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ABSTRACT

When two or more combat simulations are federated, differences in the ways they represent and reason about the
world and how they communicate state changes can provide artificial advantages that lead to unfounded outcomes.
Simulations are simplified representations of the real world that preserve detail and data where necessary to support
their intended purpose and use abstractions where data is unavailable or in secondary areas. Such design decisions
are valid when the simulations will be used as intended. However, when multiple systems, each of which have a
unique purpose and supporting design, are combined in novel uses, their simplifying assumptions can overlap in
ways that are not complementary and may result in invalid system interactions. Federated simulation events must
minimize such occurrences to provide realistic results. However, this is much easier said than done; invalid
interactions are typically caused by factors that can be deeply ingrained within each individual simulation system.
Differences between these fundamental elements often only become obvious when the internals of the individual
simulations are contrasted with each other. To achieve a fair fight, the simulations must be founded on compatible
object models that preserve sufficient semantic equivalence between world models. The algorithms that form the
basis for individual system reasoning must provide equivalent results across the interacting systems. The individual
system environmental representations must be sufficiently correlated so that the potential for interaction between
world objects is equivalent for all world objects. This paper considers these three fundamental characteristics of
simulation systems: object models, reasoning algorithms, and environmental representations, from the perspective of
the cross-system equivalence required to enable valid interactions. The general nature of the problem is defined,
procedures to detect incompatibilities are developed, and strategies to prevent invalid interactions are proposed.
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INTRODUCTION

Large simulation federations, composed of multiple
live, virtual, and constructive systems are important
experimentation and training resources. Federating
provides a unique mechanism that can combine
disparate  systems to create  wide-spectrum
environments that are useful in many application
domains. But, what does it really mean when these
different kinds of systems have been “composed” into
a set of systems that can interact with each other during
a simulation event? Typically, the kinds of interactions
that are allowed to occur are constrained to the subset
thought to produce valid results (and which often,
unintentionally, may still include some that lead to
invalid results as well). Experienced event designers
understand that, even after a complete systems
integration, the semantics of arbitrary system
interactions may not be the same on the sender and
receiver ends. As an example, we will use a federation
composed of the “Mars” and “Venus” simulations.
Consider when an entity in the Mars simulation is
within the engagement range of another entity in the
Venus simulation.

Several factors influence the potential for a Martian -
Venusian engagement and its possible outcomes. First,
the two entities have to be aware of each other. Once
aware, each entity has to recognize the other as an
adversary that should be engaged and that engagement
is possible given the effective range of available
weapons. Since the Martians and Venusians are the
original Hatfields and McCoys, an engagement
follows, requiring each entity to repeat the cycle of
calculating their own damage and understanding the
other’s damage, until each determines that further
engagement is no longer possible or necessary. Each
step in this engagement process has some potential for
system-to-system inconsistencies leading to an invalid
engagement result.

Typically, the two entities become aware of each other
when each applies internal line-of-sight (LOS)
algorithms to their own internal representations of the
physical environment.  Different LOS algorithms
applied to the same database can provide different

2008 Paper No. 8097 Page 2 of 11

aceranowicz@alionscience.com

Robert.Lutz@jhuapl.edu

results. The same LOS algorithm applied to different
databases can provide different results. But the likely
situation is that different LOS algorithms are applied to
different environmental databases, clearly a case where
inconsistent results are possible. Thus, even in cases
where LOS should be reflexive, the Martian might see
the Venusian while the Venusian is unaware of the
Martian. Thus, the Martian entity has been provided
with an unfounded “Stealth” capability, based on
algorithmic differences, database differences, or both.
This will provide an unfair advantage to the Martian
and leads to an invalid engagement result. Further, the
process of determining the need for engagement (a
recognized adversary that is mission capable) requires
each entity to correctly interpret the “entity state”
information provided by the other. Here, object model
agreements and interpretations have to be consistent if
invalid results are to be avoided. (What does the DIS
entity state “Slightly Damaged” mean to an HLA entity
when determining the need for continued
engagement?)

The example shows that invalid interactions can be
caused by deeply ingrained factors within each
individual simulation system. Differences between
these foundational elements only become obvious
when the internals of the individual simulations are
contrasted with each other. To achieve
interoperability, the simulations must be founded on
compatible object models that preserve sufficient
semantic equivalence between world models. The
algorithms that form the basis for individual system
reasoning must provide equivalent results across the
interacting  systems. The individual system
environmental representations must be sufficiently
correlated so that the potential for interaction between
world objects is equivalent for all world objects,
irrespective of the system simulating them. The
following sections discuss these three fundamental
characteristics of simulation systems: object models,
environmental  representations, and  reasoning
algorithms, from the perspective of the cross-system
equivalence required to enable valid interactions. In
some cases, procedures to detect incompatibilities are
developed and strategies to prevent invalid interactions
are proposed.
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OBJECT MODELING

Incompatibilities among the object models of
federation participants can be a fundamental source of
both syntactic and semantic interoperability problems.
Such incompatibilities can be felt at any of three levels.
First, there are the object modeling issues that are
introduced whenever different simulation architectures
(e.g., DIS and HLA) are mixed within the same
simulation environment. Such issues are relatively
easy to detect, and are based on differences in the way
different architectures define their object modeling
concepts and supporting constructs.  Aligning the
names and structural relationships among all object
model elements is the next level of object modeling
issues. As an example, there may be an object that is
being modeled by two or more federates using
semantically equivalent internal representations, but
having different names in their external interfaces (e.g.,
aircraft, air vehicle). Such issues are also relatively
easy to detect, although verifying semantic equivalence
can be rather difficult. The final level of object
modeling issues is essentially the opposite of the
previous issue. Here, there is a direct correspondence
between the names and structure of elements in the
object model, but the representations of these elements
by the various federates are semantically inconsistent.
These issues are the hardest to detect, and can have
serious consequences for the overall validity of the
simulation environment. The following sections detail
each of these three levels individually, and identify
potential strategies for resolving the inherent
compatibility issues.

Mixed Architecture Object Modeling Issues

There are many different simulation architectures in
use today. The architectures that currently dominate
the Department of Defense (DoD) Modeling and
Simulation (M&S) user community include the:

* Distributed Interactive Simulation (DIS)

¢ High Level Architecture (HLA)

¢ Test and Training Enabling Architecture
(TENA)

In the DIS standard (IEEE 1278), there is no separate
object model construct defined in the architecture.
Rather, the DIS specifications define a set of data
messages, called Protocol Data Units (PDU), that
provide information concerning simulated entity states
and the types of entity interactions that can take place
in a DIS exercise. The collective set of PDUs defined
in the IEEE 1278 standard, along with the format and
syntax of the various data structures, are generally
considered as the "DIS object model" in the sense that
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together they define the shared attribute data of objects
and interactions and the way this data is exchanged at
runtime.

In the HLA, (HLA v1.3 or IEEE 1516), object models
define an agreement for runtime data exchange in a
federation. Unlike the concept of a software object as
commonly understood in the Object-Oriented (OO)
software development community, HLA objects are
encapsulations of state data for software objects that
are being modeled within the federates. Runtime
interplay among federates takes place through updates
to such data (referred to as "attributes") and exchange
of non-persistent action/event notifications (called
"HLA interactions"). The specification of all such
objects and interactions, with associated attributes and
parameters, collectively defines the object model. A
component of the HLA (IEEE 1516.2) provides a
template for documenting object models.

In TENA, object models map much more closely to
traditional software object models. TENA objects,
referred to as "Stateful Distributed Objects" in the
TENA specification, support the traditional features of
OO programming, such as inheritance, composition,
and remote and local methods. A standard object
model is provided in the TENA specification, from
which application-specific object models (referred to as
"Logical Range Object Models") can be derived.

Gateways are the most common mechanism for
reconciling  object models across  different
architectures. Gateways are general purpose, non-
simulation-specific software applications that provide a
variety of translation services across dissimilar
simulations. While some gateways are designed to
support only a single, specific object model translation
(e.g., Real-time Platform Reference Federation Object
Model [RPR FOM] for DIS-HLA applications), others
provide more "FOM agile" features for mapping
between other object model representations.

Although gateways can be highly effective in
reconciling object model representations across the
different architectures, gateways can add complexity to
the distributed simulation architecture, can be an
additional source of error, and can increase latency
across the simulation environment. For those reasons,
the user communities associated with the various
architectures have recently shown interest in reaching
more generalized agreements on object model content.
These agreements would reduce current dependence on
gateways and reduce the time and effort necessary to
implement future distributed simulation environments.
Once such agreements are established, cross-
community object model content agreements should
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eventually lead to more formalized
standards activities, which will provide an
important means for maintaining the stated
agreements in the long-term.

Mars Federate

Venus Federate

Platform
Aligning Names/Structure of Object
Model Elements
Ground Air Sea
L . . Non-armored
Even within a single architecture Transport

community, there can be many different
object model representations that must be
reconciled  when  new  distributed
applications are built. This is particularly
true for HLA applications. The separation

Figure 1. Federate External Interfaces

of architecture from data is fundamental to the HLA
paradigm. While this design feature provides
considerable flexibility in the way object models are
developed, such flexibility can (and has) resulted in a
proliferation of object models across the various user
domains. The impact of this situation is that some
degree of object model reconciliation is required for
most new HLA federations. Although static
data/object model structures are formally defined in
both the DIS and TENA specifications, both possess
mechanisms to extend existing structures or even add
whole new elements, and thus are subject to the same
basic compatibility issues.

Some of the inherent problems commonly associated
with object model reconciliation are introduced in
Figure 1. Here, we show (partial) external interfaces of
two different simulations. Mars is an aggregate-level
multi-service application that decomposes a "Platform"
base class into three basic subclasses; those of
"Ground", "Air", and "Sea" entities. New objects are
instantiated only at this second level, and are given the
applicable characteristics (e.g., fighter jet, cruiser) via a
defined initialization dataset. Venus is a higher-fidelity
application (for Army vehicles) that also instantiates
new objects only at the leaf nodes.

Suppose that these two simulations are both to be
included in an HLA federation, and that the external
interface of each federate is a Simulation Object Model
(SOM). The issues associated with direct
reconciliation of the two SOMs are rather obvious, as
each structure has different class names and class
relationships, but it is not as obvious if and where the
various classes may be semantically different. The
reconciliation of class names and structures across the
various federates is normally performed as part of the
Federation Object Model (FOM) development
process. This involves developing a common object
model representation for the full federation, and then
having each federate map their native interface to the
agreed upon FOM structure.
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Since subscription needs tend to drive FOM class
structures, assume that Mars wishes to subscribe to
information about "Tank" and "IFV" (Infantry Fighting
Vehicle) objects published by Venus, and Venus
wishes to subscribe to "Ground" platforms published
by Mars. Figure 2 illustrates a possible FOM based on
these requirements. In this solution, platforms can be
instantiated as either generic ground vehicles (by Mars)
or as a "Tank"/"IFV" (by Venus). Thus, objects may
now be instantiated at two different levels of the class
structure. To implement this solution, each federate
must apply the appropriate mapping between
corresponding objects in the FOM and SOM. This
translation may require the modification or addition of
new attributes in the FOM, such as the inclusion of a
"Type" attribute in the "Ground" class so Venus will
know if new class instantiations should be considered a
"Tank" or "IFV".

This is a rather simple example. In practice, the proper
alignment of object names and structures can become
quite difficult for large federations. While there are
tools available to assist with such activities (e.g., FOM
mapping tool in Mak's VR-Link software), there is no
real substitute for the long and sometimes difficult
negotiations that must occur at FOM development
meetings.  However, there are opportunities for
improved object modeling techniques that may make
such efforts less resource intensive in the future. As an

example, since modern software development
methodologies are frequently designed around
Platform
Ground Air Sea

Published by Mars

@ Published by Venus

Figure 2. Reconciled Federation Object Model (FOM)
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compositional approaches (i.e., building new software
systems from small, reusable components), it seems
reasonable that the same proven practices can be
effectively applied to object modeling as well. The
Joint Composable Object Model (JCOM) project at
Joint Forces Command (JFCOM) is already
implementing this concept. The current standard in
this area is the Base Object Model (BOM) standard
sponsored by the Simulation Interoperability Standards
Organization (SISO). The BOM standard provides a
template for describing object model components,
along with a guidance document that describes how
BOMs are developed and assembled into arbitrarily
large object models. Although the infrastructure for
more widespread application of the BOM concept is
still relatively immature, some supporting tools do
exist (e.g., Simvention's BOMWorks).

Semantic Compatibility Issues

Successfully translating between different object model
representations is necessary but not sufficient to assure
full object model compatibility. Even if all local
simulation interfaces can be mapped to a common
federation-wide representation, it does not guarantee
that all runtime data will be interpreted by federates in
a consistent fashion. This is a major source of "fair
fight" issues in distributed simulation applications. As
an example, Mars and Venus may both recognize an
"Aircraft" class and subscribe to its "Altitude" attribute,
but if Mars expects the data in feet while the Venus
expects the data in meters, the simulations will
perceive the aircraft altitude differently. Such issues
can also influence characteristics such as accuracy,
update rate, or in some cases, the actual meaning of the
data item. Sometimes, these inconsistencies will
simply produce a small bias, favoring one simulation.
In other cases, the overall validity of the federation
execution may be compromised.

Unfortunately, these "deeper" interoperability issues
are frequently both harder to detect and harder to
resolve. Some architectures provide automated utilities
to reduce the chances for inaccurate interpretation of
runtime data, such as the standard method
implementations provided by TENA (e.g., reference
frame conversions). However, such capabilities do not
eliminate the need for structured Verification,
Validation, and Accreditation (VV&A) processes to
overlay federation development. Careful attention to
semantic equivalence in federation object model
development is essential to avoid fair fight issues.
Although such activities can be resource intensive, the
impact of false conclusions drawn from invalid
federation executions is much a higher price to pay.
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ENVIRONMENTAL REPRESENTATION

Typically, whenever two or more systems are prepared
to interoperate in a single simulation event, one of the
first requirements is correlation of the environmental
databases those systems rely on. But what does it
mean when the event manager states that the
environmental databases have been correlated? Often,
the implication is simply that an entity placed on the
Martian landscape at a specific coordinate appears at
an acceptably equivalent location when observed from
the Venus system.  This is certainly the minimum
requirement, but such “correlation” does little to ensure
the wvalidity of the subsequent system-to-system
interactions.

Different types of environmental databases
(atmospheric, open water, acoustic, etc.) support
different types of operations. In this discussion, we
focus on the land domain as a representative case.
Aside from supporting visual presentation, the most
important services supported by the environmental
representation are line-of-sight (LOS) and mobility
calculations. To guarantee valid interactions, these
calculations must produce the same results for the same
mobility or LOS analyses irrespective of the database
supporting the calculations; the databases should be
functionally equivalent. However, such equivalence
may be harder to achieve than is commonly realized.

From the LOS point of view, we claim functional
equivalence can only occur when the elevation surfaces
of the databases are identical. To see this, consider the
terrain cross section illustrated in Figure 3. Wherever
different databases have different elevation surfaces at
corresponding (x,y) locations, it is possible to position
an observer so that different fields of view occur. In
Figure 3, the dashed and solid lines depict two different
elevation surfaces. The shaded regions show areas that
are visible based on one surface and blocked according
to the other. While this is a trivial case, a single
example establishes the validity of our claim. It also
provides an illustration of the situation that should be
avoided. Positioning a second opposing-force entity in

e-.

Pinnacle difference

Depression difference

Figure 3. Different Elevation Surfaces Yield
Different LOS Results
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the gray shaded area of Figure 3 allows the potential
for an invalid interaction because one database would
indicate that LOS existed and the opposing entities
would be aware of each other, so an engagement could
occur. However, obstructions in the other database
prevent the entities from observing each other,
precluding engagement. The Martian can acquire and
engage the Venusian without ever being detected.

The fact that databases having different elevation
surfaces can lead to invalid interactions does not mean
that entities using those databases should be prevented
from interacting at all. Figure 3 also illustrates that
there are a great many pairs of locations where
consistent LOS results would result, despite the
database differences. That is, positioning one entity at
the illustrated observer location and locating the second
entity anywhere that is not shaded will result in
consistent LOS analyses using the different databases.
In fact, there is a bounded set of locations for the
second entity that would lead to different LOS
solutions while the set that gives equivalent results is
unbounded (assuming entity height is not bounded).
Thus, in the case illustrated, the probability of an
invalid interaction based on different LOS results is
comparatively low. So, ruling out any interactions
between entities using these databases is inappropriate.
A Dbetter strategy is to actively manage the interaction
opportunities in a way that maximizes the potential for
valid interaction.

Established management strategies are designed to
preclude situations where interacting simulation
systems could develop inconsistent world views. One
strategy separates incompatible simulations in time or
space (or both) so that, although the simulations all
operate within the same federation, they do not directly
interact with each other during any specific simulation
event. A second management method allows different
systems to interact, but requires that one of the
interacting systems adjudicate all decisions about each
interaction. Using the above entity-to-entity
engagement example, one simulation would determine
the existence of LOS and provide the other simulation
with its result, thus assuming the role of “line-of-sight
server” and ensuring that both simulations reach the
same conclusion. (Note that another similar option
would place one federate in the role of “terrain
server”.) Finally, another strategy requires that all
interacting systems use the same terrain. Different run-
time formats restrict the applicability of this strategy
and, even when it is viable, the systems must all use
algorithms that provide the same results as well.

There are also other problems with these strategies.
The first approach prohibits interaction of systems, so
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the overall simulation event would more appropriately
be described as a collection of separate systems, not as
an integrated federation. The second approach is more
acceptable, but clearly has shortcomings. Client
systems may well be stripped of their essential
character when their decision-making authority is
removed. Further, server systems might incur greatly
increased computational load and communicating their
decisions would increase network load and add latency
into the federation. Finally, none of these solutions are
fully applicable when live systems are involved.

We can build on results from earlier work (Richbourg,
2001) describing alternative methods that do not suffer
these limitations. = While there are many causes for
conflicting LOS results between environmental
databases (different source  data, different
transformations to create the run-time databases, errors
in one database, different features or feature placement,
use of incompatible algorithms, etc.), a comparative
analysis focused on the final databases and the
calculations they support can provide the information
necessary to manage interactions. Applying context-
sensitive viewshed analyses (Ray, 1994) to the
databases and comparing the results can identify areas
that provide the best potential for valid interactions.

Consider the case if Mars used Level 1 Digital Terrain
Elevation Data (DTED L1) and Venus used a Level 2
DTED (DTED L2). Figure 4 is a shaded relief
depiction of the Level 1 data (which includes elevation
posts at a horizontal spacing of approximately 83
meters). Figure 5 is a shaded relief depiction using
Level 2 DTED (approximately 28 meters horizontal
post spacing) for exactly the same area. Even at this
zoom level (approximately 30 KM square area is
shown), the DTED 2 shows a crisper representation of
the terrain.
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Figure 4. DTED Level 1 Shaded Relief
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Figure 5. DTED Level 2 Shaded Relief

Figures 6 and 7 show the viewsheds for these
representations. Both viewsheds are derived from tank
— to - tank LOS approximations for all locations in the
30KM square area. Each elevation post (pixel) in the
viewshed is scored according to an estimate of the
number of other elevation posts, within engagement
range, where LOS would exist between two tank
entities. (We applied bi-level interpolation to the
lower-resolution DTED L1 so that both databases have
the same scoring opportunities.) These scores have
been mapped into the gray scale for illustration. Light
areas indicate locations where an observer (tank
platform) has relatively open LOS and fields of fire
regarding targets (other tank platforms) within the
effective range of their main weapon. Dark areas
correspond to areas of poor LOS for that type of
observer (but relatively good concealment potential).
Comparing the viewshed information allows
identification of those areas where LOS analyses

Flgure 6 DTED I- Tank- to-Tank Viewshed
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Figure 7. DTED 2 — Tank-to-Tank Viewshed

applied to either the DTED L1 or DTED L2 elevation
data are likely to produce similar results and therefore
valid interactions between Martian and Venusian tanks.

Figure 8 illustrates the correlation of the two
viewsheds. Areas that appear white correlate to at least
90%. This correlation map provides a tool for event
managers to use in event planning. For example, one
could plan force interactions in locations that correlated
to at least 90%, accepting some risk (e.g., 10% or less)
of invalid interaction. However, note that these types
of viewshed comparisons are closely tied to the entity
types that are anticipated to engage one another. The
illustrations in Figures 6, 7, and 8 all assume that target
and observer are located about 3 meters above the
ground surface and that they are separated by 3,000
meters or less. Creating the same type of analyses for
other potential entity-to-entity engagements would
require both height AGL and range parameters
appropriate for those entities. That is, a viewshed

Flgure 8 Vlewshed Correlatlon at 90%
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analysis has to be performed in the context of likely
system interactions.

There are other aspects necessary to fully correlate
environmental databases and ensure valid system-to-
system interactions. Here we have focused on terrain
data to provide an example of the type of analyses that
are necessary. Even though elevation data analyses are
less important when working with open water or
atmospheric data, the main point should still hold.
Correlation of databases to ensure valid interactions
must be performed in the context of the functions that
will apply during potential engagements. While one
could directly compare the individual data elements of
each database (elevation post points in this terrain-
centric example), such a comparison is completely
context-free and is thus not very informative from an
exercise management point of view. As an example,
translating root-mean squared error (RMSE, derived
from directly comparing surfaces) into something
indicative of the potential for a fair fight seems very
unlikely and perhaps impossible. Simply
characterizing differences in the surface elevation does
not provide the type of information necessary to make
appropriate decisions. Further, we assert without proof
that there are cases where very large differences in
surface elevation have little impact on LOS results and
there are some cases where small differences can have
a large impact on calculated LOS. Conversely, the
function-based, context-sensitive method described
here allows event planners to make informed decisions
about risk of invalid interactions in their events.

ALGORITHMIC INTEROPERABILITY

Even if you have managed to agree on and express the
same shared objects and interactions and you use
identical supporting data for them and their
environments, there is still no guarantee that the
federation will be a valid simulation. The “whole is
greater than the sum of its parts” cuts both ways. Even
if the individual parts are validated, their sum does not
necessarily yield valid federation. Since V&V for a
single simulation is fairly difficult, it is not good news
that additional V&V is required for the federation.

To see why simulation validity is so fragile, we need to
examine what a model is as we hold that a computer
simulation is a collection of executable models
engineered to work together. The concept of a model
is at best fuzzy; what is the difference between a model
and a theory for instance [Morgan]. But, for the
purpose of this discussion please accept the following
definition: a model is a collection of abstractions of the
world called variables together with a mechanism to
predict the values of some of the variables based on the
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values of the rest. This is very close to the definition of
a mathematical function, with the added restriction that
the model includes principled mechanisms to obtain the
values of all the variables from the real world. Thus a
model is a function that predicts the state of one part of
the world from that of another part and that prediction
can be checked by comparing it with values obtained
directly from the world. The prediction is often self
referential where future values of a variable are a
function of past values, but that fits the definition since
each point in time can be considered a separate
variable. Consider a familiar example, the plastic
models of airplanes available at hobby shops. Given a
coordinate relative to a point on the nose of the real
aircraft, the model can predict whether that point is
inside or outside the real aircraft.

So why do we build models? To capture aspects of the
world in simplified forms that make it easier for us to
manipulate them and predict what would happen if we
manipulated the real thing [Woodward]. For example,
if we were planning to buy a small hanger to house our
real airplane and we wanted make sure the plane would
fit in the hanger, we could take our model and try to
place it in a same-scale model of the hanger; essentially
performing a simulation. In fact, for that purpose we
could use far simpler models of the airplane and
hanger; ones consisting only length, width, and height.
However if we wanted to see what the air flow over the
plane’s wings looked like, the simpler models would be
of little help. But building a scale model requires a
great deal of measurement while the length, width, and
height model requires only three. Even worse, the
more complicated and complete a model is, the harder
it is to figure out what manipulations will achieve our
goals. Models are simplifications of reality and they
get their power from the fact that they are easier to
manipulate than the real thing but are still able to
predict how the real thing will respond to a certain set
of manipulations. So the ideal model will be just
complicated enough to predict the results of the
manipulations we are interested in and no more. Thus
any object or process can be represented by an
unlimited number of models representing different
properties at different resolutions for different
purposes.

Another factor in the huge variability between
computer models is the fact that they are mathematical
models. Physical models automatically bring with
them various properties of the world. Mass, drag,
gravity, and the reflection and absorption of
electromagnetic energy all come with the physical
model; perhaps not in the right proportions, but for
free. With mathematical models on the other hand,
nothing comes for free. The mathematical model
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salesman gives the used car dealer a good name. “You
didn’t say you wanted tires on that model car, that’s an
expensive contract extension.” Thus computer models
differ not only because of purpose but because
everything that is represented has to be explicitly added
(we will ignore emergence as, unless it is very
carefully cultivated, it is more likely to be weed than a
flower). As there are an infinite number of ways to
abstract, having different model builders abstract the
same way is unlikely.

Now back to simulations; simulations are complete in
the sense that they contain all the models required to
represent both the objects and processes of interest and
the aspects of the environment that we want to examine
them interacting with. They would be useless
otherwise. ~ So whenever we bring together two
simulations they usually have different models of the
same phenomena. If the phenomena are objects such
as an F16, we resolve the problem by saying, “OK, the
Venus simulation will model all the F16s and Mars will
model F15s.” But because we and our interoperability
architectures are object focused, when it comes to
processes we don’t do the same thing. Each simulation
implements its own model of the processes of target
detection, damage calculation, driving, collision
avoidance, etcetera. So, when we run our federation
we will have different models for the same processes
running simultaneously. Essentially the F16 is flying
over Venus and the F15 is flying over Mars and
through the very clever trick of the RTI they think they
are both on the same planet and they can interoperate.
But their gravity and atmospheres are very different
and so the F16 in Venus doesn’t quite behave the way
an F16 in Mars would and the F15 may be confused by
this behavior difference. But wait you say, “Can’t I
change the Martian data files to make them close
enough to the Venus data and solve the problem?”
Well maybe, but unless the data files have exactly the
same variables and use them in exactly the same way,
i.e., have the same algorithms, which is unlikely, there
will always be some difference. Venus may calculate
LOS from the center of mass of a flight of aircraft
while Mars may calculate LOS from each of its sensors
and crew. Venus may use a ray tracing routine to
calculate intervisibility while Mars uses just range. It
is important to note that each algorithm choice has its
pluses and minuses. It is not just a matter of selecting
the model with the most detail; otherwise we would
only test in the real world since it is by definition its
own best model. Venus may have a much more
detailed detection algorithm but it can only handle a
scenario where it has no more than three opponents. It
won’t be much good for a Red Flag scenario, but it is
certainly more accurate in a one - on - one scenario.
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So how do we detect these problems and correct them?
In general there are no easy answers. In a single
simulation there is a long engineering and testing
process to harmonize the models and make them work
together. The uninitiated may get the false impression
that federations allow us to cheat that process and get a
free lunch. But the experienced practitioner assumes
that models from different simulations will be
incompatible, guilty until proved otherwise. However,
simulations often contain hundreds of process models
so exhaustive testing is not practical and resolving
identified problems is not easy. Federation builders
have developed some techniques to deal with the
problems:

* The first is to limit testing to the scenario or class of
scenarios that we intend to run and our purpose; the
more specific the better.

* We divide up the simulation of objects so that
objects that operate in similar environments are all
simulated together. Aircraft in one simulation,
surface vessels in another. That way, similar
entities have the same environment.

* We use persistent federations, where a history of
testing and interoperability modifications gives us
confidence that the models are compatible, at least
for previous purposes.

* We limit the scenario to regimes where the
simulation models give consistent results. If one
simulation doesn’t model night operations well,
don’t run a night scenario.

* We dumb down the over achievers. The nail that
sticks out gets hammered down. Raising the least
common denominator is usually much harder.

* We provide common process models for all the
simulations to use. This is the equivalent of what
we do for objects. The problem is generally
latency, so the TENA approach of allowing external
methods to be compiled into each federate has a lot
of promise here.

* We add noise into the models or handicap some in

such a way as to level the playing field.

In the long run, the best solution is to teach models to
our simulation engineers. We need to classify and
name different process models so we can talk about
them at a higher level. There should be taxonomy of
standard models and their variations. The vocabulary
of the modeling and simulation engineer needs to
include the Acquire model [Friedman] much more than
it needs to include JSAF, JCATS, F16, DIS, or HLA.
That way, when we bring our simulations together to
federate, we can talk at a much more meaningful level
than we do now and communicate much more
effectively and efficiently.
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The second benefit of developing the simulation model
ontology called for above is that it is needed to make
the automated integration of models possible. The
service oriented architecture (SOA) strategy calls for
the dynamic integration of services via a web
architecture. SOA is a development of the business
world [Carter]. Under the SOA strategy, an
organization decomposes its IT architecture into
business processes and services. Services are reusable
information processing tasks such as charging a credit
card or reordering a stock item. The key innovation is
that, the services are not hardwired into the application.
Instead, services are catalogued and applications
discover them in the catalogue each time they go to call
them. This decoupling makes it much easier to reuse
services and swap out old implementations for new
versions. This can be applied to simulation by making
our process models into services and our simulations,
like a business process, would primarily consist of a
top-level loop and specifications of the types of models
that are required to run the simulation. Upon starting
up, the simulation would search online catalogs to find
models that it needed to execute. In business scenarios
you generally call the credit card authorization service
once for each transaction. In simulation, we know we
are going to call each model repeatedly at high
frequency. So it doesn’t make much sense to
rediscover the model each time. The discover process
should only be conducted at the start of each event
rather than repeatedly during the execution. Latency
will probably be a critical issue for many models, so it
may be necessary to dynamically download the models
before execution. However, for this approach to solve
our interoperability problems we need to end up using
the same process models. It is not enough to
automatically discover F16, F15, and missile models.
If these models don’t share a common environment,
common sensor physics, and common target detection
and acquisition models (i.e., the underlying world
processes and data), then they will have the same
interoperability problems as our current federations
without the people in the loop to solve them. Thus the
federation has to choose the process model services
and tell the simulations and their object models to use
them. The key to allowing that to happen is a common
ontology of process models that allows us to write the
specifications needed to identify the models required.

CONCLUSION

Ensuring that arbitrary simulations will interact in valid
ways is difficult because there are so many moving
parts that have to be aligned properly. Object models
define the lexicon for interactions and alignment of
different object models, as with any lexicon, requires
resolving both syntactic and semantic differences. We
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have processes to attack the syntactic differences,
although the existing methods are often mostly manual.
These can be labor-intensive, tedious undertakings that
typically require several iterations to complete. The
semantic issues are far more difficult to resolve
because we do not have processes that are guaranteed
to: 1) identify all the differences and; 2) provide any
help in modifications that can resolve them. The
difference here is that the syntactic issues stem from
visible constructs while the semantic problems are
usually based on internal processes that are difficult to
isolate or expose. Probably, the best solution here is to
develop and utilize component-level object models that
can be shared and used across the community. In some
respects, this is the object model corollary to the
service-oriented approach; the idea is to have everyone
use the same object model “service.”

Like the object model semantic issues, the related
environmental issues are also difficult to resolve. The
causes behind potential invalid interactions are only
apparent when placed in the correct context of use.
The same representational difference can lead to
invalid results for one type of interaction and have no
adverse impact on others. Even a small difference in
elevation surfaces, as an example, can lead to
inconsistent line of sight analyses that, in turn, can lead
directly to invalid outcomes derived from unfair
advantage. However, the unfair advantage is
fundamentally dependent on the exact context of use,
and may not be a factor in many outcomes. As a result,
even exhaustive and detailed comparisons of different
environmental representations can be fruitless. Thus,
the notion of having “correlated databases” between
interacting federates is likely meaningless, unless the
correlation was synonymous with having ensured
equality of the surfaces. A more meaningful
characterization of the potential for valid interactions is
based on functional comparison. These kinds of
characterizations, where comparison is functional and
within context, can be used as management tools that
allow event designers to construct scenarios that the
different environmental representations will support or,
at least, to accept a bounded risk that the scenario will
result in valid outcomes.

Managing potential interactions becomes far less
important if all of the interacting systems are using the
same environmental database, as might be the case if a
terrain server could be used. This is an attractive
solution, but is also rarely a viable approach. Run time
environmental databases are typically heavily
optimized for specific systems and are thus very
difficult to share across systems without some form of
translation or reformatting.  Preserving functional
equivalence throughout the translation process is also
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problematic. Given that most simulation systems start
with the same (or nearly so) source data for their
environmental data, the problem of maintaining
functional equivalence during translation is at least
partly responsible for the current situation. Also, the
environmental data is usually quite voluminous,
making it difficult to serve over a network. These
kinds of problems usually imply that the server
approach is not as viable as a management solution.
Informed management, as we suggest above, can be
used to preserve interaction validity.

A service-oriented approach may be more attractive in
solving problems of model inconsistencies. After all, if
every system used the same model (algorithm) then
there would be little chance for inconsistency. This
approach fundamentally depends on the existence of a
model ontology, which we do not have today. As a
result, the current approaches to dealing with model
inconsistencies also depend on management. In fact,
the viewshed analyses described above are as
applicable to line of sight algorithm differences as they
are to environmental representation differences; they
are useful in placing the environment within its
functional context of use.

Viewshed type analysis is tractable for the algorithms
that use environmental data directly, because they are
sufficiently limited in number. It is difficult to make
the same claim for the general class of algorithms and
models that form the basis for all system — to - system
interactions in simulation events. Thus, the current
management approaches usually include some type of
circumscription, limiting the potential interaction types
to the minimum required. The best solution here is not
unlike that for ensuring object model compatibility.
Devising an ontology that can describe a core set of
accepted models would serve the community well. It
would be particularly useful as an enabling resource to
provide modelers with a common vocabulary for
describing widely used and accepted models.
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In sum, the community has not made appreciable
progress towards ensuring valid interactions derived
from semantic interoperability. However, there is a
way forward and progress can be made. The necessary
ingredients are common components of object models,
informed management of environmental data use, and
development of an educated community that uses a
common modeling ontology.
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