
community object model content agreements should 
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eventually lead to more formalized 
standards activities, which will provide an 
important means for maintaining the stated 
agreements in the long-term. 
 
Aligning Names/Structure of Object 
Model Elements 
 
Even within a single architecture 
community, there can be many different 
object model representations that must be 
reconciled when new distributed 
applications are built.  This is particularly 
true for HLA applications.  The separation 
of architecture from data is fundamental to the HLA 
paradigm.  While this design feature provides 
considerable flexibility in the way object models are 
developed, such flexibility can (and has) resulted in a 
proliferation of object models across the various user 
domains.  The impact of this situation is that some 
degree of object model reconciliation is required for 
most new HLA federations.  Although static 
data/object model structures are formally defined in 
both the DIS and TENA specifications, both possess 
mechanisms to extend existing structures or even add 
whole new elements, and thus are subject to the same 
basic compatibility issues.  
 
Some of the inherent problems commonly associated 
with object model reconciliation are introduced in 
Figure 1.  Here, we show (partial) external interfaces of 
two different simulations.  Mars is an aggregate-level 
multi-service application that decomposes a "Platform" 
base class into three basic subclasses; those of 
"Ground", "Air", and "Sea" entities.  New objects are 
instantiated only at this second level, and are given the 
applicable characteristics (e.g., fighter jet, cruiser) via a 
defined initialization dataset.  Venus is a higher-fidelity 
application (for Army vehicles) that also instantiates 
new objects only at the leaf nodes. 
 
Suppose that these two simulations are both to be 
included in an HLA federation, and that the external 
interface of each federate is a Simulation Object Model 
(SOM).  The issues associated with direct 
reconciliation of the two SOMs are rather obvious, as 
each structure has different class names and class 
relationships, but it is not as obvious if and where the 
various classes may be semantically different.  The 
reconciliation of class names and structures across the 
various federates is normally performed as part of the 
Federation Object Model (FOM) development 
process.  This involves developing a common object 
model representation for the full federation, and then 
having each federate map their native interface to the 
agreed upon FOM structure.   

 
Since subscription needs tend to drive FOM class 
structures, assume that Mars wishes to subscribe to 
information about "Tank" and "IFV" (Infantry Fighting 
Vehicle) objects published by Venus, and Venus 
wishes to subscribe to "Ground" platforms published 
by Mars.  Figure 2 illustrates a possible FOM based on 
these requirements. In this solution, platforms can be 
instantiated as either generic ground vehicles (by Mars) 
or as a "Tank"/"IFV" (by Venus).  Thus, objects may 
now be instantiated at two different levels of the class 
structure.  To implement this solution, each federate 
must apply the appropriate mapping between 
corresponding objects in the FOM and SOM.  This 
translation may require the modification or addition of 
new attributes in the FOM, such as the inclusion of a 
"Type" attribute in the "Ground" class so Venus will 
know if new class instantiations should be considered a 
"Tank" or "IFV". 
 
This is a rather simple example.  In practice, the proper 
alignment of object names and structures can become 
quite difficult for large federations.  While there are 
tools available to assist with such activities (e.g., FOM 
mapping tool in Mak's VR-Link software), there is no 
real substitute for the long and sometimes difficult 
negotiations that must occur at FOM development 
meetings.  However, there are opportunities for 
improved object modeling techniques that may make 
such efforts less resource intensive in the future.  As an 
example, since modern software development 
methodologies are frequently designed around 

 

 
Figure 1. Federate External Interfaces 

 
Figure 2.  Reconciled Federation Object Model (FOM) 
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compositional approaches (i.e., building new software 
systems from small, reusable components), it seems 
reasonable that the same proven practices can be 
effectively applied to object modeling as well.  The 
Joint Composable Object Model (JCOM) project at 
Joint Forces Command (JFCOM) is already 
implementing this concept.  The current standard in 
this area is the Base Object Model (BOM) standard 
sponsored by the Simulation Interoperability Standards 
Organization (SISO).  The BOM standard provides a 
template for describing object model components, 
along with a guidance document that describes how 
BOMs are developed and assembled into arbitrarily 
large object models.  Although the infrastructure for 
more widespread application of the BOM concept is 
still relatively immature, some supporting tools do 
exist (e.g., Simvention's BOMWorks).   
 
Semantic Compatibility Issues 
 
Successfully translating between different object model 
representations is necessary but not sufficient to assure 
full object model compatibility.  Even if all local 
simulation interfaces can be mapped to a common 
federation-wide representation, it does not guarantee 
that all runtime data will be interpreted by federates in 
a consistent fashion.  This is a major source of "fair 
fight" issues in distributed simulation applications.  As 
an example, Mars and Venus may both recognize an 
"Aircraft" class and subscribe to its "Altitude" attribute, 
but if Mars expects the data in feet while the Venus 
expects the data in meters, the simulations will 
perceive the aircraft altitude differently.  Such issues 
can also influence characteristics such as accuracy, 
update rate, or in some cases, the actual meaning of the 
data item.  Sometimes, these inconsistencies will 
simply produce a small bias, favoring one simulation.  
In other cases, the overall validity of the federation 
execution may be compromised.   
 
Unfortunately, these "deeper" interoperability issues 
are frequently both harder to detect and harder to 
resolve.  Some architectures provide automated utilities 
to reduce the chances for inaccurate interpretation of 
runtime data, such as the standard method 
implementations provided by TENA (e.g., reference 
frame conversions).  However, such capabilities do not 
eliminate the need for structured Verification, 
Validation, and Accreditation (VV&A) processes to 
overlay federation development.  Careful attention to 
semantic equivalence in federation object model 
development is essential to avoid fair fight issues.  
Although such activities can be resource intensive, the 
impact of false conclusions drawn from invalid 
federation executions is much a higher price to pay.   

ENVIRONMENTAL REPRESENTATION 
 
Typically, whenever two or more systems are prepared 
to interoperate in a single simulation event, one of the 
first requirements is correlation of the environmental 
databases those systems rely on.  But what does it 
mean when the event manager states that the 
environmental databases have been correlated?  Often, 
the implication is simply that an entity placed on the 
Martian landscape at a specific coordinate appears at 
an acceptably equivalent location when observed from 
the Venus system.   This is certainly the minimum 
requirement, but such “correlation” does little to ensure 
the validity of the subsequent system-to-system 
interactions. 
 
Different types of environmental databases 
(atmospheric, open water, acoustic, etc.) support 
different types of operations.  In this discussion, we 
focus on the land domain as a representative case.  
Aside from supporting visual presentation, the most 
important services supported by the environmental 
representation are line-of-sight (LOS) and mobility 
calculations.  To guarantee valid interactions, these 
calculations must produce the same results for the same 
mobility or LOS analyses irrespective of the database 
supporting the calculations; the databases should be 
functionally equivalent. However, such equivalence 
may be harder to achieve than is commonly realized.  
 
From the LOS point of view, we claim functional 
equivalence can only occur when the elevation surfaces 
of the databases are identical.  To see this, consider the 
terrain cross section illustrated in Figure 3.  Wherever 
different databases have different elevation surfaces at 
corresponding (x,y) locations, it is possible to position 
an observer so that different fields of view occur.  In 
Figure 3, the dashed and solid lines depict two different 
elevation surfaces.  The shaded regions show areas that 
are visible based on one surface and blocked according 
to the other.  While this is a trivial case, a single 
example establishes the validity of our claim.  It also 
provides an illustration of the situation that should be 
avoided.  Positioning a second opposing-force entity in 

 
Figure 3. Different Elevation Surfaces Yield 

Different LOS Results 
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the gray shaded area of Figure 3 allows the potential 
for an invalid interaction because one database would 
indicate that LOS existed and the opposing entities 
would be aware of each other, so an engagement could 
occur.  However, obstructions in the other database 
prevent the entities from observing each other, 
precluding engagement.  The Martian can acquire and 
engage the Venusian without ever being detected. 
 
The fact that databases having different elevation 
surfaces can lead to invalid interactions does not mean 
that entities using those databases should be prevented 
from interacting at all. Figure 3 also illustrates that 
there are a great many pairs of locations where 
consistent LOS results would result, despite the 
database differences.  That is, positioning one entity at 
the illustrated observer location and locating the second 
entity anywhere that is not shaded will result in 
consistent LOS analyses using the different databases.  
In fact, there is a bounded set of locations for the 
second entity that would lead to different LOS 
solutions while the set that gives equivalent results is 
unbounded (assuming entity height is not bounded).  
Thus, in the case illustrated, the probability of an 
invalid interaction based on different LOS results is 
comparatively low.  So, ruling out any interactions 
between entities using these databases is inappropriate.  
A better strategy is to actively manage the interaction 
opportunities in a way that maximizes the potential for 
valid interaction. 
 
Established management strategies are designed to 
preclude situations where interacting simulation 
systems could develop inconsistent world views. One 
strategy separates incompatible simulations in time or 
space (or both) so that, although the simulations all 
operate within the same federation, they do not directly 
interact with each other during any specific simulation 
event.  A second management method allows different 
systems to interact, but requires that one of the 
interacting systems adjudicate all decisions about each 
interaction. Using the above entity-to-entity 
engagement example, one simulation would determine 
the existence of LOS and provide the other simulation 
with its result, thus assuming the role of “line-of-sight 
server” and ensuring that both simulations reach the 
same conclusion.  (Note that another similar option 
would place one federate in the role of “terrain 
server”.)  Finally, another strategy requires that all 
interacting systems use the same terrain.  Different run-
time formats restrict the applicability of this strategy 
and, even when it is viable, the systems must all use 
algorithms that provide the same results as well. 
 
There are also other problems with these strategies. 
The first approach prohibits interaction of systems, so 

the overall simulation event would more appropriately 
be described as a collection of separate systems, not as 
an integrated federation. The second approach is more 
acceptable, but clearly has shortcomings. Client 
systems may well be stripped of their essential 
character when their decision-making authority is 
removed.  Further, server systems might incur greatly 
increased computational load and communicating their 
decisions would increase network load and add latency 
into the federation.  Finally, none of these solutions are 
fully applicable when live systems are involved. 
 
We can build on results from earlier work (Richbourg, 
2001) describing alternative methods that do not suffer 
these limitations.   While there are many causes for 
conflicting LOS results between environmental 
databases (different source data, different 
transformations to create the run-time databases, errors 
in one database, different features or feature placement, 
use of incompatible algorithms, etc.), a comparative 
analysis focused on the final databases and the 
calculations they support can provide the information 
necessary to manage interactions.  Applying context-
sensitive viewshed analyses (Ray, 1994) to the 
databases and comparing the results can identify areas 
that provide the best potential for valid interactions. 
 
Consider the case if Mars used Level 1 Digital Terrain 
Elevation Data (DTED L1) and Venus used a Level 2 
DTED (DTED L2).  Figure 4 is a shaded relief 
depiction of the Level 1 data (which includes elevation 
posts at a horizontal spacing of approximately 83 
meters).  Figure 5 is a shaded relief depiction using 
Level 2 DTED (approximately 28 meters horizontal 
post spacing) for exactly the same area.  Even at this 
zoom level (approximately 30 KM square area is 
shown), the DTED 2 shows a crisper representation of 
the terrain.   

 
Figure 4. DTED Level 1 Shaded Relief 
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Figures 6 and 7 show the viewsheds for these 
representations.  Both viewsheds are derived from tank 
– to - tank LOS approximations for all locations in the 
30KM square area.  Each elevation post (pixel) in the 
viewshed is scored according to an estimate of the 
number of other elevation posts, within engagement 
range, where LOS would exist between two tank 
entities.  (We applied bi-level interpolation to the 
lower-resolution DTED L1 so that both databases have 
the same scoring opportunities.)  These scores have 
been mapped into the gray scale for illustration. Light 
areas indicate locations where an observer (tank 
platform) has relatively open LOS and fields of fire 
regarding targets (other tank platforms) within the 
effective range of their main weapon.  Dark areas 
correspond to areas of poor LOS for that type of 
observer (but relatively good concealment potential).  
Comparing the viewshed information allows 
identification of those areas where LOS analyses 

applied to either the DTED L1 or DTED L2 elevation 
data are likely to produce similar results and therefore 
valid interactions between Martian and Venusian tanks. 
 
Figure 8 illustrates the correlation of the two 
viewsheds.  Areas that appear white correlate to at least 
90%.  This correlation map provides a tool for event 
managers to use in event planning.  For example, one 
could plan force interactions in locations that correlated 
to at least 90%, accepting some risk (e.g., 10% or less) 
of invalid interaction.  However, note that these types 
of viewshed comparisons are closely tied to the entity 
types that are anticipated to engage one another.  The 
illustrations in Figures 6, 7, and 8 all assume that target 
and observer are located about 3 meters above the 
ground surface and that they are separated by 3,000 
meters or less.  Creating the same type of analyses for 
other potential entity-to-entity engagements would 
require both height AGL and range parameters 
appropriate for those entities.  That is, a viewshed 

 
Figure 5. DTED Level 2 Shaded Relief 

 
Figure 7. DTED 2 – Tank-to-Tank Viewshed 

 
Figure 8. Viewshed Correlation at 90% 

 
Figure 6. DTED 1- Tank-to-Tank Viewshed 
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analysis has to be performed in the context of likely 
system interactions. 
 
There are other aspects necessary to fully correlate 
environmental databases and ensure valid system-to-
system interactions.  Here we have focused on terrain 
data to provide an example of the type of analyses that 
are necessary.  Even though elevation data analyses are 
less important when working with open water or 
atmospheric data, the main point should still hold.  
Correlation of databases to ensure valid interactions 
must be performed in the context of the functions that 
will apply during potential engagements.  While one 
could directly compare the individual data elements of 
each database (elevation post points in this terrain-
centric example), such a comparison is completely 
context-free and is thus not very informative from an 
exercise management point of view.  As an example, 
translating root-mean squared error (RMSE, derived 
from directly comparing surfaces) into something 
indicative of the potential for a fair fight seems very 
unlikely and perhaps impossible.  Simply 
characterizing differences in the surface elevation does 
not provide the type of information necessary to make 
appropriate decisions.  Further, we assert without proof 
that there are cases where very large differences in 
surface elevation have little impact on LOS results and 
there are some cases where small differences can have 
a large impact on calculated LOS.  Conversely, the 
function-based, context-sensitive method described 
here allows event planners to make informed decisions 
about risk of invalid interactions in their events. 
 

ALGORITHMIC INTEROPERABILITY 
 
Even if you have managed to agree on and express the 
same shared objects and interactions and you use 
identical supporting data for them and their 
environments, there is still no guarantee that the 
federation will be a valid simulation.  The “whole is 
greater than the sum of its parts” cuts both ways.  Even 
if the individual parts are validated, their sum does not 
necessarily yield valid federation.  Since V&V for a 
single simulation is fairly difficult, it is not good news 
that additional V&V is required for the federation.   
 
To see why simulation validity is so fragile, we need to 
examine what a model is as we hold that a computer 
simulation is a collection of executable models 
engineered to work together.  The concept of a model 
is at best fuzzy; what is the difference between a model 
and a theory for instance [Morgan]. But, for the 
purpose of this discussion please accept the following 
definition: a model is a collection of abstractions of the 
world called variables together with a mechanism to 
predict the values of some of the variables based on the 

values of the rest.  This is very close to the definition of 
a mathematical function, with the added restriction that 
the model includes principled mechanisms to obtain the 
values of all the variables from the real world.  Thus a 
model is a function that predicts the state of one part of 
the world from that of another part and that prediction 
can be checked by comparing it with values obtained 
directly from the world.  The prediction is often self 
referential where future values of a variable are a 
function of past values, but that fits the definition since 
each point in time can be considered a separate 
variable.  Consider a familiar example, the plastic 
models of airplanes available at hobby shops.  Given a 
coordinate relative to a point on the nose of the real 
aircraft, the model can predict whether that point is 
inside or outside the real aircraft.   
 
So why do we build models?  To capture aspects of the 
world in simplified forms that make it easier for us to 
manipulate them and predict what would happen if we 
manipulated the real thing [Woodward].  For example, 
if we were planning to buy a small hanger to house our 
real airplane and we wanted make sure the plane would 
fit in the hanger, we could take our model and try to 
place it in a same-scale model of the hanger; essentially 
performing a simulation.  In fact, for that purpose we 
could use far simpler models of the airplane and 
hanger; ones consisting only length, width, and height.  
However if we wanted to see what the air flow over the 
plane’s wings looked like, the simpler models would be 
of little help.  But building a scale model requires a 
great deal of measurement while the length, width, and 
height model requires only three.  Even worse, the 
more complicated and complete a model is, the harder 
it is to figure out what manipulations will achieve our 
goals.  Models are simplifications of reality and they 
get their power from the fact that they are easier to 
manipulate than the real thing but are still able to 
predict how the real thing will respond to a certain set 
of manipulations.  So the ideal model will be just 
complicated enough to predict the results of the 
manipulations we are interested in and no more.  Thus 
any object or process can be represented by an 
unlimited number of models representing different 
properties at different resolutions for different 
purposes.   
 
Another factor in the huge variability between 
computer models is the fact that they are mathematical 
models.  Physical models automatically bring with 
them various properties of the world.  Mass, drag, 
gravity, and the reflection and absorption of 
electromagnetic energy all come with the physical 
model; perhaps not in the right proportions, but for 
free.  With mathematical models on the other hand, 
nothing comes for free.  The mathematical model 
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salesman gives the used car dealer a good name. “You 
didn’t say you wanted tires on that model car, that’s an 
expensive contract extension.”  Thus computer models 
differ not only because of purpose but because 
everything that is represented has to be explicitly added 
(we will ignore emergence as, unless it is very 
carefully cultivated, it is more likely to be weed than a 
flower).  As there are an infinite number of ways to 
abstract, having different model builders abstract the 
same way is unlikely.   
 
Now back to simulations; simulations are complete in 
the sense that they contain all the models required to 
represent both the objects and processes of interest and 
the aspects of the environment that we want to examine 
them interacting with. They would be useless 
otherwise.  So whenever we bring together two 
simulations they usually have different models of the 
same phenomena.  If the phenomena are objects such 
as an F16, we resolve the problem by saying, “OK, the 
Venus simulation will model all the F16s and Mars will 
model F15s.”  But because we and our interoperability 
architectures are object focused, when it comes to 
processes we don’t do the same thing.  Each simulation 
implements its own model of the processes of target 
detection, damage calculation, driving, collision 
avoidance, etcetera.  So, when we run our federation 
we will have different models for the same processes 
running simultaneously.  Essentially the F16 is flying 
over Venus and the F15 is flying over Mars and 
through the very clever trick of the RTI they think they 
are both on the same planet and they can interoperate.  
But their gravity and atmospheres are very different 
and so the F16 in Venus doesn’t quite behave the way 
an F16 in Mars would and the F15 may be confused by 
this behavior difference. But wait you say, “Can’t I 
change the Martian data files to make them close 
enough to the Venus data and solve the problem?”  
Well maybe, but unless the data files have exactly the 
same variables and use them in exactly the same way, 
i.e., have the same algorithms, which is unlikely, there 
will always be some difference.  Venus may calculate 
LOS from the center of mass of a flight of aircraft 
while Mars may calculate LOS from each of its sensors 
and crew.  Venus may use a ray tracing routine to 
calculate intervisibility while Mars uses just range.  It 
is important to note that each algorithm choice has its 
pluses and minuses. It is not just a matter of selecting 
the model with the most detail; otherwise we would 
only test in the real world since it is by definition its 
own best model.  Venus may have a much more 
detailed detection algorithm but it can only handle a 
scenario where it has no more than three opponents.  It 
won’t be much good for a Red Flag scenario, but it is 
certainly more accurate in a one - on - one scenario.  
 

So how do we detect these problems and correct them?  
In general there are no easy answers.  In a single 
simulation there is a long engineering and testing 
process to harmonize the models and make them work 
together.  The uninitiated may get the false impression 
that federations allow us to cheat that process and get a 
free lunch.  But the experienced practitioner assumes 
that models from different simulations will be 
incompatible, guilty until proved otherwise.  However, 
simulations often contain hundreds of process models 
so exhaustive testing is not practical and resolving 
identified problems is not easy.  Federation builders 
have developed some techniques to deal with the 
problems: 
 
• The first is to limit testing to the scenario or class of 

scenarios that we intend to run and our purpose; the 
more specific the better.   

• We divide up the simulation of objects so that 
objects that operate in similar environments are all 
simulated together.  Aircraft in one simulation, 
surface vessels in another.  That way, similar 
entities have the same environment. 

• We use persistent federations, where a history of 
testing and interoperability modifications gives us 
confidence that the models are compatible, at least 
for previous purposes. 

• We limit the scenario to regimes where the 
simulation models give consistent results.  If one 
simulation doesn’t model night operations well, 
don’t run a night scenario. 

• We dumb down the over achievers.  The nail that 
sticks out gets hammered down.  Raising the least 
common denominator is usually much harder. 

• We provide common process models for all the 
simulations to use.  This is the equivalent of what 
we do for objects.  The problem is generally 
latency, so the TENA approach of allowing external 
methods to be compiled into each federate has a lot 
of promise here. 

• We add noise into the models or handicap some in 
such a way as to level the playing field. 

 
In the long run, the best solution is to teach models to 
our simulation engineers.  We need to classify and 
name different process models so we can talk about 
them at a higher level.  There should be taxonomy of 
standard models and their variations.  The vocabulary 
of the modeling and simulation engineer needs to 
include the Acquire model [Friedman] much more than 
it needs to include JSAF, JCATS, F16, DIS, or HLA.  
That way, when we bring our simulations together to 
federate, we can talk at a much more meaningful level 
than we do now and communicate much more 
effectively and efficiently.   
 



 
 
 

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2008 

2008 Paper No. 8097 Page 10 of 11 

The second benefit of developing the simulation model 
ontology called for above is that it is needed to make 
the automated integration of models possible.  The 
service oriented architecture (SOA) strategy calls for 
the dynamic integration of services via a web 
architecture.  SOA is a development of the business 
world [Carter].  Under the SOA strategy, an 
organization decomposes its IT architecture into 
business processes and services.  Services are reusable 
information processing tasks such as charging a credit 
card or reordering a stock item.  The key innovation is 
that, the services are not hardwired into the application.  
Instead, services are catalogued and applications 
discover them in the catalogue each time they go to call 
them.  This decoupling makes it much easier to reuse 
services and swap out old implementations for new 
versions.  This can be applied to simulation by making 
our process models into services and our simulations, 
like a business process, would primarily consist of a 
top-level loop and specifications of the types of models 
that are required to run the simulation.  Upon starting 
up, the simulation would search online catalogs to find 
models that it needed to execute.  In business scenarios 
you generally call the credit card authorization service 
once for each transaction.  In simulation, we know we 
are going to call each model repeatedly at high 
frequency.  So it doesn’t make much sense to 
rediscover the model each time. The discover process 
should only be conducted at the start of each event 
rather than repeatedly during the execution.  Latency 
will probably be a critical issue for many models, so it 
may be necessary to dynamically download the models 
before execution.  However, for this approach to solve 
our interoperability problems we need to end up using 
the same process models.  It is not enough to 
automatically discover F16, F15, and missile models.  
If these models don’t share a common environment, 
common sensor physics, and common target detection 
and acquisition models (i.e., the underlying world 
processes and data), then they will have the same 
interoperability problems as our current federations 
without the people in the loop to solve them.  Thus the 
federation has to choose the process model services 
and tell the simulations and their object models to use 
them.  The key to allowing that to happen is a common 
ontology of process models that allows us to write the 
specifications needed to identify the models required. 
 

CONCLUSION 
 
Ensuring that arbitrary simulations will interact in valid 
ways is difficult because there are so many moving 
parts that have to be aligned properly.  Object models 
define the lexicon for interactions and alignment of 
different object models, as with any lexicon, requires 
resolving both syntactic and semantic differences.  We 

have processes to attack the syntactic differences, 
although the existing methods are often mostly manual.  
These can be labor-intensive, tedious undertakings that 
typically require several iterations to complete.  The 
semantic issues are far more difficult to resolve 
because we do not have processes that are guaranteed 
to: 1) identify all the differences and; 2) provide any 
help in modifications that can resolve them.  The 
difference here is that the syntactic issues stem from 
visible constructs while the semantic problems are 
usually based on internal processes that are difficult to 
isolate or expose. Probably, the best solution here is to 
develop and utilize component-level object models that 
can be shared and used across the community.  In some 
respects, this is the object model corollary to the 
service-oriented approach; the idea is to have everyone 
use the same object model “service.” 
 
Like the object model semantic issues, the related 
environmental issues are also difficult to resolve.  The 
causes behind potential invalid interactions are only 
apparent when placed in the correct context of use.  
The same representational difference can lead to 
invalid results for one type of interaction and have no 
adverse impact on others.  Even a small difference in 
elevation surfaces, as an example, can lead to 
inconsistent line of sight analyses that, in turn, can lead 
directly to invalid outcomes derived from unfair 
advantage.  However, the unfair advantage is 
fundamentally dependent on the exact context of use, 
and may not be a factor in many outcomes.  As a result, 
even exhaustive and detailed comparisons of different 
environmental representations can be fruitless.  Thus, 
the notion of having “correlated databases” between 
interacting federates is likely meaningless, unless the 
correlation was synonymous with having ensured 
equality of the surfaces.  A more meaningful 
characterization of the potential for valid interactions is 
based on functional comparison.  These kinds of 
characterizations, where comparison is functional and 
within context, can be used as management tools that 
allow event designers to construct scenarios that the 
different environmental representations will support or, 
at least, to accept a bounded risk that the scenario will 
result in valid outcomes. 
 
Managing potential interactions becomes far less 
important if all of the interacting systems are using the 
same environmental database, as might be the case if a 
terrain server could be used.  This is an attractive 
solution, but is also rarely a viable approach.  Run time 
environmental databases are typically heavily 
optimized for specific systems and are thus very 
difficult to share across systems without some form of 
translation or reformatting.  Preserving functional 
equivalence throughout the translation process is also 
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problematic.  Given that most simulation systems start 
with the same (or nearly so) source data for their 
environmental data, the problem of maintaining 
functional equivalence during translation is at least 
partly responsible for the current situation.  Also, the 
environmental data is usually quite voluminous, 
making it difficult to serve over a network.  These 
kinds of problems usually imply that the server 
approach is not as viable as a management solution.  
Informed management, as we suggest above, can be 
used to preserve interaction validity. 
 
A service-oriented approach may be more attractive in 
solving problems of model inconsistencies.  After all, if 
every system used the same model (algorithm) then 
there would be little chance for inconsistency.  This 
approach fundamentally depends on the existence of a 
model ontology, which we do not have today.  As a 
result, the current approaches to dealing with model 
inconsistencies also depend on management.  In fact, 
the viewshed analyses described above are as 
applicable to line of sight algorithm differences as they 
are to environmental representation differences; they 
are useful in placing the environment within its 
functional context of use.   
 
Viewshed type analysis is tractable for the algorithms 
that use environmental data directly, because they are 
sufficiently limited in number.  It is difficult to make 
the same claim for the general class of algorithms and 
models that form the basis for all system – to - system 
interactions in simulation events.  Thus, the current 
management approaches usually include some type of 
circumscription, limiting the potential interaction types 
to the minimum required.  The best solution here is not 
unlike that for ensuring object model compatibility.  
Devising an ontology that can describe a core set of 
accepted models would serve the community well.  It 
would be particularly useful as an enabling resource to 
provide modelers with a common vocabulary for 
describing widely used and accepted models. 

In sum, the community has not made appreciable 
progress towards ensuring valid interactions derived 
from semantic interoperability.   However, there is a 
way forward and progress can be made.  The necessary 
ingredients are common components of object models, 
informed management of environmental data use, and 
development of an educated community that uses a 
common modeling ontology. 
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